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Abstract

We extend the definition of Jamison sequences in the context of topological abelian groups.
We then study these sequences when the group is discrete and countably infinite. An arith-
metical characterization of such sequences is obtained, extending the result of Badea and
Grivaux [2] about Jamison sequences of integers. In particular, we prove that the sequence
consisting in all the elements of the group is a Jamison sequence. In the opposite, a sequence
which generates a subgroup of infinite index in the group is never a Jamison sequence. We
also generalize a result of Nikolskii by showing that the growth of the norms of a represen-
tation is influenced by the Haar measure of its unimodular point spectrum.
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1 Introduction

To begin, let us recall the original definition of Jamison sequences [1] in the context of bounded
linear operators (and C0-semigroups) and some important results around these sequences.

1.1 Integer Jamison sequences, Jamison sequences for C0-semigroups

The subject of Jamison sequences has been first studied for sequences of integers by Jamison
[7], Ransford [13], Ransford and Roginskaya [14] and Badea and Grivaux [1] where the authors
investigated the relationship between the growth of the sequence (‖Tn‖)n>0 of the norms of the
iterates of a bounded linear operator T acting on a separable Banach space X, and the size of
the unimodular point spectrum σp(T ) ∩ T of T where T is the closed unit circle of the complex
plane and

σp(T ) ∩ T :=
{
λ ∈ T

∣∣Ker(T − λ IdX) 6= {0}
}

is the set of eigenvalues of modulus 1 (or unimodular eigenvalues) of T .
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The first important result in this way is due to Jamison [7] in 1965. He proved that the
unimodular point spectrum σp(T ) ∩ T of T is at most countable when T is a bounded linear
operator acting on a separable space X which is power-bounded, that is supn>0 ‖Tn‖ < +∞. In
the same spirit, Nikolskii [11] proved that if T acts on a separable Hilbert space and σp(T ) ∩ T
has positive Lebesgue measure, then the series

∑
n>0 ‖Tn‖−2 is convergent.

It was then a natural problem to investigate the influence of partial power-boundedness on
the size of the unimodular point spectrum of an operator. Ransford [13] and Ransford and
Roginskaya [14] proved in particular that partial power-boundedness of an operator does not
necessarily imply countability of the unimodular point spectrum. In this way, Badea and Grivaux
gave in [1] the following definition.

Definition 1.1 ([1], Definition 1.2). A sequence of positive integers (nk)k>0 is a Jamison se-
quence if for every infinite-dimensional separable complex Banach space X and every bounded
linear operator T on X which is partially power-bounded with respect to the sequence (nk)k>0,
that is supk>0 ‖Tnk‖ < +∞, the unimodular point spectrum σp(T )∩T of T is at most countable.

It was first noticed that the fact that a sequence (nk)k>0 is a Jamison sequence or not,
depends in particular on the growth of the sequence. For instance, Ransford and Roginskaya
proved in [14] that (nk)k>0 is a Jamison sequence as soon as supk>0

nk+1

nk
< +∞, whereas the

sequence (22k)k>0 fails to be a Jamison sequence. For more results about the influence of the
growth of the sequences, see [13], [14] and [1].

In [2], Badea and Grivaux gave an arithmetical characterization of Jamison sequences. Under
the (non-restrictive) condition n0 = 1, one can define a distance d(nk) on T by setting

∀(λ, µ) ∈ T2, d(nk)(λ, µ) = sup
k>0
|λnk − µnk |

Note that d(nk)(λ, µ) is the uniform norm of χλ−χµ along the sequence (nk)k>0 where χλ : n 7−→
λn and χµ : n 7−→ µn are two (continuous) group homomorphisms of Z. The characterization
of Jamison sequences runs as follows.

Theorem 1.2 ([2], Theorem 2.1). Let (nk)k>0 be an increasing sequence of positive integers
with n0 = 1. The following assertions are equivalent:

(1) (nk)k>0 is a Jamison sequence;

(2) there exists a positive real number ε such that for every λ ∈ T \ {1},

sup
k>0
|λnk − 1| > ε (1.1)

The hard part of the proof of Theorem 1.2 is the following: when condition (2) is not satis-
fied, Badea and Grivaux had to construct an explicit separable Banach space X and a bounded
linear operator T on X which is partially power-bounded with respect to the sequence (nk)k>0

and such that the set σp(T )∩T is uncountable. They started the construction with a weighted `2

space which supports a bounded backward shift. Using a renorming process which depends on
the sequence (nk)k>0, they proved that this operator is power-bounded with respect to (nk)k>0

with an uncountable unimodular point spectrum. This method of construction will be used in
Theorem 4.2.

The notion of Jamison sequences has also been studied in [3] in the context of C0-semigroups
of bounded linear operators. An increasing sequence of positive real numbers (tk)k>0 (which
tends to infinity) is called a Jamison sequence for C0-semigroups if for every infinite-dimensional
separable complex Banach space X and every C0-semigroup (Tt)t>0 of bounded linear operators
on X (with infinitesimal generator A) which is bounded with respect to the sequence (tk)k>0,
that is supk>0 ‖Ttk‖ < +∞, the set σp(A) ∩ iR is at most countable. We have the following
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characterization of Jamison sequences in this context. We denote by ‖x‖ the distance of the real
number x to the set of integers, that is

‖x‖ = inf
{
|x− n|

∣∣n ∈ Z
}

Theorem 1.3 ([3], Theorem 3.3). Let (tk)k>0 be an increasing sequence of positive real numbers
such that t0 = 1 and lim

k→+∞
tk = +∞. The following assertions are equivalent:

(1) (tk)k>0 is a Jamison sequence for C0-semigroups;

(2) there exists ε > 0 such that for every θ ∈
]
0, 1

2

]
,

sup
k>0
‖tkθ‖ > ε

It is easy to check that condition (2) is equivalent to the following:

(3) there exists ε > 0 such that for every x ∈
]
0, 1

2

]
,

sup
k>0

∣∣e2iπxtk − 1
∣∣ > ε (1.2)

Condition (3) is a characterization of Jamison sequences of C0-semigroups of bounded linear
operators in terms of continuous group homomorphisms χx : y 7−→ e2πixy of the group R.

In the next section, we generalize the notion of Jamison sequences for sequences (gk)k>0

belonging to some general topological abelian group G.

1.2 Jamison sequences in topological abelian groups

In order to define the analog of Jamison sequences in topological abelian groups, we first have
to introduce the object which will play the role of bounded linear operator in the context of
integer Jamison sequences. If X is a Banach space, we denote by GL(X) the group of invertible
bounded linear operators on X.

Definition 1.4. Let G be a topological abelian group. A representation of G is a couple (X, ρ)
where X is a separable infinite-dimensional complex Banach space and ρ : G −→ GL(X) is a
continuous homomorphism of groups.

If T is an invertible bounded linear operator acting on some Banach space X, then a complex
number λ is an eigenvalue of T if and only if there exists a vector eλ ∈ X \ {0} such that
Tneλ = λneλ for every integer n. We then have the following definition in the context of
representation of groups. If G is a topological abelian group, then the Pontryagin dual (or
topological dual) of G is the abelian group Ĝ consisting in all continuous homomorphisms χ
from G to the unit circle T of the complex plane. An element of Ĝ will be called a character of
G.

