SUITES NUMÉRIQUES

1

1 Divers

Exercice 1 Déterminer la limite des suites u de termes généraux :

1.
$$u_n = \frac{7^{n+1} + 6^{n+1}}{7^n + 6^n}$$

2.
$$u_n = n^2 - n\cos(n) + 2$$

$$3. u_n = \frac{\sinh(n)}{\sqrt{\cosh(n)}}$$

4.
$$u_n = \sqrt{n^2 + n} - \sqrt{n^2 - n}$$

5.
$$u_n = \sqrt{e^n + 2^n} - \sqrt{e^n + 1}$$

6.
$$u_n = \frac{\lfloor \sqrt{n} \rfloor}{n}$$

$$7. u_n = \frac{1 + 2\sin(n)}{\sqrt{n}}$$

$$8. \ u_n = \frac{n!}{n^n}$$

$$9. \ u_n = \left(1 + \frac{1}{n}\right)^n$$

$$10. \ u_n = \left(1 + \frac{1}{\ln(n)}\right)^n$$

Exercice 2 Pour tout entier naturel n, on pose $u_n = \binom{2n}{n} 2^{-2n}$.

- 1. Montrer que la suite $((n+1)u_n^2)_{n\in\mathbb{N}}$ est convergente.
- 2. En déduire $\lim_{n\to+\infty} u_n$.

Exercice 3 Pour tout entier naturel n, on pose $I_n = \int_1^e \ln(t)^n dt$.

- 1. (a) Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est convergente.
 - (b) Montrer que:

$$\forall n \in \mathbb{N}, \qquad I_{n+1} = e - (n+1)I_n$$

En déduire la limite de la suite $(I_n)_{n\in\mathbb{N}}$.

- 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \frac{(-1)^n I_n}{n!}$.
 - (a) Pour tout $n \in \mathbb{N}$, exprimer u_{n+1} en fonction de u_n .
 - (b) En déduire la limite de la suite $\left(\sum_{k=0}^{n} \frac{(-1)^k}{k!}\right)_{n \in \mathbb{N}}$.

Exercice 4 On considère deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ strictement positives. On suppose que $\lim_{n\to+\infty}b_n=0$ et :

$$\forall n \in \mathbb{N}, \qquad \frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$$

Montrer que $\lim_{n\to+\infty} a_n = 0$.

Exercice 5 Pour tout entier naturel n supérieur ou égal à 2, on pose $u_n = \sum_{k=2}^n \frac{1}{k \ln(k)}$.

1. Soit k un entier naturel supérieur ou égal à 3. Montrer que :

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t \ln t} \leqslant \frac{1}{k \ln k} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}t}{t \ln t}.$$

2. En déduire que la suite $(u_n)_{n\geqslant 2}$ est divergente et que $\lim_{n\to +\infty}\frac{u_n}{\ln(\ln(n))}=1$.

Exercice 6 Pour tout $n \in \mathbb{N}^*$, soit $u_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, on a $\frac{n}{\sqrt{n^2 + n}} \leqslant u_n \leqslant \frac{n}{\sqrt{n^2 + 1}}$.
- 2. En déduire que la suite $(u_n)_{n\geq 1}$ est convergente et déterminer sa limite.

Exercice 7 Déterminer la limite de la suite de terme général :

$$u_n = \frac{n}{n^2} + \frac{n}{n^2 + 1} + \dots + \frac{n}{n^2 + n + 1}$$

Exercice 8 Pour tous $a, b \in \mathbb{R}_+^*$, déterminer la limite de la suite de terme général :

$$u_n = \sqrt{(n+a)(n+b)} - n$$

Exercice 9 Pour tout entier naturel n non nul, on pose $s_n = \sum_{k=1}^n \sqrt{\frac{1}{k}}$.

1. Montrer que pour tout $n \in \mathbb{N}^*$, on a $2\sqrt{n+1}-2 \leqslant s_n \leqslant \sqrt{n}+\sqrt{n-1}$.

2. Déterminer la limite de la suite de terme général $t_n = \frac{s_n}{\sqrt{n}}$.

Exercice 10 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites à valeurs dans [0,1] telles que :

$$u_n v_n \xrightarrow[n \to +\infty]{}$$

Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent de limite 1.

2 Suites adjacentes

Exercice 11 Dans chacun des deux cas suivants, montrer que les suites $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ sont adjacentes.

1.
$$u_n = \sum_{k=n+1}^{2n} \frac{1}{k}$$
 et $v_n = \sum_{k=n}^{2n} \frac{1}{k}$;

2.
$$u_n = \prod_{k=1}^n \left(1 + \frac{1}{k^2}\right)$$
 et $v_n = u_n \left(1 + \frac{1}{n}\right)$.

Exercice 12 On considère les suites de termes généraux :

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = u_n + \frac{1}{n \times n!}$

- 1. Montrer que les suites $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ sont adjacentes.
- 2. Montrer que leur limite commune n'est pas un nombre rationnel. *On utilisera un raisonnement par l'absurde*.

