
Understanding Page Object Model (POM) in
Selenium
This document provides a comprehensive guide to the Page Object Model (POM) design pattern in Selenium. It
covers the key concepts, benefits, components, and implementation strategies for POM, along with practical code
examples and common pitfalls to avoid. The document is structured to provide a clear understanding of POM,
enabling developers and testers to effectively implement and maintain automated tests.

by Marcus Boykin

Page Obzec· M�de� (POM): Wh× I· Ma··e«¯ f�«
Re�lab�e Te¯· A¼·��a·l��
Think of your company’s website or application as a building. Every page is like a different room with buttons, forms,
and menus—like doors, light switches, and furniture. When our team tests the website, we need to make sure
everything works perfectly in every room.

The Problem:
If we check each room manually every time something changes, it’s slow and error-prone. Even when we automate
the checks, if we mix the <how to get around the room= with <what we’re actually testing,= it quickly becomes messy
and hard to fix when the website changes.

The Solution – Page Object Model (POM):
POM is a smarter way to automate testing. We create a "blueprint" for each page—like a floor plan that knows where
every button, form, and label is. This blueprint also knows how to use them (e.g., click a button, type into a field).

Wh× U¯e ·he Page Obzec· M�de�?
Ea¯le« Mal�·e�a�ce

POM significantly eases the
maintenance of automated tests.
When a web page undergoes
changes, such as alterations to
element locators or the addition of
new elements, only the
corresponding page object needs
to be updated. This localized
modification prevents the need to
update every test that interacts
with that page, saving considerable
time and effort.

C�ea�e« Te¯· L�glc

By encapsulating page-specific
logic within page objects, tests
become more readable and
focused on the actual testing steps.
This separation of concerns makes
it easier to understand the purpose
of each test and reduces the
likelihood of introducing errors
during test development or
modification. Cleaner test logic
enhances collaboration among
team members and facilitates
more efficient debugging.

Red¼ced C�de D¼¨�lca·l��

POM promotes the principle of
"Don't Repeat Yourself" (DRY) by
centralizing common page
interactions and element locators
within page objects. This eliminates
the need to duplicate code across
multiple tests, reducing the overall
codebase size and improving
maintainability. Reusing page
objects across tests also ensures
consistency in how elements are
accessed and interacted with,
further minimizing the risk of
errors.

Overview

In order to automate Google Chrome with Selenium in C#, you need to install the following NuGet packages:

Selenium.WebDriver
Core Selenium WebDriver API for controlling browsers.

1.

Selenium.Chrome.WebDriver
Supplies the ChromeDriver executable and Chrome-specific automation support.

2.

DotNetSeleniumExtras.WaitHelpers
Provides extension methods (e.g., ExpectedConditions) for more readable and reliable wait conditions.

3.

http://selenium.chrome/

Steps to Install via Visual Studio:

Go to Project → Manage NuGet Packages.1.

Search for and install the three packages above.2.

Alternatively, use the Package Manager Console (PMC) commands3.

Install-Package Selenium.WebDriver
Install-Package Selenium.Chrome.WebDriver
Install-Package DotNetSeleniumExtras.WaitHelpers

Quick Tip

After adding these packages, you can write C# Selenium tests (including waits using ExpectedConditions) and run
them seamlessly in Visual Studio—making it straightforward to automate browser interactions in Chrome.

Key Components of POM in Selenium
Component Responsibility

Base Page Common functionality for all pages

Page Objects Individual classes representing different web pages

Utilities Support classes (e.g., Driver setup, Wait helpers)

Tests Use page objects to perform automated tests

Base Page: The base page class provides common functionality and utilities that are shared across all page
objects. It typically includes the WebDriver instance, WebDriverWait instance, and methods for basic interactions
like navigating to a URL or handling alerts.

Page Objects: Each page object represents a specific web page and contains the elements and methods for
interacting with that page. Elements are typically defined as private fields, while methods encapsulate the actions
that can be performed on the page.

