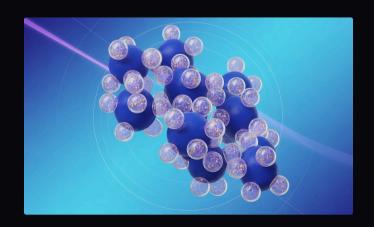


Efecto Antiinflamatorio del Oxígeno Hiperbárico (TOHB)

Avances en la modulación de la inflamación y el daño tisular

Fundamentos de la Inflamación

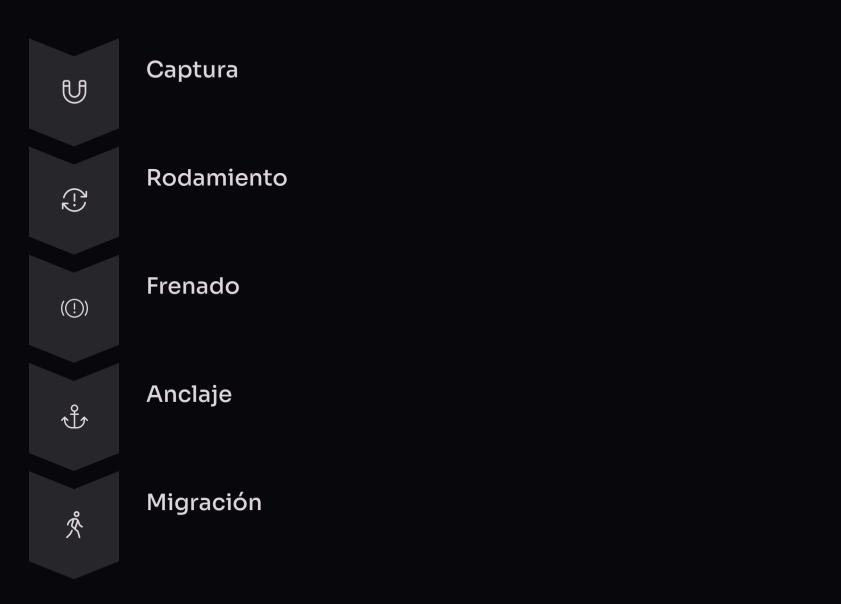

- Mecanismo biológico ante daño tisular por patógenos o agresores físicos/químicos.
- © Reacción de alta demanda energética que puede volverse crónica.
- Consecuencias graves: fibrosis, metaplasia, tumorogénesis, SIRS y muerte multiorgánica.
- Papel central del desequilibrio homeostático y del estrés celular en la evolución inflamatoria.

Mediadores Bioquímicos de la Inflamación

Citocinas Proinflamatorias

Proteínas solubles como IL-1, IL-6, TNFα que promueven la respuesta inflamatoria.

Citocinas Antiinflamatorias


IL-4, IL-10, IL-13 que regulan y controlan la respuesta inflamatoria.

Balance entre ambas define el destino del proceso inflamatorio.

Otros Reguladores

Participación de factores de crecimiento y proteínas HSP en regulación apoptótica.

Cascada de Adhesión Leucocitaria

Claves: selectinas (P-, E-, L-selectina) y β2 integrinas (CD18).

TOHB reduce expresión de CD18 y la activación del endotelio, inhibiendo esta cascada.

Receptores de Reconocimiento Inmunitario Innato

Efecto comprobado en médula espinal, SNC y tejidos periféricos inflamados.

Factores de Transcripción Inflamatorios

Activación

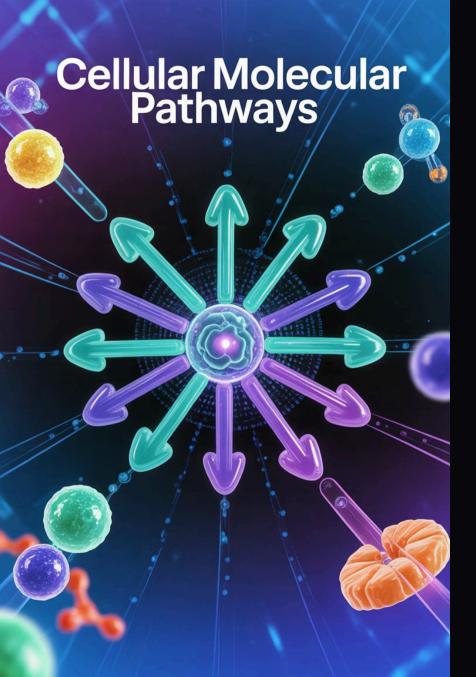
NF-κB y AP-1: activados por IL-1, TNFα y estrés oxidativo

\mathbb{Z}

 $\stackrel{\wedge}{\square}$

Resultado

Reducción de COX2, iNOS, TNF-α


\odot

Intervención TOHB

TOHB impide fosforilación de IкВ, bloqueando activación de NF-кВ

Inhibición

Inhibición de la transcripción de genes proinflamatorios

Acción Celular y Molecular del TOHB

Reducción de Factores Proinflamatorios

- IL-1, IL-6, TNF-α, IFNγ
- TLR-4, GAL-3, caspasas (CASP1, CASP3), TP53

Aumento de Factores Regenerativos

• VEGF, FGF, TGF\(\beta\)1, PDGF\(\beta\)

Estimulación de Protección Celular

- Enzimas antioxidantes (HO-1, catalasa)
- Proteínas de protección como HSP32

TOHB en Isquemia y Reperfusión

Problema: daño por ROS en la fase de reperfusión post-isquemia.

Resultados en Modelos Clínicos y Experimentales

Estudio	Hallazgos
Comparación de presiones	TOHB a 1.5 ATA más efectivo que a 2.4 ATA en reducción de IL-8, CALR, ANXA
Wu, 2018	Inhibición TLR4 y GAL-3 → protección medular post- quemadura
Meng, 2016	TOHB reduce TLR4, caspasa 3 y mejora función neurológica post-trauma cerebral
Li, 2007	TOHB eleva HO-1 → reducción del daño celular oxidativo

Conclusiones Técnicas y Potencial Clínico

Mecanismos Confirmados

TOHB inhibe vías inflamatorias clave (TLR4/NF-кВ).

Reduce mediadores, previene apoptosis, favorece regeneración tisular.

Aplicaciones Clínicas

Evidencia sólida para su aplicación en:

- Enfermedades inflamatorias agudas/crónicas.
- Cirugías cardíacas, trasplantes, trauma, ACV, úlceras.

Proyección Futura

Implicancia: herramienta poderosa en medicina regenerativa y preventiva.