Exercice 13 Pour $\theta \in \left]0, \frac{\pi}{2}\right[$, on considère les suites de termes généraux :

$$u_n = 2^{n+1} \sin\left(\frac{\theta}{2^n}\right)$$
 et $v_n = 2^{n+1} \tan\left(\frac{\theta}{2^n}\right)$.

Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes et déterminer leur limite commune.

3 Suites extraites

Exercice 14 1. Pour tout $n \in \mathbb{N}$, on pose $u_n = \sin\left(\frac{n^2\pi}{3}\right)$. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ n'admet pas de limite.

2. Pour tout $n \in \mathbb{N}$, on pose $v_n = \sqrt{n} - \lfloor \sqrt{n} \rfloor$. Montrer que la suite $(v_n)_{n \in \mathbb{N}}$ est divergente en considérant la suite $(u_{n^2+n})_{n \in \mathbb{N}}$.

Exercice 15 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que les suites extraites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ soient convergentes.

- (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.
- (b) Le résultat reste-t-il vrai si on suppose seulement que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont convergentes?
- 2. On suppose que $(u_n)_{n\in\mathbb{N}}$ est croissante et que $(u_{2n})_{n\in\mathbb{N}}$ converge. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.

Exercice 16 Soit $(u_n)_{n\geqslant 1}$ une suite numérique telle que $u_{n+1}-u_n \underset{n\to+\infty}{\longrightarrow} 0$.

- 1. Montrer que la suite $\left(\frac{u_n}{n}\right)_{n\geq 1}$ est convergente de limite 0.
- 2. Que dire de la réciproque?

Exercice 17 Pour tout $n \in \mathbb{N}^*$, on pose $h_n = \sum_{k=1}^n \frac{1}{k}$.

1. Montrer que :

$$\forall n \in \mathbb{N}^*, \qquad h_{2n} - h_n \geqslant \frac{1}{2}$$

2. La suite $(h_n)_{n\geqslant 1}$ est-elle convergente?

Exercice 18 Soit $(u_n)_{n\in\mathbb{N}}$ une suite non majorée. Montrer qu'il existe une suite extraite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ qui tend vers $+\infty$.

4 Des epsilons

2

Exercice 19 Montrer qu'une suite à valeurs entières et convergente est stationnaire.

Exercice 20 (moyennes de Cesàro) Soit $(u_n)_{n\geqslant 1}$ une suite numérique. On lui associe la suite $(v_n)_{n\geqslant 1}$ telle que :

$$\forall n \in \mathbb{N}^*, \quad v_n = \frac{u_1 + \dots + u_n}{n} = \frac{1}{n} \sum_{k=1}^n u_k$$

- 1. Montrer que si la suite $(u_n)_{n\geqslant 1}$ est convergente, alors $(v_n)_{n\geqslant 1}$ converge vers la même limite.
- 2. Que dire de la réciproque?
- 3. Déterminer $\lim_{n \to +\infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n}$.
- 4. Que dire de la suite $(v_n)_{n\geqslant 1}$ si $\lim_{n\to+\infty} u_n = +\infty$?

Exercice 21 Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites réelles convergentes de limites respectives a et b. Montrer que :

$$\lim_{n \to +\infty} \frac{1}{n+1} \sum_{k=0}^{n} a_k b_{n-k} = ab$$

5 Suites récurrentes

Exercice 22 Étudier la suite $(u_n)_{n\in\mathbb{N}}$ dans chacun des cas suivants.

- 1. $u_0 \in \mathbb{R}$ et $u_{n+1} = \frac{u_n}{1 + u_n^2}$ pour tout $n \in \mathbb{N}$;
- 2. $u_0 \in \mathbb{R}$ et $u_{n+1} = \frac{1}{6}(u_n^2 + 8)$ pour tout $n \in \mathbb{N}$;
- 3. $u_0 \in \mathbb{R}$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$ où $f: x \longmapsto \arctan(x)$;
- 4. $u_0 \in \mathbb{R}_+$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$ où $f: x \longmapsto \ln(1+x)$.

Exercice 23 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout entier naturel n,

$$u_{n+1} = \sqrt{u_0 + u_1 + \dots + u_n}$$
.

Montrer que $\lim_{n\to+\infty} u_n = +\infty$.

Exercice 24 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par $u_0\in\mathbb{R}$ et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + e^{-u_n}$$

- 1. Montrer que $\lim_{n\to+\infty} u_n = +\infty$.
- 2. Pour tout $n \in \mathbb{N}$, on pose $v_n = e^{u_n}$.
 - (a) Montrer que $\lim_{n \to +\infty} (v_{n+1} v_n) = 1$.
 - (b) En utilisant le théorème de Cesàro, déterminer $\lim_{n\to +\infty} \frac{u_n}{\ln(n)}$

Exercice 25 Soient $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ deux suites réelles. On suppose que $x_0 < y_0$ et que, pour tout entier naturel n, on a :

$$x_{n+1} = \frac{2x_n + y_n}{3}$$
 et $y_{n+1} = \frac{x_n + 2y_n}{3}$

Montrer que les suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ sont convergentes de même limite que l'on précisera.