Utilities: Utility classes provide helper functions for common tasks like setting up the WebDriver, waiting for
elements to be visible, or reading data from external sources. These classes help to reduce code duplication and
improve the overall structure of the test automation framework.

Tests: Test classes use page objects to perform automated tests. Tests should be focused on verifying specific
functionality and should not contain any page-specific logic. This separation of concerns makes tests easier to
read, understand, and maintain.

Folder Structure Overview
A well-organized folder structure is essential for maintaining a scalable and maintainable POM-based test automation
framework. Below is a common folder structure that can be adapted to suit the specific needs of a project:

Pages: This folder contains the page object classes, with each class representing a specific web page. The classes
inherit common functionalities and utilities from the BasePage, centralizing common elements and simplifying the
structure.

Tests: This folder contains the test classes. Each test class should correspond to a specific feature or scenario and
use the page objects to interact with the application. This separation ensures tests are focused on verification and
not page-specific logic.

Utilities: This folder houses the utility classes and helper functions. Common tasks such as WebDriver setup,
handling waits, logging, and data input are managed centrally, reducing redundancy and improving
maintainability. Classes like DriverPage.cs and WaitUtilities.cs are stored here.

H�Ñ Thl¯ P«�zec· l¯ O«ga�lßed

This project is like a toolbox that helps us build and test websites
automatically. Each folder is like a different section of the toolbox, holding
special tools that work together:

Visual Representation
The following diagram illustrates the relationships between the key
components of a POM-based test automation framework:

Base Page -> Page Objects (Inheritance): Page objects inherit
common functionality from the base page, promoting code reuse and
consistency.

Utilities -> Base Page (Support): Utility classes provide support
functions to the base page and page objects, such as WebDriver
management and wait helpers.

Test -> Page Objects (Uses): Test classes use page objects to interact
with the application under test, keeping the test logic clean and
focused.

 Setup Structure
 Hardest part made easy.

� H�Ñ I· A�� W�«}¯ T�ge·he«

src → Contains the robot.1.

Pages → Show the robot how to work with website
pages.

2.

Tests → Give the robot tasks.3.

Utilities → Help the robot with browsers and
waiting.

4.

Together, they make our automation robot smart and
ready to work! í

b Pages Folder

This folder holds the <pages= of the website we are testing. Think of it like
making a robot that knows how to click buttons and type in text on
different website pages.

BasePage.cs: This is like the robot’s <brain.= It teaches all other pages
how to do basic things like clicking, typing, and waiting.

VariablePage.cs: This is like a robot that knows how to work with a
specific page on a website. It uses the BasePage brain to help it.

b Tests Folder

This folder holds the tests. A test is like giving our robot instructions:
"Go to the website, type in something, click this button, and check if
it works!"

ExampleTest.cs: This is an example test. It tells the robot exactly what to
do on the website to make sure everything works.

b Utilities Folder

This folder holds helpers. These are like little tools that make the robot’s
job easier.

DriverPage.cs: This helps the robot open and close the web browser
(like Chrome or Edge).

WaitUtilities.cs: This teaches the robot how to be patient. Sometimes
the robot needs to wait for things to load on a website.

� Reading Your First Class (
Don’t Worry, I’ll Make It Easy)

Before we jump into writing code, I want to show you something important:
This is what a basic class looks like in C#. You’ll see this a lot:

public class BasePage {
 protected IWebDriver driver;
 protected WebDriverWait wait;

 public BasePage(IWebDriver driver) {
 this.driver = driver;
 wait = new WebDriverWait(driver, TimeSpan.FromSeconds(10));
 }
}

If this looks like an alien language—that’s okay.
If you know what this is—stick with me. You’ll still pick up some clarity.

Let’s break it down, even if you’ve never seen code before.

Ë Classes Are Blueprints

Think of a class like a blueprint for a robot.
This blueprint tells the robot what it knows and what it can do.

It might know how to open a door.