Definition 1.5. Let G be a topological abelian group and (X, ρ) be a representation of G. A
character χ ∈ Ĝ is called a unimodular eigenvalue of ρ if there exists a vector eχ of X \{0} such
that

∀g ∈ G, ρ(g)eχ = χ(g)eχ

The set of unimodular eigenvalues of ρ is denoted by σp(ρ) ∩ Ĝ and is called the unimodular
point spectrum of ρ.

We are also interested in the relationship between partial boundedness of a representation
(X, ρ) of a group G with respect to a sequence of elements G and the size of the unimodular
point spectrum of ρ.
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Definition 1.6. Let G be a topological abelian group, (gk)k>0 be a sequence of elements of G
and (X, ρ) a representation of G. We say that ρ is partially bounded with respect to the sequence
(gk)k>0 if supk>0 ‖ρ(gk)‖ < +∞.

Sequences of elements of G for which partial boundedness implies countability of the unimod-
ular point spectrum will be called G-Jamison sequences. More precisely, we have the following
definition.

Definition 1.7. Let G be a topological abelian group and (gk)k>0 be a sequence of elements
of G. We say that (gk)k>0 is a G-Jamison sequence if for every representation (X, ρ) of the
group G which is partially bounded with respect to the sequence (gk)k>0, the unimodular point
spectrum σp(ρ) ∩ Ĝ of ρ is at most countable.

Even if Theorems 1.2 and 1.3 seem to be only concerned in sequences of the semigroups N
and R+ respectively, one can easily verify that the proofs of this theorems are also valid in Z and
R and that we have exactly the same characterizations (1.1) and (1.2) of Z-Jamison sequences
and R-Jamison sequences. Let us mention some other examples of G-Jamison sequences (or
not).

Example 1.8. A characterization of G-Jamison sequences has been obtained in [4] for sequences
which belong to a finitely generated abelian group.

Theorem 1.9 ([4], Theorem 10.4.1). Let G be the finitely generated abelian group

Z` × Z/a1Z× · · · × Z/arZ

where a1, . . . , ar are integers greater or equal than 2. Let (gk)k>1 be a sequence of elements of
G such that

∀k ∈ {0, . . . , `+ r − 1}, gk = (0, . . . , 0︸ ︷︷ ︸
k times

, 1, 0, . . . , 0)

Then the following assertions are equivalent:

(1) (gk)k>1 is a G-Jamison sequence;

(2) there exists ε > 0 such that for every χ ∈ Ĝ \ {1}, we have

sup
k>1
|χ(gk)− 1| > ε

where Ĝ denote the set of group homomorphisms from G to T.

Example 1.10. If G is any finite abelian group, then every sequence of elements of G is a
G-Jamison sequence (since Ĝ ' G is a finite group).

Example 1.11. If G = (Z/2Z)N is the group of infinite sequences of zeroes and ones, then
Ĝ '

⊕
n>0 Z/2Z consists in all infinite sequences with finite number of ones. In particular Ĝ

is countable. Hence every sequence of elements of G is a G-Jamison sequence. More generally,
every sequence of a compact group G with countable Pontryagin dual is a G-Jamison sequence.

Let us now consider the more interesting example of the discrete group G =
⊕

n>0 Z := Z∞
which consists of all infinite sequences of integers with finitely non-zero entries. In such a group,
it is not difficult to give sequences which are not Z∞-Jamison sequences.

Example 1.12. Let G = Z∞. The Pontryagin dual of G is Ĝ = TN.

1. If (ek)k>0 denote the canonical basis of G (where ek is the kth Kronecker symbol), then
(ek)k>0 is not a G-Jamison sequence.
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2. If the sequence (gk)k>0 does not visit at least one component of Z∞ then (gk)k>0 is not a
G-Jamison sequence. For instance, if (gk)k>0 is any sequence such that

{gk | k > 0} =
⊕
n>1

Zek

then (gk)k>0 is not a G-Jamison sequence.

Proof. A representation (X, ρ) of G is completely determined by the operators ρ(ek) ∈ GL(X)
(k > 0). Take any separable complex Banach space X and any invertible operator T on X such
that σp(T ) ∩ T is uncountable. Let us for instance consider the space

X :=

{
x = (xn)n∈Z

∣∣∣∣∣ ‖x‖ =

(∑
n∈Z

|xn|2

1 + n2

)1/2}

and T is the backward shift on X defined by T (xn)n∈Z = (xn+1)n∈Z. Then the representation
(X, ρ) of G which is defined by ρ(e0) = T and ρ(ek) = IdX when k is a positive integer is clearly
partially bounded with respect to the sequence (ek)k>0 (and with respect to the sequence (gk)k>0)
and the unimodular point spectrum of ρ is

σp(ρ) ∩ TN =
{

(mk)k>0 7−→ λm0
∣∣λ ∈ σp(T ) ∩ T

}
Since σp(T ) ∩ T is uncountable, the set σp(ρ) ∩ TN is uncountable.

1.3 Organization of the paper

Our goal is to characterize G-Jamison sequences when G is a countably infinite discrete abelian
group. As in the case of the group Z of integers, we show that being a G-Jamison sequence
or not depends on the arithmetical properties of the sequence (gk)k>0. The main result of the
paper is the following. If H is a subgroup of G, we denote by [G : H] the index of this subgroup
in G, which is the cardinality of the quotient group G/H.

Theorem 1.13. Let G be a countably infinite discrete abelian group. Let (gk)k>0 be a sequence
of elements of G.

(1) When the subgroup G0 of G generated by the sequence (gk)k>0 is of infinite index in G
then (gk)k>0 is not a G-Jamison sequence.

(2) If the index [G : G0] is finite, then one can assume without loss of generality that G = G0

and (gk)k>0 is a G-Jamison sequence if and only if there exists a positive real number ε
such that for every character χ ∈ Ĝ \ {1},

sup
k>0
|χ(gk)− 1| > ε (1.3)

In section 2, we investigate condition (1.3). We show in Proposition 2.2 that (gk)k>0 is a
G-Jamison sequence as soon as the subgroup G0 of G generated by (gk)k>0 is of finite index in G
and when the characters of G0 are uniformly separated by the sequence (gk)k>0. A consequence
of this is that the whole sequence of elements of the countable group G is a Jamison sequence
(Corollary 2.4), extending the seminal result of Jamison.

The first main difference with the group of integers is that, given a sequence (gk)k>0 of
elements of a countably infinite discrete abelian group G, the map

d(gk) :

{
Ĝ× Ĝ −→ R
(χ, ϕ) 7−→ supk>0 |χ(gk)− ϕ(gk)|

(1.4)

falls to be a distance on Ĝ since G is not finitely generated in general. In section 3, we show
that, when d(gk) is very far from being a distance on Ĝ, that is if the index [G : G0] of the
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subgroup G0 of G generated by the sequence (gk)k>0 is infinite, then (gk)k>0 is not a G-Jamison
sequence (Theorem 3.1). This phenomenon generalizes what we observe in example 1.12.

