Inhalación por humo y oxigenoterapia hiperbárica (TOHB)

Objetivos del tema

- Describir la fisiopatología de la inhalación por humo.
- Analizar la toxicidad de gases como CO y HCN en incendios.
- Exponer la utilidad del TOHB en el tratamiento y prevención de secuelas.
- Evaluar la aplicación de TOHB incluso a presiones menores (<2 ATA) si se aplica precozmente.

Composición y toxicidad del humo

Composición del humo

Humo: mezcla de partículas sólidas, vapores y gases tóxicos.

Gases frecuentes

CO, CO₂, HCN, HCl, estireno, dioxinas.

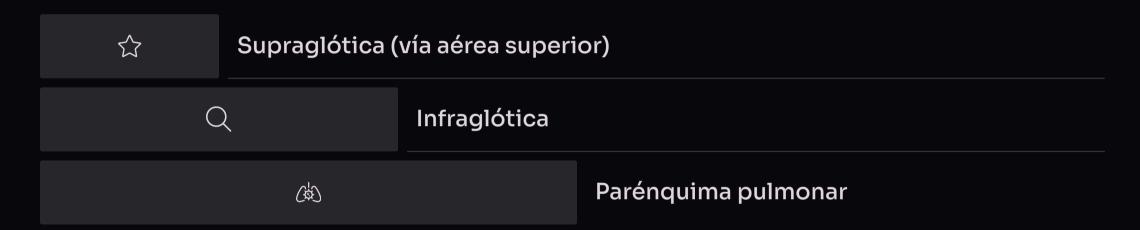
Factores de toxicidad

Toxicidad depende del material en combustión (PVC, acrílicos, poliuretano).

Impacto en mortalidad

En incendios cerrados: hasta un 50 % de muertes por inhalación, no por quemaduras.

Gases tóxicos y sus efectos


Monóxido de carbono (CO)

- Más frecuente.
- Inhibe transporte de O₂ (forma COHb).
- Dosis >4000 ppm → muerte rápida.

Cianuro de hidrógeno (HCN)

- Más tóxico que el CO.
- Afecta función mitocondrial.
- Dosis >3000 ppm → muerte en minutos.

Lesión pulmonar por humo

Consecuencias:

- Edema, broncoespasmo, necrosis.
- Riesgo de SDRA.
- Mortalidad aumenta hasta 60 % si hay lesión pulmonar.

Fisiopatología del daño por inhalación

Activación de neuropeptidos y PMN

↓ ATP celular, ↑ apoptosis y muerte celular

† permeabilidad vascular

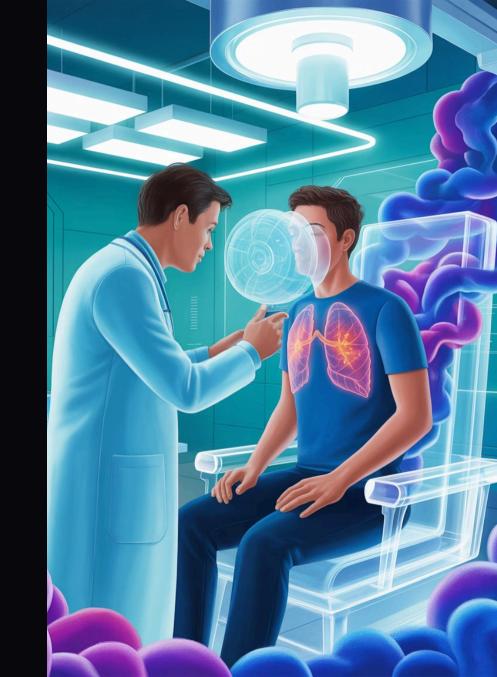
→ edema

Formación de cilindros mucosos → obstrucción bronquial

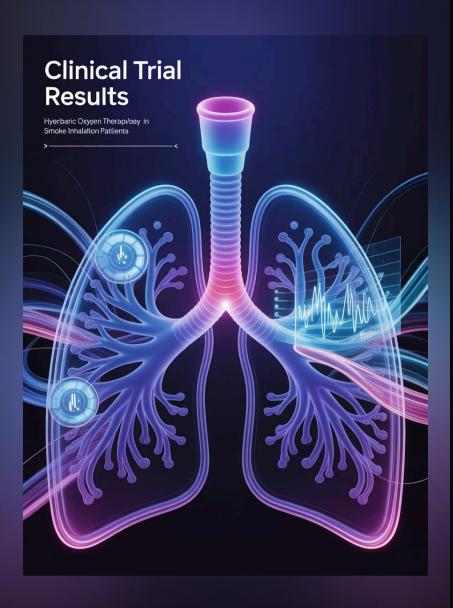
Disfunción pulmonar con hipoxia y acidosis

Diagnóstico clínico

Hollín en vía aérea


Quemadur as faciales/na sales

Ronquera, esputo carbonoso



Broncoscopia: herramienta útil para clasificación de la lesión (Grado 0 a 4).

TOHB – Mecanismo de acción

Aporta O₂ directamente en plasma Independiente de Hb ↓ COHb y cianuro sérico ↓ edema y estrés oxidativo Inhibe adhesión de PMN Previene apoptosis y necrosis pulmonar † perfusión tisular y función mitocondrial

Evidencia clínica y experimental

Estudio	Hallazgos principales
Chou et al. (2000)	Niños con CO/SI (CO + inhalación humo) → mayor mortalidad (22,6 %) que solo CO (0 %).
	TOHB redujo mortalidad en pacientes tratados precozmente.
Hart et al. (1985)	4/5 pacientes recuperaron conciencia rápidamente tras TOHB + antídoto para cianuro.

Lesiones por cianuro y TOHB

Cianuro inhibe citocromo c oxidasa

Bloquea metabolismo aeróbico

2

TOHB permite transportar O₂ disuelto

Complementa antídotos (hidroxocobalamina, tiosulfato)

Evitar nitritos en intoxicación mixta

CO + HCN

TOHB reduce inflamación

Previene necrosis y disminuye mortalidad

Conclusiones clínicas

La inhalación por humo genera daño sistémico y pulmonar por múltiples mecanismos.

TOHB:

- Es terapia fundamental en ICO e intoxicación por HCN.
- Debe iniciarse <18 h desde la exposición.
- Justificada incluso a presiones bajas (1,4–1,5 ATA) si es precoz.

Indicado en:

- Exposición a incendios en lugares cerrados.
- Quemaduras + alteración neurológica.
- COHb >25 %, acidosis, coma, convulsiones.