It might know how to wait for a website to load.

public class BasePage {

public means anyone can use this blueprint.

class means we’re making a blueprint.

BasePage is the name of our blueprint.

Pro Tip for Experienced Readers:
Think of public class BasePage as saying:
“This is a reusable base class other pages will extend

Ì Curly Braces { } Hold Steps

Whenever you see { }, it means:

<Everything inside here is part of this thing.=

public class BasePage {
 // Stuff inside this is part of BasePage
}

{ opens the blueprint.

} closes it.

If you know code, this is your scope.
If you’re new, just remember: Open brace = start steps. Close brace = done.

Í Se�lc����¯ ; E�d Each S·e¨

In code, ; is like a period in a sentence.

This:

protected IWebDriver driver;

… is just saying:

<Hey robot, remember something called driver.=

We put ; because the robot needs clear stops.

For Experts:
Yes, semicolons are end-of-statements in C-like languages. Beginners just need to know <stop here=.

Î Me·h�d¯ A«e Ac·l��¯

A method is just an action the robot can do.

Example:

public void DoSomething() {
 // steps the robot will do
}

This is saying:

public → Anyone can tell the robot to do this.

void → This action doesn’t give anything back; it just <does.=

DoSomething() → This is the name of the action.

{ } → Inside here are the steps.

Advanced Readers:
Yes, this is a method with no return type (void). We’ll touch on return types later.

Ï Le· I· C�lc} T�ge·he«

Let’s read our first class again:

public class BasePage {
 protected IWebDriver driver;
 protected WebDriverWait wait;

 public BasePage(IWebDriver driver) {
 this.driver = driver;
 wait = new WebDriverWait(driver, TimeSpan.FromSeconds(10));
 }
}

This is now what you can see:

Code What It Really Says

public class BasePage <Open blueprint for everyone called BasePage.=

{ <Start listing what the robot knows and can do.=

protected IWebDriver driver; <The robot knows about a browser (driver).=

protected WebDriverWait wait; <The robot knows how to wait (wait).=

public BasePage(IWebDriver driver) <When we make this robot, we give it a browser.=

this.driver = driver; <Remember this browser for later.=

wait = new WebDriverWait(driver, 10 sec); <Also remember how to wait 10 sec.=

} <Done with this part.=

Common Mistakes to Avoid (and How to Make
Your Life Easier)

Mixing Test Logic with Page Actions1.

What this looks like: Your page objects contain both <how to click a button= (actions) and <does clicking the
button do what we expect?= (test logic).

Why it matters: When actions and tests blur together, it’s harder to spot bugs and maintain your code.
Keeping them separate allows you to quickly see what’s being tested versus how the page is manipulated.

How to avoid it: Let your page objects handle the actual interactions (e.g., clicking buttons, typing text), while
your test scripts focus on verifying the expected outcomes.

Using Static Methods in Page Objects2.

What this looks like: You rely heavily on static methods, which makes it tough to manage individual
WebDriver instances and page-specific states.

Why it matters: Static methods reduce flexibility and hinder the reusability of your page objects. They can
also complicate scaling your tests or introducing variations.

How to avoid it: Use object instances instead of static methods. This way, you can encapsulate page details
and handle the driver more efficiently.

Not Using a 8Base Page9 for Shared Behaviors3.

What this looks like: Each page object implements the same utilities—like waiting for elements or handling
timeouts—over and over again.

Why it matters: A base page fosters code reusability and adheres to the DRY (Don9t Repeat Yourself)
principle. By centralizing common methods (e.g., logging, waiting for elements), you only write and maintain
the code once. All page objects that inherit from the base page automatically gain these shared capabilities—
keeping your tests consistent, clean, and easier to update.

How to avoid it: Identify recurring actions and place them in a base page class. Let each individual page
object inherit these utilities, streamlining your framework.

Bottom Line
By avoiding these mistakes, you’ll build a test automation framework that’s easy to maintain, scale, and extend.
Keeping test logic separate from page actions, steering clear of static method overuse, and leveraging a base page for
shared functionality sets you up for success—so you can focus on writing tests that truly matter.