In section 4, we then characterize G-Jamison sequences (gk)k>0 when the subgroup G0 (gen-
erated by the sequence (gk)k>0) is of finite index in G. In this case, one can assume that (gk)k>0

is a generate sequence of G, that is G = G0 (Proposition 4.1). We prove in Theorem 4.2 that
(gk)k>0 is a G-Jamison sequence if and only if any two distinct characters of G are (uniformly)
ε-separated for the distance d(gk) for some ε > 0.

In the last section, we investigate the relationship between the size of the unimodular point
spectrum of the representation and the growth of its iterates in another direction. We prove
that if the Banach space X is of Fourier type p ∈]1, 2] with respect to the group Ĝ (defini-
tion 5.1) and if the unimodular point spectrum of ρ has positive Haar measure, then the series∑

g∈G ‖ρ(g)‖p−1 is convergent (Theorem 5.2), generalizing a result of Nikolskii [11, Theorem 11]
(and Ransford [13, Theorem 1.6]).

In the rest of the paper, G is a countably infinite discrete abelian group. Note that, in this
context, every group homomorphism χ from G to the unit circle T is automatically continuous.
Hence the Pontryagin dual Ĝ of G is the group of all (continuous) homomorphisms χ from G to
T. In Ĝ, the trivial character (identically equal to one) is denoted by 1.

If (gk)k>0 is a sequence of elements of G, we denote by G0 the subgroup of G generated by
this sequence, that is the subset of G consisting in all (finite) linear combinations of elements
of (gk)k>0 with integer coefficients. The index of G0 in G is denoted by [G : G0]; recall that
[G : G0] stands for the cardinality of the quotient group G/G0. If χ and ϕ are two characters of
G, we set

d(gk)(χ, ϕ) := sup
k>0
|χ(gk)− ϕ(gk)|

In the next section, we investigate the sufficient condition (1.3) of Theorem 1.13.

2 Arithmetical condition on the sequence (gk)k>0

Let G be a countably infinite discrete abelian group and (gk)k>0 be a sequence of elements of
G. We first investigate a sufficient condition which provides G-Jamison sequences.

2.1 A sufficient condition

We begin with the following general easy lemma.

Lemma 2.1. Let G be a topological abelian group, H a closed subgroup of G and let χ be a
character of G. The set

Γχ =
{
ϕ ∈ Ĝ

∣∣ϕ�H = χ�H
}

is equipotent to Ĝ/H.

Proof. It is straightforward to check that

ϑ :

{
Γχ −→ Ĝ/H
ϕ 7−→ (g +H 7→ ϕ(g)χ(g)−1)

is a well-defined bijective map.

The sufficient arithmetical condition runs as follows.

Proposition 2.2. Let G be a countably infinite discrete abelian group and (gk)k>0 be a sequence
of elements of G. We denote by G0 the subgroup of G generated by the sequence (gk)k>0. We
assume that

(1) the dual group Ĝ/G0 is at most countable;
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(2) there exists ε > 0 such that for every χ ∈ Ĝ0 \ {1},

d(gk)(χ,1) > ε

Then (gk)k>0 is a G-Jamison sequence.

Proof. Let (X, ρ) be a representation of the group G which is partially bounded with respect to
the sequence (gk)k>0 and let M := sup

k>0
‖ρ(gk)‖ < +∞. Let χ and ϕ be two disctinct unimodular

eigenvalues of ρ. We denote by eχ and eϕ two normalized eigenvectors associated to these
eigenvalues, that is

‖eχ‖ = ‖eϕ‖ = 1 and for every g ∈ G,
{
ρ(g)eχ = χ(g)eχ
ρ(g)eϕ = ϕ(g)eϕ

Let us first assume that χ�G0
6= ϕ�G0

. For every non-negative integer k,

|χ(gk)− ϕ(gk)| − ‖eχ − eϕ‖ 6 ‖ρ(gk)(eχ − eϕ)‖ 6M‖eχ − eϕ‖

Hence,

‖eχ − eϕ‖ >
d(gk)(χ, ϕ)

M + 1
>

ε

M + 1

where the second inequality follows from condition (2) since χ�G0
6= ϕ�G0

. Since the space X is
separable, the set {

χ�G0

∣∣χ ∈ Ĝ}
is at most countable. We conclude the proof by using assertion (1) and Lemma 2.1.

Note that condition (1) of Proposition 2.2 is not a problem in the original context of Jamison
sequences.

Remark 2.3. Our condition on the dual of G/G0 is automatically satisfied for the groups R
and Z.

1. If G = Z then there exists a positive integer n such that G0 = nZ. Hence Ĝ/G0 is
isomorphic to the group of nth roots of unity.

2. If G = R then there exists θ ∈ R∗ such that θZ ⊂ G0. The third isomorphism theorem
gives us

R/G0 ' (R/θZ)/(G0/θZ)

We know that R̂/θZ ' Z is countable. It then suffices to prove that for any subgroup H
of an abelian topological group G, the character group of G/H is countable as soon as Ĝ
is countable. This directly follows from the fact that{

Ĝ/H −→ Ĝ
χ 7−→ (g 7→ χ(g +H))

is an injective map.

Proposition 2.2 allows us to give a natural example of G-Jamison sequence when G is a
countably infinite discrete abelian group.
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2.2 A Jamison’s type result

Jamison gives in [7] the first example of Z-Jamison sequence: the sequence of integers is a
Jamison sequence in the context of integer sequences. The same phenomenon occurs in general
countably infinite discrete abelian groups.

Corollary 2.4. Let G = {gk | k > 0} be a countably infinite discrete abelian group. Then (gk)k>0

is a G-Jamison sequence.

Proof. Since (gk)k>0 is the sequence of all the elements of G, note that d(gk) is a well-defined

distance on Ĝ. According to Proposition 2.2, it suffices to prove that any two distinct characters
of Ĝ are uniformly separated for the distance d(gk). We show here that this fact follows from a
famous result of Prodanov [12].

For any topological abelian group H, let us denote by H∗ the algebraic dual of H which
consists in all group homomorphisms from H to the unit circle T (whereas Ĥ is the group of all
such continuous homomorphisms).

Lemma 2.5 (Prodanov,[12]). Let H be a topological abelian group, U an open subset of H, let
f be a continuous function from H to C and M a convex closed subset of C. Let k be a positive
integer and χ1, . . . , χk be elements of H∗. Assume that there exists (c1, . . . , ck) ∈ Ck such that∑k

j=1 cjχj(x)− f(x) belongs to M for every x in U . If

{χ1, . . . , χn} = {χ1, . . . , χk} ∩ Ĥ

with n 6 k, then
∑

16j6n cjχj(x)− f(x) belongs to M for every x in U .

Let χ and ϕ be two distinct characters of our discrete (countably infinite abelian) group G
(which are continuous when G is equipped with the discrete topology). We endow the group G
with the trivial topology (the only open sets of G are ∅ and G). We take for U the group G
and for M the closed disk with center 0 and radius

r = d(gk)(χ, ϕ) = sup
g∈G
|χ(g)− ϕ(g)| > 0

The character χϕ−1 is non-constant and d(gk)(χϕ
−1, 1) 6 r. Since G is now equipped with

the trivial topology, the non-constant character χϕ−1 is discontinuous for this topology on G.
According to Lemma 2.5, we have the inequality 1 6 r, that is to say 1 6 d(gk)(χ, ϕ). Proposition
2.2 implies that (gk)k>0 is a G-Jamison sequence.