Exercice 26 (moyenne arithmético-géométrique) Soient $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ deux suites réelles définies par $0 < v_0 < u_0$ et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{u_n + v_n}{2} \quad \text{et} \quad v_{n+1} = \sqrt{u_n v_n}$$

Démontrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes.

6 Suites implicites

Exercice 27 Soient $a, b \in \mathbb{R}$ tels que a < b et $f \in \mathscr{C}([a, b[, \mathbb{R})])$. On suppose que f est strictement croissante sur [a, b[et que :

$$f(a) \leqslant 0$$
 et $\lim_{x \to b^-} f(x) = +\infty$

- 1. Montrer que, pour tout $n \in \mathbb{N}$, l'équation f(x) = n d'inconnue $n \in [a, b[$ admet une unique solution.
- 2. Étudier la monotonie de la suite $(x_n)_{n\in\mathbb{N}}$.
- 3. Déterminer $\lim_{n\to+\infty} x_n$.

Exercice 28 1. Soit $n \in \mathbb{N}$. Montrer que l'équation $x + \tan(x) = n$ d'inconnue $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ possède une unique solution. On la notera x_n .

2. Montrer que $(x_n)_{n\in\mathbb{N}}$ est convergente et préciser sa limite.

Exercice 29 1. Montrer que pour tout $n \in \mathbb{N}^*$, l'équation :

$$x^n + x^{n-1} + \dots + x = 1$$

d'inconnue $x \in \mathbb{R}_+$ admet une unique solution notée x_n .

2. Montrer que :

$$\forall n \in \mathbb{N}^*, \quad x_n^{n+1} = 2x_n - 1$$

3. Montrer que $(x_n)_{n\in\mathbb{N}^*}$ est convergente et préciser sa limite.

Exercice 30 1. (a) Soit $n \in \mathbb{N}$. Montrer que l'équation $\ln(x) = -nx$ d'inconnue $x \in \mathbb{R}_+^*$ admet une unique solution. On la notera x_n .

- (b) Étudier le sens de variation de $(x_n)_{n\in\mathbb{N}}$.
- (c) Déterminer $\lim_{n\to+\infty} x_n$.
- 2. Pour tout $n \in \mathbb{N}^*$, on pose $y_n = nx_n$.
 - (a) Déterminer $\lim_{n\to+\infty} y_n$.
 - (b) Montrer que pour tout $n \in \mathbb{N}^*$, on a $y_n + \ln(y_n) = \ln(n)$ puis que :

$$\lim_{n \to +\infty} \frac{y_n}{\ln(n)} = 1$$

7 Suites usuelles

Exercice 31 Déterminer une expression de la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

- 1. $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 1$;
- 2. $u_1 = 1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 3 \frac{u_n}{2}$;
- 3. $u_0 = 0$, $u_1 = 1$ et $u_{n+2} = 6u_{n+1} 5u_n$ pour tout $n \in \mathbb{N}$;
- 4. $u_0 = 1$, $u_1 = 0$ et $u_{n+2} = u_{n+1} u_n$ pour tout $n \in \mathbb{N}$;
- 5. $u_0 = 1$, $u_1 = 0$ et $u_{n+2} = 4u_{n+1} 4u_n$ pour tout $n \in \mathbb{N}$;
- 6. $u_0 = 1$, $u_1 = -1$ et $u_{n+2} = \frac{u_{n+1} u_n}{2}$ pour tout $n \in \mathbb{N}$;
- 7. $u_0 = u_1 = 3$ et $u_{n+2} = 3u_{n+1} \frac{9u_n}{4}$ pour tout $n \in \mathbb{N}$.

Exercice 32 Dans chacun des deux cas, déterminer l'expression de la suite $(u_n)_{n\in\mathbb{N}}$.

- 1. $u_0 = 1$ et $u_{n+1} = 2u_n^2$ pour tout $n \in \mathbb{N}$;
- 2. $u_0 = 1$, $u_1 = 2$ et $u_{n+2} = \frac{u_{n+1}^6}{u_n^5}$ pour tout $n \in \mathbb{N}$.

Exercice 33 On veut déterminer la suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_0=0, u_1=1$ et :

$$\forall n \in \mathbb{N}, \qquad u_{n+2} = 2u_{n+1} + 8u_n + 9n^2$$
 (*)

- 1. Montrer qu'il existe $a, b, c \in \mathbb{R}$ tel que la suite $(an^2 + bn + c)_{n \in \mathbb{N}}$ vérifie la relation (\star) .
- 2. En déduire l'expression de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 34 Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle vérifiant la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad x_{n+3} = \frac{1}{3}(x_{n+2} + x_{n+1} + x_n)$$

- 1. Pour tout $n \in \mathbb{N}$, on pose $v_n = x_{n+1} x_n$. Déterminer une relation de récurrence vérifiée par la suite $(v_n)_{n \in \mathbb{N}}$.
- 2. En déduire l'expression de x_n en fonction de n.