D«lÐe«Page
Ý D«lÐe« Page – Wha· D�e¯ I· D�?
The Driver Page is like the driver of our robot’s car (the web browser).

Every time we run a test, we need to open a browser (like Chrome), drive it around the website, and close it when
we’re done.
DriverPage.cs is the class that handles all of that for us.

using OpenQA.Selenium.Chrome;
using OpenQA.Selenium;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace SeleniumStarterKit.src.Utilities
{
 public class DriverPage
 {

 private static IWebDriver Driver;

 public static IWebDriver GetDriver()
 {

 if (Driver == null)
 {
 InitializeDriver();
 }

 return Driver;

 }

 public static void InitializeDriver()
 {
 ChromeOptions options = new ChromeOptions();
 options.AddArgument("--incognito");

 Driver = new ChromeDriver(options);

 }

 public static void CloseBrowser()
 {

 if (Driver != null)
 {

 Driver.Quit();
 Driver = null;
 }
 }
 }
}

}

� B«ea}l�g D�Ñ� D«lÐe«Page.c¯ – Wha·’¯ Ha¨¨e�l�g
I�¯lde?

Now that you know DriverPage.cs is like the car engine that starts, drives, and stops the browser,
let’s walk through what this code is actually doing – step by step.

ú Ll�e-b×-Ll�e B«ea}d�Ñ�

Line in the Code What It Means (Plain English)

using OpenQA.Selenium.Chrome; and others "These are toolboxes we’re grabbing to work with
Selenium and the browser."

namespace SeleniumStarterKit.src.Utilities "This is like a folder label, so we know this class lives
in Utilities."

public class DriverPage { "We’re creating a blueprint called DriverPage that
everyone can use."

private static IWebDriver Driver; "We’re keeping track of the car (browser) so we
don’t lose it."

public static IWebDriver GetDriver() "This is an action to start the car and give it to
other classes."

{ "We’re starting the steps inside this action."

Inside GetDriver() (Your actual logic here) "We start the car (open Chrome) and maximize the
window. Then, we hand the car (driver) back so
other classes can use it."

} "End of this action’s steps."

ñ H�Ñ I· C���ec·¯ ·� EÐe«×·hl�g E�¯e

Let’s zoom out and see how DriverPage.cs plays with the rest of your Selenium framework:

� Part � What It Does � How It Needs DriverPage

DriverPage.cs Starts the browser and hands
the driver (car) to other classes.

This is the source – everything
starts here.

BasePage.cs Knows how to click buttons,
type, and wait.

Needs the driver from
DriverPage to know which car
it’s driving.

VariablePage.cs Works on a specific page of a
website.

Inherits from BasePage, which
already has the driver from
DriverPage.

ExampleTest.cs Tells the robot what test to run
(go here, click this).

Starts by calling DriverPage to
open the browser first.

Ý Simple Visual Flow

Think of the whole thing like this:

DriverPage.cs → Starts the Car (Browser)1.

BasePage.cs → Learns How to Drive (Click, Type, Wait)2.

VariablePage.cs → Drives to a Specific Place (A Page on a Website)3.

ExampleTest.cs → Gives the Robot the Plan (Test Steps to Follow)4.

✅ Key Takeaway

Without DriverPage.cs, the car never starts.
Every test you write depends on it to open and close the browser.

Next time you open DriverPage.cs, just remember:
This is the engine. Everything else is the journey.

⏳ Wal·U·l�l·le¯ – Wha· D�e¯ I· D�?

When our robot is driving through a website, it sometimes needs to wait for things to appear.
Pages don’t always load instantly—buttons, forms, or text might take a few seconds to show up.