We now investigate the first condition we need in Proposition 2.2 on the size of the dual group
of G/G0. Example 1.12 shows that a sequence of Z∞ has to generate a big subgroup of Z∞ to
be a Z∞-Jamison sequence. In the next section, we prove that this is a general phenomenon in
countably infinite discrete abelian groups.

3 The sequence (gk)k>0 is not a G-Jamison sequence when
[G : G0] is infinite

The following result states that, if the subgroup G0 generated by the sequence (gk)k>0 is small
in G, then (gk)k>0 is never a G-Jamison sequence.

Theorem 3.1. Let G be a countably infinite discrete abelian group and (gk)k>0 be a sequence
of elements of G such that the subgroup G0 of G generated by this sequence is of infinite index
in G. Then (gk)k>0 is not a G-Jamison sequence.

Proof. We need to construct a representation (X, ρ) of the group G which is partially bounded
with respect to the sequence (gk)k>0 and such that the unimodular point spectrum σp(ρ)∩ Ĝ of
ρ is uncountable.
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The beginning of our construction is the same as in the proof of Theorem 2.1 of [2]. Our
representation ρ will be a backward shift (or translation representation) on some suitably chosen
`2 space over the group G. The first difference with the proof of Badea and Grivaux is that we
have to built this `2 space in such a way that ρ maps every element of G into a bounded linear
(invertible) operator on this space. To do this, we need to built a positive weighted function w
on G which has the property to be sub-invariant (see Corollary 3.4).

In the first step of the proof, we introduce the weighted space `2(G,w) on the group G where
the weight w is positive and such that we will be able to produce a representation (`2(G,w), ρ)
on G such that ρ(g) is a bounded linear operator on `2(G,w) for every element g of G.

Step 1 : the weight w, the space `2(G,w) and the representation ρ.

The construction of the weight w is inspired from the one used by Glasner and Weiss in the
proof of Theorem 1.2 of [6]. Given a countably infinite discrete group G and a representation
(H, ρ) of G on a separable Hilbert space H, the authors proved in [6] that the representation
(H, ρ) is universal in the following sense: for every ergodic probability-preserving free action ρ̃ of
G on a probability space (X,B, µ), there exists a Borel probability measure ν with full support
on (H,Borel(H)) which is ρ-invariant and such that the two actions of ρ̃ and ρ on (X,B, µ) and
(H,Borel(H), ν) respectively are isomorphic (see [6] for more details).

Since our group G is countable, we can fix an enumaration G = {hn |n > 1} of this group.
For every positive integer n, we denote by δn the Dirac measure at point hn, that is

∀g ∈ G, δn(g) =

{
1 if g = hn
0 otherwise

We then define a probability measure m on G by putting

m =

+∞∑
n=1

2−nδn

For every positive integer n, the notation

m∗n = m ∗ · · · ∗m︸ ︷︷ ︸
n times

stands for the n-fold interation convolution of the measure m. Let us now consider the weight
w on G defined by

∀g ∈ G, w(g) =
+∞∑
n=1

2−nm∗n(g) (3.1)

and the associated `2 weighted space

`2(G,w) =

{
f : G −→ C

∣∣∣∣ ‖f‖2 =
∑
g∈G
|f(g)|2w(g) < +∞

}
(3.2)

Let us first notice that Ĝ is a subset of `2(G,w) since rhe series
∑

g∈Gw(g) is convergent (the
sum is equal to 1). The next lemma shows that the backward shift representation is well-defined.

Lemma 3.2. For every element g of G, the map

ρ(g) :

{
`2(G,w) −→ `2(G,w)

f 7−→
(
h 7→ f(h+ g)

)
is a well-defined bounded linear operator on the space `2(G,w).
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Proof. Let k be a positive integer. For every element f of `2(G,w), we have

‖ρ(hk)(f)‖2 =
∑
g∈G
|ρ(hk)(f)(g)|2w(g)

=
∑
g∈G
|f(g + hk)|2w(g)

=
+∞∑
n=1

2−n
∑
g∈G
|f(g + hk)|2m∗n(g) (3.3)

But for every positive integer n,∑
g∈G
|f(g + hk)|2m∗n(g) =

∑
(g1,...,gn)∈Gn

|f(g1 + · · ·+ gn + hk)|2m(g1) . . .m(gn)

= m(hk)
−1

∑
(g1,...,gn)∈Gn

|f(g1 + · · ·+ gn + hk)|2m(g1) . . .m(gn)m(hk)

6 2k
∑

(g1,...,gn+1)∈Gn+1

|f(g1 + · · ·+ gn+1)|2m(g1) . . .m(gn+1) (3.4)

It now follows from (3.3) and (3.4) that

‖ρ(hk)(f)‖2 6 2k+1
+∞∑
n=1

2−(n+1)
∑
g∈G
|f(g)|2m∗(n+1)(g) 6 2k+1‖f‖2

This proves that ρ(hk) is a bounded linear operator on the space `2(G,w) and ‖ρ(hk)‖ 6√
2
k+1

.

According to Lemma 3.2, the map

ρ :

{
G −→ GL(`2(G,w))
g 7−→ ρ(g)

where ρ(g) :

{
G −→ C
h 7−→ f(h+ g)

is a well-defined representation of G. Moreover, every character χ of G is an eigenvalue of ρ
(with eigenvector χ) since for every (g, h) ∈ G2,

ρ(g)χ(h) = χ(g + h) = χ(g)χ(h)

that is ρ(g)χ = χ(g)χ.
The sequel of the proof consists in making the representation (`2(G,w), ρ) partially bounded

with respect to the sequence (gk)k>0 and with an uncountable unimodular point spectrum.

Step 2 : the role of the annihilator group G⊥0 of G0.

Recall that G0 is the subgroup of G generated by the sequence (gk)k>0. The annihilator of G0

is the subgroup of Ĝ defined by

G⊥0 =
{
χ ∈ Ĝ

∣∣ ∀g ∈ G0, χ(g) = 1
}

Let us consider the closed subspace H of `2(G,w) spanned by this annihilator group, that is

H := span‖·‖
{
χ
∣∣χ ∈ G⊥0 }

and the representation ρH induced by ρ on H, that is

ρH :

{
G −→ GL(H)
g 7−→ ρ(g)

In the next lemma, it is shown that ρH is a well-defined representation of G and the partial-
boundedness of ρH with respect to the sequence (gk)k>0 is established.

10



Lemma 3.3. The representation (H, ρH) is partially bounded with respect to the sequence
(gk)k>0.

Proof. For every character χ of G, we have the equality ρH(g)χ = χ(g)χ for every element g of
G. In particular, H is an invariant subspace of ρH(g) for every g of G. Moreover,

∀f ∈ H, ∀g ∈ G0, ρH(g)(f) = f

since χ(g) = 1 when (χ, g) belongs to G⊥0 ×G0 by definition of G⊥0 . In particular, ρH(gk) = IdH
for every non-negative integer k. It is then obvious that supk>0 ‖ρH(gk)‖ = 1 is finite and
Lemma 3.3 is proved.

