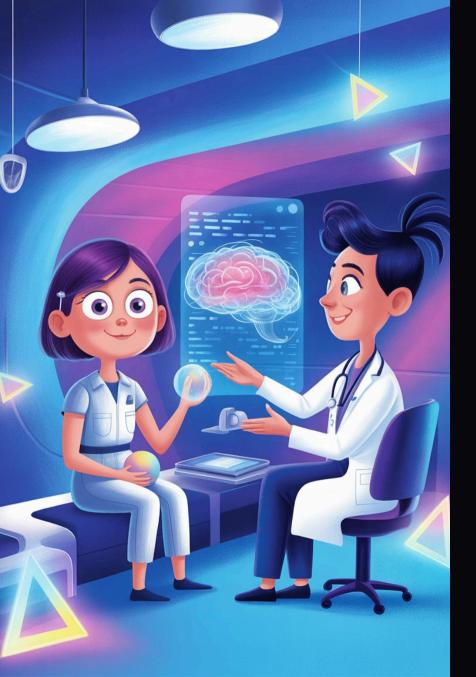


TOHB en el Síndrome Neurológico Tardío (SNT) tras intoxicación por monóxido de carbono



Objetivos

Analizar la fisiopatología del daño neurológico tardío por ICO.

Revisar estudios clínicos y experimentales que fundamentan el uso del TOHB incluso a presiones moderadas.

Síndrome Neurológico Tardío (SNT)

Características principales

Aparece semanas después de una aparente recuperación clínica tras ICO.

Incidencia: hasta el 50 % de los pacientes con ICO grave.

A los 6 años, hasta el 37 % mantiene síntomas neurológicos, y el 19 % alteraciones cognitivas.

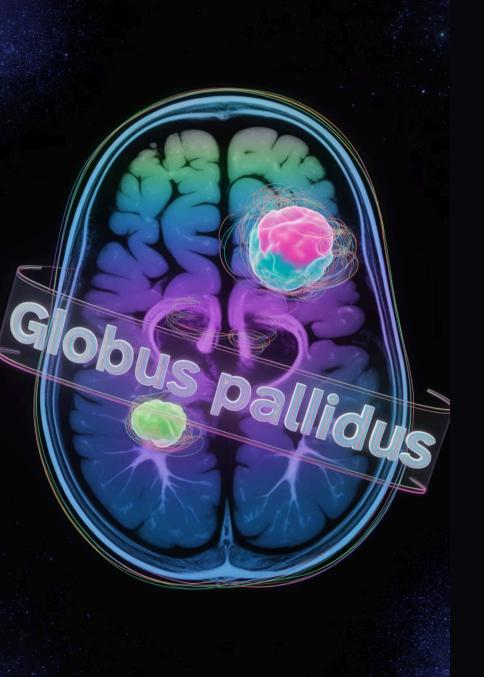
Manifestaciones clínicas

- Déficits cognitivos (memoria, atención, funciones ejecutivas).
- Trastornos del ánimo (ansiedad, depresión).
- Síntomas motores: parkinsonismo, ataxia.

Mecanismos fisiopatológicos del SNT

Lesiones isquémicas, inflamación y neurotoxicidad inmunomediada.

Afectación de oligodendrocitos (OL) y fallos en la regeneración de mielina por células precursoras (OPC).


Desmielinización progresiva en sustancia blanca cerebral.

Disfunción mitocondrial mantenida → estrés oxidativo.

El daño no siempre correlaciona con la gravedad clínica inicial ni niveles de COHb.

Evidencia de daño estructural

Neuroimagen

Lesiones en globo pálido, atrofia hipocampal, alteraciones subcorticales.

Hallazgos histológicos

Necrosis, malacia, desmielinización y apoptosis.

Marcadores de riesgo

CPK elevada en fase aguda, hallazgos en RM, síntomas persistentes tras ICO.

Rol del TOHB en la prevención del SNT

Evidencia experimental

Estudio de Thom et al. (2006)

TOHB previene disfunción inmunomediada de la mielina en ratas expuestas a CO.

- Prevención de alteración de proteína MBP.
- \$\prec\$ activación microglial y linfocitaria.
- Mejora funcional en tareas cognitivas.

Estudio de Juric et al. (2015)

TOHB restaura potencial mitocondrial y reduce caspasas apoptóticas.

Casos clínicos destacados

00

Dean et al. (1993)

Recuperación completa de paciente en coma por ICO tras 6 h con TOHB repetido.

Stoller et al. (2007)

Mejora neurocognitiva en adolescente con SAF tras 40 sesiones de TOHB.

Caso ImPACT (Stoller)

Varón de 48 años con parkinsonismo severo post ICO.

- Mejora tras 40 sesiones a 1,5 ATA.
- Restauración motora, verbal y facial.
- Aumento en puntuaciones cognitivas, especialmente memoria verbal.

Aplicación en secuelas ya instauradas

Neuroplasticidad

TOHB induce neuroplasticidad, aún meses o años después del episodio hipóxico.

Síntomas

Síntomas motores y no motores.

Regeneración

Regeneración neuronal.

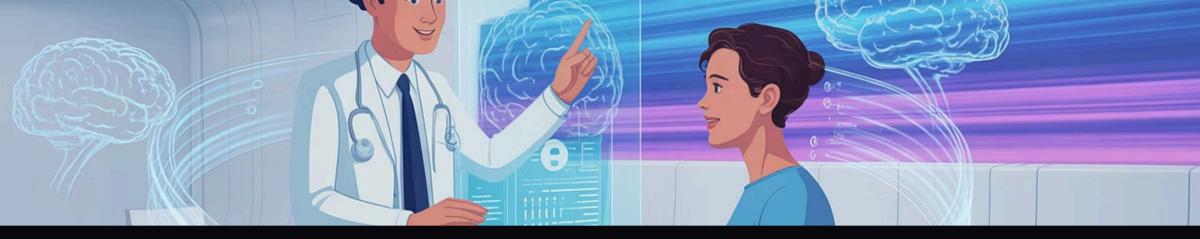
Función celular

Función mitocondrial en neuronas y glía.

Conectividad

Conectividad sináptica.

Consideraciones clínicas


Limitaciones

El TOHB no elimina completamente alteraciones bioquímicas, pero previene manifestaciones clínicas graves.

Presión efectiva

Puede usarse con fines rehabilitadores incluso a 1,5 ATA, con buenos resultados funcionales.

Recomendaciones de seguimiento

Evaluación objetiva

Se recomienda utilizar escalas objetivas de seguimiento (p. ej., ImPACT, pruebas de memoria y motricidad).