WaitUtilities.cs is the class that teaches our robot patience.

using OpenQA.Selenium.Support.UI;
using OpenQA.Selenium;
using SeleniumExtras.WaitHelpers;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace SeleniumStarterKit.src.Utilities
{
 public class WaitUtilities
 {

 public IWebDriver Driver;
 private WebDriverWait Wait;

 public WaitUtilities(IWebDriver driver)
 {
 this.Driver = driver;
 this.Wait = new WebDriverWait(driver, TimeSpan.FromSeconds(40));
 }

 public void UntilVisible(By locator)
 {
 Wait.Until(ExpectedConditions.ElementIsVisible(locator));
 }

 }
}

� B«ea}l�g D�Ñ� Wal·U·l�l·le¯.c¯ – Wha·’¯ Ha¨¨e�l�g I�¯lde?

Let’s say the robot goes to a website and needs to click a button, but the button takes 3 seconds to show up.
Without waiting, the robot would try to click it immediately and crash.

WaitUtilities.cs solves this problem by helping the robot:

Wait for buttons or text to appear.

Wait for things to become clickable.

Wait for the page to finish loading.

ú Line-by-Line Breakdown (Example Flow)

Line in the Code What It Means (Plain English)

using OpenQA.Selenium; and others "These are toolboxes we grab to control the browser
and set waits."

namespace SeleniumStarterKit.src.Utilities "This is the folder label so we know this class lives in
Utilities."

public class WaitUtilities { "We’re creating a helper class called WaitUtilities
to help with waiting."

public static void WaitForElement(IWebDriver driver,
By by, int timeoutInSeconds)

"We’re making an action that tells the robot: Wait
for this thing to show up."

{ "We’re starting the steps inside this action."

Inside the method "We wait up to X seconds for the button, text, or
element to appear."

} "End of this action’s steps."

⏳ Simple Visual Flow Example

Imagine the robot doing this during a test:

DriverPage.cs → Starts the car (browser).1.

BasePage.cs → Drives the car (click, type, navigate).2.

WaitUtilities.cs → Teaches the robot patience (wait if the road is blocked).3.

VariablePage.cs → Does page-specific actions.4.

ExampleTest.cs → Runs the full test journey.5.

✅ Key Takeaway

Without WaitUtilities.cs, the robot is impatient and crashes.
With it, the robot is patient and smart, waiting for things to load before acting.

Next time you open WaitUtilities.cs, just remember:
This is the robot’s patience. It waits so your tests don’t fail.

� Ba¯e Page – Wha· D�e¯ I· D�?

Every robot needs basic driving skills before it can get fancy.
Our BasePage.cs is like the driving school for our test robot.

It teaches every page how to:

Click buttons.

Type in text.

Wait for things to load (with help from WaitUtilities.cs).

Use the web browser (driver) from DriverPage.cs.

Any page we create (like VariablePage.cs) can inherit from BasePage.cs to automatically know all of these skills.

using OpenQA.Selenium.Interactions;
using OpenQA.Selenium;
using SeleniumStarterKit.src.Utilities;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace SeleniumStarterKit.src.Pages
{
 public class BasePage
 {

 public WaitUtilities Wait;
 public IWebDriver Driver;
 public Actions actions;

 public BasePage(IWebDriver driver)
 {
 this.Driver = driver;
 this.Wait = new WaitUtilities(Driver);
 this.actions = new Actions(Driver);

 }

 }
}

� B«ea}l�g D�Ñ� Ba¯ePage.c¯ – Wha·’¯ Ha¨¨e�l�g I�¯lde?

Line in the Code What It Means (Plain English)

using OpenQA.Selenium; and others "We’re getting our toolboxes so we can control the
browser and wait."

namespace SeleniumStarterKit.src.Pages "This is the folder label—this class lives in Pages."

public class BasePage { "We’re creating a blueprint called BasePage—every
page can use this."

protected IWebDriver driver; "The robot’s car (browser)—we need to keep track
of it."

protected WebDriverWait wait; "A built-in wait tool—helps the robot wait for things
to load."

public BasePage(IWebDriver driver) "This is the constructor—when we create a
BasePage, we give it a car (driver)."