Recall that G is a discrete group. It is well-known that any quotient group of a discrete
group is discrete. Hence, the quotient group G/G0 is discrete. Furthermore, it follows from the
Pontryagin duality (which essentially says that the bidual of a locally compact abelian group G
is canonically isomorphic to G) that the topological dual group of a discrete abelian group is

compact. In particular, the group Ĝ/G0 is compact. For more informations on locally compact
abelian groups, see for instance [10].

It is now clear that G⊥0 is a subset of the unimodular point spectrum σp(ρH)∩ Ĝ of ρH. One

can easily check that this group is isomorphic to Ĝ/G0, and it is assumed in Theorem 3.1 that

the quotient group G/G0 is infinite. This implies that the dual group Ĝ/G0 is uncountable. For

let µ denote the Haar measure of the compact group K := Ĝ/G0 and let us assume that this
compact group is at most countable. Then∑

k∈K
µ({k}) = µ(K) < +∞

But any two elements of K have the same measure by the translation invariance of the measure
µ. Then K is finite and the Pontryagin duality implies that G/G0 ' K̂ is also finite which
contradicts our assumption. As a consequence, the set σp(ρH) ∩ Ĝ is uncountable. The proof
of Theorem 3.1 is now complete since (H, ‖ · ‖) is a separable Hilbert space and (H, ρH) is a
representation of G which is partially bounded with respect to the sequence (gk)k>0 with an
uncountable unimodular point spectrum.

At the end of the proof of Theorem 3.1, we use the fact that the dual group of an infinite
discrete group is automatically uncountable. There exists a stronger result in this way due
to Kakutani [8]: if G is any infinite discrete group then |Ĝ| = 2|G| where |C| stands for the
cardinality of the set C.

Note that the fact that our backward shift representation ρ makes every element of G into
a bounded linear operator on `2(G,w) is a consequence of the sub-invariance of the weighted
function w defined in (3.1).

Corollary 3.4. Let h be an element of G. There exists a positive real number Ch such that

∀g ∈ G, w(g + h) 6 Chw(g)

Proof. The notations are the same as in the proof of Theorem 3.1. Let k and ` be positive
integers. We know from Lemma 3.2 that

∀f ∈ `2(G,w), ‖ρ(h`)f‖ 6
√

2
`+1‖f‖

Applying this inequality to the Dirac function δk of `2(G,w) defined by

∀g ∈ G, δk(g) =

{
1 if g = hk
0 otherwise

we get ‖ρ(h`)δk‖ 6
√

2
`+1‖δk‖ that is w(hk−h`) 6

√
2
`+1

w(hk) which proves Corollary 3.4.
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Since there is no G-Jamison sequences (gk)k>0 such that the quotient group G/G0 is infinite
according to Theorem 3.1, we now deal with the case of sequences (gk)k>0 of elements of G which
generate big subgroups G0 of G. More precisely, we look for a characterization of G-Jamison
sequences for which G0 is a subgroup of G of finite index in G.

4 The theorem: characterization of G-Jamison sequences

Let G be a countably infinite discrete abelian group denoted by G =
{
hk
∣∣ k > 0

}
and let (gk)k>0

be a sequence of elements of G. As usual, we denote by G0 the subgroup of G generated by
(gk)k>0 and we assume throughout this section that the quotient group G/G0 is finite.

Proposition 4.1. When [G : G0] < +∞, one can assume without loss of generality that G = G0.

Proof. Let n = [G : G0] < +∞ and let {`1, . . . , `n} be an enumeration of the group G/G0. Then

G can be written as the disjoint union G =

n⋃
k=1

(`k + G0) and the new sequence (g̃k)k>0 which

is obtained by putting together (gk)k>0 with the finite sequence (hk)16k6n is such that G̃0 = G
where G̃0 is the subgroup of G generated by the sequence (g̃k)k>0. Furthermore, (gk)k>0 is a
G-Jamison sequence if and only if (g̃k)k>0 has the same property.

According to Proposition 4.1, we can assume in the sequel that (gk)k>0 is a generate sequence
of the group G. In particular, the map d(gk) defined in (1.4) is now a distance on Ĝ. The
characterization of G-Jamison sequences runs as follows.

Theorem 4.2. Let (gk)k>0 be a sequence of elements of a countably infinite discrete abelian
group G denoted by G =

{
hk
∣∣ k > 0

}
. We assume that (gk)k>0 is a generate sequence of the

group G. Then the following assertions are equivalent:

(1) (gk)k>0 is a G-Jamison sequence;

(2) for every uncountable subset K of Ĝ, the metric space (K, d(gk)) is non-separable;

(3) for every uncountable subset K of Ĝ, there exists ε > 0 such that K contains an uncount-
able ε-separated family for the distance d(gk);

(4) there exists ε > 0 such that every uncountable subset K of Ĝ contains an uncountable
ε-separated family for the distance d(gk);

(5) there exists ε > 0 such that any two distinct characters of G are ε-separated for the distance
d(gk) :

∀(χ, ϕ) ∈ Ĝ× Ĝ, χ 6= ϕ =⇒ sup
k>0
|χ(gk)− ϕ(gk)| > ε

Proof. The implication (5) =⇒ (1) is exactly Proposition 2.2 when G = G0 since condition (2)
of Proposition 2.2 is clearly equivalent to condition (5) of Theorem 4.2 in this case.

Furthermore we have the obvious implications (5) =⇒ (4) =⇒ (3) =⇒ (2) whereas (2) =⇒
(3) follows from the general theory of metric spaces: for ε > 0, we denote by Fε a maximal
ε-separated family in (K, d(gk)) if (K, d(gk)) contains two ε-separated elements and Fε = ∅ if
not. Since (K, d(gk)) is not separable, one of these families is uncountable.

We now prove that (3) =⇒ (5). Suppose by contradiction that (5) is not satisfied. Then one
can find by induction a sequence (χn)n>1 of elements of Ĝ\{1} such that d(gk)(χ1,1) < 4−1 and

∀n > 2, d(gk)(χn,1) < 4−nd(gk)(χn−1, χn−1) (4.1)

Indeed, since χn−1 ∈ Ĝ \ {1}, there exists a non-negative integer k0 such that χn−1(gk0) 6= 1.
Then

|χn−1(gk0)− 1| 6 d(gk)(χn−1,1) <
1

4

12



It follows that χn−1(gk0) 6= −1 and then χn−1 6= χn−1. This implies that d(gk)(χn−1, χn−1) > 0

which proves the existence of χn ∈ Ĝ \ {1} satisfying condition (4.1). Moreover this condition
implies that the sequence (d(gk)(χn, χn))n>1 is decreasing. We are now going to construct an

uncountable subset K of Ĝ such that for every positive real number ε, every ε-separated family
of K is finite. For any finite sequence (s1, . . . , sn) ∈ {0, 1}n, we construct a character ψ(s1,...,sn)

of G in the following way. Let ψ(0) = χ1 and ψ(1) = χ1. We have

d(gk)(ψ(0), ψ(1)) = d(gk)(χ1, χ1) > 0

Then we consider the characters

ψ(0,0) = ψ(0)χ2, ψ(0,1) = ψ(0)χ2 and ψ(1,0) = ψ(1)χ2, ψ(1,1) = ψ(1)χ2

For s2 ∈ {0, 1}, we have d(gk)(ψ(0), ψ(0,s2)) = d(gk)(χ2,1) and then

d(gk)(ψ(0), ψ(0,s2)) <
1

42
d(gk)(χ1, χ1)

and in the same way

d(gk)(ψ(1), ψ(1,s2)) <
1

42
d(gk)(χ1, χ1)

