DIAGNOSTICO ELECTRONICO DEL MOTOR A GASOLINA

CRONOGRAMA DE TALLERES 2026

TALLER 1: INTRODUCCIÓN AL ESCÁNER AUTOMOTRIZ DURACIÓN: 3 HORAS INICIO:						
Escáneres genéricos y Multimarca. Ventajas y desventajas de cada uno.	Exploración de las funcionalidades de los escáneres. Breve introducción al sistema OBD2.	Como realizar un primer examen al sistema de inyección con un escáner genérico OBD2.	Los escáneres Multimarca ThinkScan Plus y X-431 Pro 5 de Lounch			
El escáner genérico OBD2 Car Scanner Pro y sus aplicaciones	La interfaz ELM 327 y su aplicación. Los protocolos de comunicación.	Utilización de Car Scanner Pro como Datalogger.	Como obtener el escáner X431 Pro 5 de Lounch.			
TALLER 2: LA NORMATIVA OBD2						

TALLER 2: LA NORMATIVA OBC	2
DURACIÓN: 9 HORAS	
INICIO	

Origen del OBD y beneficios del OBD2	El monitor comprensivo de componentes	El monitor de calentador del sensor de oxígeno
Luz MIL, Cuadro de datos congelados y Datos en tiempo real	El monitor de Misfire	El catalizador y el monitor del catalizador
Monitores, Códigos de falla y el Modo 06	Sensores de oxígeno y el monitor de Fuel Trims	Monitor de la EGR
Condiciones de ejecución de los monitores (Trips y Drive Cycles)	El monitor de sensor de oxígeno	El monitor del sistema EVAP

TALLER 3: OSCILOSCOPIO AUTOMOTRIZ DURACION: 3 HORAS INICIO:

Que es un osciloscopio. Ejemplo práctico de uso	Presentación del osciloscopio HScope para tablet o celular	Señales analógicas y digitales en el motor.	Utilización de atenuadores de señal.	Ajustes básicos del osciloscopio. Escalas de voltaje, tiempo y modos de disparo
Uso de transductores de corriente y presión. Ejemplos prácticos de utilización.	Desacople de continua. Medición de la compresión relativa de los cilindros.	Como realizar un balance hidráulico al sistema de inyección.	Introducción al análisis de la forma de onda de presión dentro del cilindro.	Como obtener el osciloscopio HScope y HS-502 para tablet o celular.

TALLER 4: SENSORES AUTOMOTRICES DURACIÓN: 12 HORAS INICIO:									
Sensor de temperatura ECT	Sensor MAP		Sensor CKP Sen		Sens	or CMP	Sensor MAF		
Diagnóstico mediante la eficiencia volumétrica (VE)	Sensor IAT		Sensores de oxígeno		El ca	talizador	Senso	or TPS	
Sensor de velocidad (VSS) y sensor de detonación (Knock)	acelei	Sistema de acelerador electrónico		Concepto de estequeometría de la combustión					
TALLER 5: SISTEMA DE ENCENDIDO DURACIÓN: 3 HORAS INICIO:									
sistema de encendido. Autoinducción e inducción mutua. Generación de alto voltaje en las bobinas. Sistemas con distribuidor, de chispa perdida y bobinas		Análisis primari secund bobind Tiempo	de onda. de	Calibración de bujías con osciloscopio		Diagnóstico electrónico de bobinas			
TALLER 6: SISTEMA DE COMBUSTIBLE DURACIÓN: 6 HORAS INICIO:									
Descripción del sis de combustible. Inyección directa indirecta, con y si retorno. El regulad presión de combu Cálculo del tiemp inyección y visualización en osciloscopio.	de los inyector análisis de análisis de de onda. Visualizació parámetro		ctores y su forma ón de s relevantes opio: cierre y	Simulo de fal		Inyección por Driver Saturo Peak and Hornección secuencial vinyección be	ado vs old.	Balance hidráulico del sistema	
Análisis global de corriente por los	la		gnóstico nba de						

combustible

inyectores

TALLER 7: DIAGNÓSTICO DE FALLAS MECÁNICAS **DURACIÓN: 12 HORAS** INICIO:

Fundamento del método de compresión relativa de los cilindros. Análisis de compresión relativa con osciloscopio utilizando pinza de corriente y por caída de voltaje. Señal de sincronismo y orden de encendido.

Los transductores de presión. Transductores de presión absoluta y diferencial. Usos y aplicaciones en el diagnóstico del motor. Presión dentro del cilindro, presión de admisión, presión de escape, sistema de refrigeración y cárter.

Análisis de la presión dentro del cilindro. Las 4 fases del ciclo Otto vistas en osciloscopio. Puntos notables, apertura y cierre de válvulas. Cruce valvular y efecto EGR. Retardo en cierre de admisión y adelanto en apertura de escape. La bolsa de escape y pérdida de carga en el cilindro.

Análisis de la presión en el Análisis de la presión en el múltiple de admisión. Fundamento del análisis y ejemplos de visualización de Detección de un misfire fallas. Duración y alzada de utilizando la señal de las válvulas. Reglaje valvular utilizando la señal de presión Relevamiento de los de la admisión.

múltiple de escape. Fundamento del análisis. presión del escape. tiempos valvulares. Compresión relativa de los cilindros utilizando la señal de presión del escape.

El ciclo Otto del motor a combustión. Utilización de plantillas de motor para el análisis con el osciloscopio.

TALLER 8: REDES CAN BUS DURACIÓN: 3 HORAS INICIO:

Componentes y operación de una red CAN BUS. Conceptos básicos de una red CAN BUS. Por qué se utilizan y ejemplos de redes en vehículos reales.	Topología de red vista desde el escáner Lounch X- 431 Pro 5.	Los Gateways. Que son y cómo se identifican en una red CAN.	Visualización de redes CAN BUS en el osciloscopio. Decodificación de los mensajes.
Los códigos de falla tipo U. Simulación de fallas.			