{ this.driver = driver; ... } "We’re saving the car and creating a wait tool (e.g.,
10 seconds)."

Other methods (e.g., Click, Type, etc.) "Robot’s driving skills—Click this, Type that, Wait
here."

} "End of the BasePage blueprint."

ñ H�Ñ I· C���ec·¯ ·� EÐe«×·hl�g E�¯e

� Part � What It Does � How It Needs BasePage

DriverPage.cs Starts the browser. BasePage needs it to get the
browser (driver).

BasePage.cs Teaches robots driving skills
(click, type, wait).

Uses DriverPage’s driver &
WaitUtilities to do its work.

VariablePage.cs Extends BasePage—Focuses on
a specific page.

Inherits BasePage’s skills like
click, type, and wait.

ExampleTest.cs Runs the test steps. Uses VariablePage, which relies
on BasePage.

� Simple Visual Flow Example

Think of it like this:

DriverPage.cs → Starts the Car (Browser).1.

BasePage.cs → Teaches the Robot Driving Skills (Click, Type, Wait).2.

VariablePage.cs → Drives to a Specific Place (A Page on a Website).3.

WaitUtilities.cs → Helps the Robot Wait if the Road is Blocked.4.

ExampleTest.cs → Gives the Robot the Test Plan to Follow.5.

² Va«lab�e Page – Wha· D�e¯ I· D�?

When you visit a website, every page is different.
Each page has its own buttons, text fields, and things you can click.

In our automation project, we represent each page of a website as a C# class.
That’s what VariablePage.cs is—it’s a C# class for one specific page.

If we were testing eBay’s homepage, we’d have an eBayHomePage.cs file.
If we were testing a login page, we might call it LoginPage.cs.

� How It Works:

Real-Life Website Page Our C# Class (Variable Page)

Login Page LoginPage.cs

Product Page ProductPage.cs

Checkout Page CheckoutPage.cs

Search Results Page SearchResultsPage.cs

Each Variable Page class describes the page’s buttons, fields, and actions.

ñ Wha·’¯ I�¯lde a Va«lab�e Page C�a¯¯?

Think of it like this:

Buttons and fields on the website → We describe them as variables.

Clicking and typing actions → We write methods (actions) to do these things.

] Example Full VariablePage.cs Class

using OpenQA.Selenium;

namespace SeleniumStarterKit.src.Pages
{
 public class VariablePage : BasePage
 {
 public VariablePage(IWebDriver driver) : base(driver) { }

 // Describe a button on the page
 private By ExampleButton = By.Id("exampleButton");

 // Action: Click the button
 public void ClickExampleButton()
 {
 driver.FindElement(ExampleButton).Click();
 }
 }
}

� B«ea}l�g D�Ñ� Va«lab�ePage.c¯ – Wha·’¯ Ha¨¨e�l�g I�¯lde?

Line in the Code What It Means (Plain English)

using OpenQA.Selenium; and others "We’re getting our toolboxes to control the
browser."

namespace SeleniumStarterKit.src.Pages "This is the folder label—this class lives in Pages."

public class VariablePage : BasePage { "We’re creating a class called VariablePage, and it
inherits from BasePage (driving skills)."

public VariablePage(IWebDriver driver) : base(driver) {
}

"Constructor—when we create VariablePage, we
pass the car (driver) to BasePage so it knows how to
drive."

private By ExampleButton = By.Id("exampleButton"); "This is describing a button on the web page. We’re
saying 'Look for the button with the ID
exampleButton'."

public void ClickExampleButton() {
driver.FindElement(ExampleButton).Click(); }

"Action: We’re telling the robot how to click the
button we just described."

} "End of this page’s blueprint."

ñ H�Ñ I· C���ec·¯ ·� EÐe«×·hl�g E�¯e

� Part � What It Does � How It Needs VariablePage

DriverPage.cs Starts the browser. VariablePage needs it indirectly
through BasePage.