Moreover
d(gk)(ψ(0,0), ψ(0,1)) = d(gk)(ψ(1,0), ψ(1,1)) = d(gk)(χ2, χ2)

If ψ(s1,...,sn−1) has already been defined then we set

ψ(s1,...,sn−1,0) = ψ(s1,...,sn−1)χn and ψ(s1,...,sn−1,1) = ψ(s1,...,sn−1)χn

Then

d(gk)(ψ(s1,...,sn−1), ψ(s1,...,sn)) <
1

4n
d(gk)(χn−1, χn−1) (4.2)

and
d(gk)(ψ(s1,...,sn−1,0), ψ(s1,...,sn−1,1)) = d(gk)(χn, χn)

We now define a character ψs of G for any infinite sequence s = (sn)n>1 of zeroes and ones by
putting

ψs = lim
n→+∞

ψs1,...,sn

The limit exists according to (4.2) and for every positive integer p, we have the equality

ψs = ψ(s1,...,sp)

∏
j>p

ψ(s1,...,sj+1)ψ(s1,...,sj) (4.3)

We now prove that the map s 7−→ ψs from 2ω to Ĝ is one-to-one. Let s = (s1, . . . , sp−1, 0, sp+1, . . . )
and s′ = (s1, . . . , sp−1, 1, s

′
p+1, . . . ) be two distinct elements of 2ω. Using the representation (4.3)

of ψs and ψs′ , we get that d(gk)(ψs, ψs′) is equal to the supremum over the non-negative integers
k of ∣∣∣∣∣ψ(s1,...,sp−1,0)(gk)

∏
j>p

ψ(s1,...,sj+1)(gk)ψ(s1,...,sj)(gk)

− ψ(s1,...,sp−1,1)(gk)
∏
j>p

ψ(s′1,...,s
′
j+1)(gk)ψ(s′1,...,s

′
j)(gk)

∣∣∣∣∣
Using the easy inequality |λ1λ2 − µ1µ2| > |λ1 − µ1| − |λ2 − µ2| which is valid for every complex
numbers λ1, µ1, λ2, µ2 of modulus one, we find that this supremum is greater than

d(gk)(ψ(s1,...,sp−1,0), ψ(s1,...,sp−1,1))

− sup
k>0

∣∣∣∣∣∏
j>p

ψ(s1,...,sj+1)(gk)ψ(s1,...,sj)(gk)ψ(s′1,...,s
′
j+1)(gk)ψ(s′1,...,s

′
j)(gk)− 1

∣∣∣∣∣
13



Since a character takes it values in the unit circle, we have∣∣∣∣∣∏
j>p

ψ(s1,...,sj+1)(gk)ψ(s1,...,sj)(gk)ψ(s′1,...,s
′
j+1)(gk)ψ(s′1,...,s

′
j)(gk)− 1

∣∣∣∣∣
6
∑
j>p

d(gk)(ψ(s1,...,sj+1), ψ(s1,...,sj)) +
∑
j>p

d(gk)(ψ(s′1,...,s
′
j+1), ψ(s′1,...,s

′
j))

It follows from these inequalities that

d(gk)(ψs, ψs′) > d(gk)(χp, χp)− 2
∑
j>p

4−j−1d(gk)(χj , χj)

>

(
1− 2

∑
j>p

4−j−1

)
d(gk)(χp, χp)

since the sequence
(
d(gk)(χn, χn)

)
n>1

is decreasing. Hence

d(gk)(ψs, ψs′) >
5

6
d(gk)(χp, χp) > 0

This proves that K = {ψs | s ∈ 2ω} is an uncountable subset of Ĝ. Moreover, the same compu-
tation as above shows that

d(gk)(ψs, ψs′) 6
7

6
d(gk)(χp, χp)

for any positive integer p and every elements s and s′ of 2ω whose components coincide until
the index p. Let ε > 0. There exists a positive integer p such that

d(gk)(ψs, ψs′) 6
7

6
d(gk)(χp, χp) 6 ε

for arbitrary s and s′ of 2ω such that (s1, . . . , sp) = (s′1, . . . , s
′
p). We deduce from this that, if ψs

and ψs′ are ε-separated for the distance d(gk), then at least one the first p coordinates of s and
s′ differs. If {ψs1 , . . . , ψsm} is a family of characters of G belonging to K which are ε-separated
for the distance d(gk), then for every (i, j) ∈ {1, . . . ,m}2, we must have

(si(1), . . . , si(p)) 6= (sj(1), . . . , sj(p))

Since there is 2p finite sequences of {0, 1}p, we get m 6 2p. Eventually every ε-separated of K
(for the distance d(gk)) is finite. This conclude the proof of (3) =⇒ (5).

It remains to prove that (1) implies (2). Let us assume that (2) is not satisfied. We are
going to prove that (gk)k>0 falls to be a G-Jamison sequence. We have to produce a represen-
tation (X, ρ) of the group G which is partially bounded with respect to the sequence (gk)k>0

and such that the unimodular point spectrum σp(ρ) ∩ Ĝ of ρ is uncountable. The beginning of
the construction is the same as in the proof of Theorem 3.1: let us consider the representation
(`2(G,w), ρ) where `2(G,w) is defined in (3.1) and (3.2) and where ρ is the translation repre-
sentation. Our first task is to make our representation partially bounded with respect to the
sequence (gk)k>0. We use for this a renorming process of the space `2(G,w) which is inspired
from the one used by Badea and Grivaux in the proof of Theorem 2.1 of [2]. The new norm will
intrinsically depends on the sequence (gk)k>0.

Step 1: making ρ partially bounded with respect to (gk)k>0.

We endow the space `2(G,w) with the new norm ‖ · ‖∗ defined by

‖f‖∗ := max

(
‖f‖, sup

j>0
2−j−1 sup

k0,...,kj>0

∥∥∥∥∥
j∏
i=0

(
ρ(gki)− Id

)
f

∥∥∥∥∥
)

(4.4)

14



for every element f of `2(G,w) and we set X :=
{
f ∈ `2(G,w)

∣∣ ‖f‖∗ < +∞}. Let us denote by
ρX the representation induced by ρ on this space that is

ρX :

{
G −→ GL(X)
g 7−→ ρ(g)

The norm ‖ · ‖∗ makes the representation ρX with the required boundedness property.

Lemma 4.3. The representation (X, ρX) of the group G is partially bounded with respect to the
sequence (gk)k>0. More precisely,

sup
k>0
‖ρ(gk)‖∗ 6 3

Proof. For every element f of X and every non-negative integers p, j and k0, . . . , kj , we have

2−j−1

∥∥∥∥∥
j∏
i=0

(
ρ(gki)− Id

)
ρ(gp)f

∥∥∥∥∥ 6 2× 2−j−2

∥∥∥∥∥
j∏
i=0

(
ρ(gki)− Id

)
(ρ(gp)− Id)f

∥∥∥∥∥
+ 2−j−1

∥∥∥∥∥
j∏
i=0

(
ρ(gki)− Id

)
f

∥∥∥∥∥
and in the same way ‖ρ(gp)(f)‖ 6 2×2−1‖(ρ(gp)−Id)(f)‖+‖f‖. It follows from these inequalities
that ‖ρ(gp)(f)‖∗ 6 2‖f‖∗+ ‖f‖∗ that is to say ‖ρ(gp)f‖∗ 6 3‖f‖∗ and the lemma is proved.

We now have to make the space (X, ‖ · ‖∗) separable and such that the unimodular point
spectrum of the induced representation is uncountable.

Step 2: making the space X separable and the unimodular point spectrum uncount-
able.

The presence of the weights 2−j−1 in the norm ‖·‖∗ defined in (4.4) ensures that every character
χ of G belongs to X. Moreover every element χ of Ĝ is a unimodular eigenvalue of ρX (with
associated eigenvector χ) since

∀(g, h, χ) ∈ G2 × Ĝ, ρ(g)χ(h) = χ(g + h) = χ(g)χ(h)

We now use our assumption: since condition (2) is not satisfied, there exists an uncountable
subset K of Ĝ such that (K, d(gk)) is a separable metric space. In order to make the space X
separable, let us consider the new space

X∗ := span‖·‖∗
{
χ
∣∣χ ∈ K}

which is equipped with the norm ‖ · ‖∗, and the representation ρX∗ induced by ρ on the space
X∗. The separability of X∗ follows from the next lemma.

Lemma 4.4. The eigenvector field E :

{
K −→ X∗
χ 7−→ χ

is continuous.

Proof. Let χ and ϕ be two elements of K. The norm ‖χ−ϕ‖∗ is equal to the maximum between
‖χ− ϕ‖ and

sup
j>0

2−j−1 sup
k0,...,kj>0

∥∥∥∥∥
j∏
i=0

(
χ(gki)− 1

)
χ−

j∏
i=0

(
ϕ(gki)− 1

)
ϕ

∥∥∥∥∥
For every non-negative integers j and k0, . . . , kj , we have∥∥∥∥∥

j∏
i=0

(
χ(gki)− 1

)
χ−

j∏
i=0

(
ϕ(gki)− 1

)
ϕ

∥∥∥∥∥ 6 dj(χ,1)‖χ− ϕ‖+ dj(χ, ϕ)‖ϕ‖
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where

dj(χ, ϕ) := sup
k0,...,kj>0

∣∣∣∣∣
j∏
i=0

(
χ(gki)− 1

)
−

j∏
i=0

(
ϕ(gki)− 1

)∣∣∣∣∣
By using the following identity which is valid for every positive integer j and every non-negative
integers k0, . . . , kj :

j∏
i=0

(
χ(gki)− 1

)
−

j∏
i=0

(
ϕ(gki)− 1

)
=
(
χ(gk0)− ϕ(gk0)

) j∏
i=1

(
χ(gki)− 1

)
+
(
ϕ(gk0)− 1

)( j∏
i=1

(
χ(gki)− 1

)
−

j∏
i=1

(
ϕ(gki)− 1

))
it is rather easy to prove that

dj(χ, ϕ) 6 2jd(gk)(χ, ϕ) + 2dj−1(χ, ϕ) (4.5)

By an induction argument, it follows from (4.5) that

dj(χ, ϕ) 6 (j + 1)2jd(gk)(χ, ϕ)

for every non-negative integer j. We then find that there exists a positive constant C such that

‖χ− ϕ‖∗ 6 C
(
‖χ− ϕ‖+ d(gk)(χ, ϕ)

)
(4.6)

Recall that the group G is enumerated as G = {hn |n > 0}. Let us fix a positive real number
ε. Then there exists a positive integer Nε (which does not depend on the characters χ and ϕ)
such that

‖χ− ϕ‖2 =
∑
g∈G
|χ(g)− ϕ(g)|2w(g) =

+∞∑
n=1

|χ(hn)− ϕ(hn)|2w(hn)

6
Nε∑
n=1

|χ(hn)− ϕ(hn)|2w(hn) + ε (4.7)

Let n be a positive integer less or equal than Nε. Since w is a probability measure on G we have
w(hn) 6 1. Moreover we know that (gk)k>0 is a generate sequence of the group G. Hence one

can find integers `n > 0 and
(
α

(n)
0 , . . . , α

(n)
`n

)
∈ Z`n+1 such that

hn =
∑

06k6`n

α
(n)
k gk

and then

|χ(hn)− ϕ(hn)| 6

∣∣∣∣∣
`n∏
k=0

χ(gk)
α
(n)
k −

`n∏
k=0

ϕ(gk)
α
(n)
k

∣∣∣∣∣
6

`n∑
k=0

∣∣α(n)
k

∣∣ ∣∣χ(gk)− ϕ(gk)
∣∣

6

(
`n∑
k=0

∣∣α(n)
k

∣∣)d(gk)(χ, ϕ) (4.8)

It then follows from (4.6), (4.7) and (4.8) that for every ε > 0, there exists a positive constant
Cε such that

‖χ− ϕ‖∗ 6 Cεd(gk)(χ, ϕ) + ε

and Lemma 4.4 is proved.

According to Lemma 4.4 and the separability of (K, d(gk)), the space X∗ is separable and the
representation (X∗, ρX∗) remains partially bounded with respect to the sequence (gk)k>0 and
has an uncountable unimodular point spectrum (since it contains the uncountable set K). This
prove that (1) implies (2). The proof of Theorem 4.2 is now complete.
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5 A Ransford’s type result

We now investigate the link between the growth of the sequence of the norms of the operators
ρ(gk) (k > 0) and the size of the unimodular point spectrum σp(ρ) ∩ Ĝ in another direction.

More precisely, we look at the Haar measure of σp(ρ) ∩ Ĝ. In the context of integer sequences,
Nikolskii [11] proved in 1974 that if T acts on a separable Hilbert space and σp(T )∩T has positive
Lebesgue measure, then the series

∑
n>0 ‖Tn‖−2 is convergent. Ransford [13] generalized this

result in 2005 for separable Banach space X of type p ∈]1, 2]: if T ∈ B(X) is such that σp(T )∩T
has positive Lebesgue measure, then the series

∑
n>0 ‖Tn‖−q is convergent where q = 1− p. In

this paper, we extend the result of Ransford in the setting of countably infinite discrete abelian
group. The proof of our result is very closed to that of [13, Theorem 1.6], so we just outline the
proof and we refer the reader to [13] for more details.

To begin, let us recall some basic definitions and facts about descriptive set theory and
measurability. For more details, we refer the reader to [9, 15].

• A Polish space is a separable completely metrizable topological space.

• A subset A of a Polish space X is said to be analytic if there exists a continuous surjection
from a Polish space Y onto A.

• A subset A of a Polish space X is universally measurable if it is measurable with respect
to every σ-finite Borel measure on X. The universally measurable sets form a σ-algebra,
and we say that a function defined on X is universally measurable if it is measurable with
respect to this σ-algebra.