BasePage.cs Teaches robots driving skills
(click, type, wait).

VariablePage inherits from
BasePage to get these skills.

VariablePage.cs Handles actions on a specific
page (e.g., clicking a button).

Uses BasePage’s driving skills to
click, type, and wait.

ExampleTest.cs Runs the test steps. Uses VariablePage to tell the
robot what to do on the page.

� Simple Visual Flow Example

Let’s imagine we’re testing a Login Page:

DriverPage.cs → Starts the Car (Browser).1.

BasePage.cs → Teaches the Robot Driving Skills (Click, Type, Wait).2.

VariablePage.cs → Describes the Login Page (Username Field, Login Button) and Knows How to Fill and
Submit.

3.

WaitUtilities.cs → Helps the Robot Wait if the Road is Blocked.4.

ExampleTest.cs → Gives the Robot the Full Test Plan.5.

✅ Key Takeaway

Each page on a website is represented as a C# class (like LoginPage.cs).
Inside each page class, we:

Describe the buttons and fields on that page.

Write actions to click buttons, type text, and do things on that page.

Without VariablePage.cs, the robot would know how to drive (BasePage), but wouldn’t know what’s on the
page.
With it, the robot knows what’s on the page and can interact with it.

Next time you open VariablePage.cs, just remember:
This is the map. It describes what’s on a specific page and how to interact with it.

� Te¯·¯ – Wha· D� The× D�?

Everything we’ve built so far—DriverPage.cs, BasePage.cs, VariablePage.cs, and WaitUtilities.cs—is like
preparing the robot.

But now, it’s time to tell the robot what to do!

Tests are like giving the robot step-by-step instructions:
7 <Go to this page, click this button, type in this text, and check if it worked.=

Each test simulates a user visiting the website.
The robot pretends to be a person—clicking, typing, and checking if everything works.

Ë The Te¯· Na�e De¯c«lbe¯ ·he Ac·l��

Naming your tests is super important because the name should tell anyone reading it exactly what the test is
doing.

When you read the test name, you should know the goal without reading the code.

Bad Name ❌ Good Name ✅

Test1 Login_WhenCredentialsAreValid

ClickStuffTest Checkout_WhenItemIsAddedToCart

RandomTest SearchResults_AppearWhenSearchingForProduct

A Good Test Name usually answers:

What are we doing?

What do we expect to happen?

� B«ea}l�g D�Ñ� a Te¯· C�a¯¯ – Wha·’¯ Ha¨¨e�l�g I�¯lde?

Line in the Code What It Means (Plain English)

using NUnit.Framework; and others "We’re getting testing tools (like NUnit) so we can
run tests."

namespace SeleniumStarterKit.src.Tests "This is the folder label—this class lives in Tests."

public class ExampleTest { "We’re creating a test class called ExampleTest."

[Test] "This is a test method marker—it tells the robot
'Run this as a test'."

public void ExampleTestMethod() "This is the test name—it should describe what this
test is doing."

{ /* steps here */ } "We write the steps inside (e.g., open page, click
button)."

} "End of the class."

] Example Full Test Class

using NUnit.Framework;
using OpenQA.Selenium;
using SeleniumStarterKit.src.Utilities;
using SeleniumStarterKit.src.Pages;

namespace SeleniumStarterKit.src.Tests
{
 public class ExampleTest
 {
 private IWebDriver driver;
 private VariablePage variablePage;

 [SetUp]
 public void SetUp()
 {
 driver = DriverPage.GetDriver();
 variablePage = new VariablePage(driver);
 }

 [Test]
 public void Button_ShouldBeClickable_WhenPageLoads()
 {
 variablePage.ClickExampleButton();
 // Add more steps or assertions as needed
 }

 [TearDown]
 public void TearDown()
 {
 driver.Quit();
 }
 }
}

ñ H�Ñ I· C���ec·¯ ·� EÐe«×·hl�g E�¯e

� Part � What It Does � How It Needs Tests

DriverPage.cs Starts the browser. Tests need this to open the
browser.

BasePage.cs Teaches robots driving skills
(click, type, wait).

Tests rely on pages that inherit
BasePage.

VariablePage.cs Describes a specific page’s
buttons and actions.

Tests use VariablePage to tell
the robot what to click.

WaitUtilities.cs Helps the robot wait. Tests benefit when pages wait
correctly.

Tests (This) Tells the robot what to do. Uses everything above to
perform a test scenario.

Simple Visual Flow Example

DriverPage.cs → Starts the Car (Browser).1.

BasePage.cs → Teaches the Robot Driving Skills (Click, Type, Wait).2.

VariablePage.cs → Maps Out a Specific Page (e.g., buttons, fields).3.

WaitUtilities.cs → Helps the Robot Wait if the Road is Blocked.4.

Tests → Give the Robot the Plan (Step-by-Step Instructions).5.

✅ Key Takeaway

Without Tests, the robot would know how to drive, know the page, know the buttons—but it wouldn’t know
what journey to take.
With Tests, we give the robot a plan and name it well so others understand what’s being tested.

A Good Test Name = Clear Plan
Every test should tell a story with its name:

What are we testing?

What do we expect to happen?

Next time you open ExampleTest.cs, just remember:
This is the plan. You’re writing the robot’s journey, and the test name is its title.

T«�¼b�e¯h��·l�g: 3 C����� Se�e�l¼� Te¯· P«�b�e�¯

Once you have everything set up and your test is running, you might still encounter situations where your test
doesn’t work as expected. Most of the time, the problem falls into one of these three categories:

1. Wrong Selector

Your test is likely trying to interact with the wrong element on the page. This usually happens when:

The XPath or CSS Selector is incorrect.

The element's ID or class is dynamic and changes every time the page loads.

You're selecting a similar element that is not the intended one.

How to fix it:

Double-check your selector using the browser's Developer Tools (Inspect Element).

Use unique attributes like data-testid, name, or static classes.

Rely less on auto-generated IDs if they are changing.

2. Wait Issue

Your script might be moving too fast, and the element you need hasn’t loaded yet. This is a common cause of failures
like ElementNotInteractableException or NoSuchElementException.

Why this happens:

The page or element hasn't finished loading before your test tries to interact with it.

Some elements become visible after an animation or AJAX call.

How to fix it:

Use Explicit Waits with WebDriverWait instead of Thread.Sleep().

Example in C#:WebDriverWait wait = new WebDriverWait(driver, TimeSpan.FromSeconds(10)); IWebElement
element = wait.Until(ExpectedConditions.ElementToBeClickable(By.Id("example")));

Learn about Implicit, Explicit, Fluent, and Static waits.

3. Wrong Frame (iframe Issue)

Sometimes, your test might not be able to find an element because it is inside an iframe.

An iframe is like a separate webpage embedded inside another webpage. It looks like this in HTML:

<iframe src="https://example.com"></iframe>

When you see an iframe, your WebDriver is only looking at the main page by default. You need to switch into the
iframe before interacting with its elements.

How to fix it:

Switch into the iframe before performing actions inside it:

driver.SwitchTo().Frame("nameOrIdOfIframe");

After you are done with the iframe, switch back to the main page:

driver.SwitchTo().DefaultContent();

Tip: Sometimes iframes don't have names or IDs. You can switch by index or WebElement:

driver.SwitchTo().Frame(0); // First iframe on the page

Or:

IWebElement iframeElement = driver.FindElement(By.TagName("iframe"));
driver.SwitchTo().Frame(iframeElement);

Summary

Problem Cause Solution

Wrong Selector Incorrect or dynamic selector Verify in DevTools, use stable
attributes

Wait Issue Page or element not fully loaded Use Explicit Waits

Wrong Frame (iframe) Element inside an iframe SwitchTo().Frame() before
interacting

Understanding these common issues will save you a lot of time and frustration when debugging your Selenium tests!