• If X is a Polish space, every Borelian subset of X is analytic and every analytic subset of
X is universally measurable.

Let G be a countably infinite discrete abelian group. Since G is separable, the dual Ĝ is
metrizable. Furthermore, Ĝ is complete since G is a discrete group. It is also known that a
compact group Γ is separable if and only if card(Γ̂) 6 c (see for instance [8]). Hence, Ĝ is
separable. This proves that Ĝ is a Polish group.

In order to state the theorem, we need to define the analog of type of Banach spaces in
our context. If Γ is a locally compact abelian group with Haar measure m and if p ∈ [1,+∞[,
we denote by Lp(Γ, X) the Bochner-Lebesgue space of p-integrable X-valued functions and by
`p(Γ, X) the space of p-summable X-valued sequences. Given a Bochner-integrable function
f : Γ −→ X, we define its Fourier coefficients by

∀γ ∈ Γ̂, f̂(γ) =

∫
Γ
f(x)γ(x) dm(x)

Definition 5.1. Let G be a countably infinite discrete abelian group and X be a separable
Banach space. We say that X is of Fourier type p ∈]1, 2] with respect to the group Ĝ if the
linear map {

Lp(Ĝ,X) −→ `q(G,X)

f 7−→ f̂

is bounded, where q = 1− p. This means that

∃C > 0, ∀f ∈ Lp(Ĝ,X),

(∑
g∈G

∥∥f̂(g)
∥∥q)1/q

6 C

(∫
Ĝ
‖f(χ)‖p dm(χ)

)1/p

where m is a fixed Haar measure on Ĝ

We are now able to state our result.
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Theorem 5.2. Let G be a countably infinite discrete abelian group. We denote by m the
(normalized) Haar measure of the compact group Ĝ. Let p ∈]1, 2], q = 1 − p and (X, ρ) be a
representation of G where X is a separable Banach space of Fourier type p with respect to the
dual group Ĝ. If σp(ρ) ∩ Ĝ has positive Haar measure, then the series∑

g∈G

1

‖ρ(g)‖q

is convergent.

Proof. The proof runs as in [13, Theorem 1.6]. The first step consists in a parametrization of
the eigenvectors of the representation ρ.

Fact 5.3. 1. The unimodular point spectrum σp(ρ)∩Ĝ of ρ is an analytic subset of the Polish

group Ĝ.

2. There exists a universally measurable eigenvector field E : Ĝ −→ X such that

∀(g, χ) ∈ G× Ĝ, ρ(g)E(χ) = χ(g)E(χ) where ‖E(χ)‖ =

{
1 if χ ∈ σp(ρ) ∩ Ĝ
0 otherwise

Proof. Since the set

A =
{

(χ, x) ∈ Ĝ×X
∣∣ ‖x‖ = 1 and ∀g ∈ G, ρ(g)x = χ(g)x

}
is closed in the Polish space Ĝ × X, it is a Polish space. Moreover, π :

{
A −→ Ĝ

(χ, x) 7−→ χ
is a

continuous map such that π(A) = σp(ρ) ∩ Ĝ. This proves that σp(ρ) ∩ Ĝ is an analytic subset

of the Polish group Ĝ. The second property is a consequence of the cross-section theorem of
Neumann [15, Theorem 5.5.2]: there exists a section E : π(A) −→ X of the map π which
is universally measurable. We extend E to the whole group Ĝ by setting it equal to zero
elsewhere.

We can consider the Fourier coefficients of the bounded m-measurable eigenvector field E
obtained in Fact 5.3 which are given by

∀g ∈ G, Ê(g) =

∫
Ĝ
E(χ)χ(g) dm(χ)

There must exists at most one of these coefficients which is non zero. For assume, to the contrary,
that all the coefficients are equal to zero. Then, for every linear functional ψ ∈ X∗, we have

0 = ψ(Ê(g)) =

∫
Ĝ
ψ(E(χ))χ(g) dm(χ)

Since all the Fourier coefficients of the measure ψ(E(χ)) dm(χ) are zero, we have ψ(E(χ)) = 0 m-
almost everywhere. But X is separable, then E(χ) = 0 m-almost everywhere. This contradicts
the hypothesis that m(σp(ρ) ∩ Ĝ) > 0. We then fix an element g0 of G such that Ê(g0) 6= 0.
Computing the action of the representation ρ on the Fourier coefficients of E, one can easily
obtains that

∀(g, h) ∈ G2, ρ(h)Ê(g) = Ê(g − h)

In particular, ρ(g)Ê(g0 + g) = Ê(g0) for every element g of G and then

‖Ê(g0)‖ 6 ‖ρ(g)‖ ‖Ê(g0 + g)‖

that is to say
1

‖ρ(g)‖
6
∥∥f̂(g)

∥∥
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where f(χ) =
E(χ)χ(g0)

‖Ê(g0)‖
for every χ ∈ Ĝ. Since E is universally measurable, the bounded

function f is m-measurable, hence f ∈ Lp(Ĝ,X). Since X is of Fourier type p with respect to
Ĝ, we have f̂ ∈ `q(G,X). This is the conclusion of Theorem 5.2.

The following example shows that the Fourier type condition on the space in Theorem 5.2
can not be dropped.

Proposition 5.4. Let G be a countably infinite discrete abelian group and γ : G −→]1,+∞[
a function such that the series

∑
g∈G γ(g)−q is convergent. Then there exists a representation

(`q(G), ρ) such that σp(ρ) ∩ Ĝ = Ĝ and

∀g ∈ G, ‖ρ(g)‖ 6 γ(g)

Proof. We follow the proof of Lemma 5.2 and the construction of Example 1.7 of [13]. We
just outline the proof and refer the reader to [13] for more details. To begin, we construct a
submultiplicative function w : G −→ [1,+∞[ which is less or equal than γ and such that the
series

∑
g∈Gw(g)−q is convergent. To to this, we set

w(g) = min
{
γ(g1) . . . γ(gk)

∣∣ ∃ k > 1, g1 + · · ·+ gk = g
}

for every g ∈ G \ {0} and w(0) = 1. One can check that w is a submultiplicative function which
means that

∀(g, h) ∈ G2, w(g + h) 6 w(g)w(h)

and is such that w(g) 6 γ(g) for every g of G and such that the series
∑

g∈Gw(g)−q converges.
The last property follows from the inequalities

w(g)−q = max
{
γ(g1)−q . . . γ(gk)

−q ∣∣ ∃ k > 1, g1 + · · ·+ gk = g
}

6
∑

g1+···+gk=g

1

γ(g1)q . . . γ(gk)q

which implies that ∑
g∈G

w(g)−q 6
∏
g∈G

1

1− 1
γ(g)q

and the infinite product is convergent because
∑

g∈G γ(g)−q < +∞. Then we consider the space

X =

{
f : G −→ C

∣∣∣∣∣ ∑
g∈G

|f(g)|q

w(g)q
< +∞

}

and the representation ρ on X defined by

∀(g, h) ∈ G2, ∀f ∈ X, ρ(g)(f)(h) = f(g + h)

It is straightforward to check that ‖ρ(h)‖ = w(h) for every element h of G, which conclude the
proof of Proposition 5.4.
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