Familles sommables

Quelques rappels:

 \star Dans $\overline{\mathbb{R}_+} = [0, +\infty]$, on peut écrire que :

$$(\forall x \in \mathbb{R}_+, x \leqslant +\infty, +\infty + x = +\infty)$$
 et $+\infty \leqslant +\infty$

- * Propriété de la borne supérieure : toute partie non vide de \mathbb{R}_+ admet une borne supérieure dans $\overline{\mathbb{R}_+}$ (elle appartient à \mathbb{R}_+ si la partie est majorée; sinon, elle vaut $+\infty$).
- * Caractérisation séquentielle de la borne supérieure dans $\overline{\mathbb{R}_+}$: Soient A une partie de \mathbb{R}_+ et $M \in \overline{\mathbb{R}_+}$. Alors :

$$M = \sup(A) \iff \left\{ \begin{array}{c} \forall a \in A, \ a \leqslant M \\ \exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}}, \ a_n \xrightarrow[n \to +\infty]{} M \end{array} \right.$$

* Par convention, $\sum_{i \in \emptyset} u_i = 0$.

Dans tout ce chapitre, I désigne un ensemble non vide quelconque. On note $\mathscr{P}_f(I)$ l'ensemble des parties de I ayant un nombre fini d'éléments.

Exemple 1 Si $I = \mathbb{Z}$, on a \emptyset , $[-10, 10] \in \mathscr{P}_f(\mathbb{Z})$ mais $2\mathbb{N} \notin \mathscr{P}_f(\mathbb{Z})$.

I – Familles sommables de réels positifs

1) Definition

Soit $u = (u_i)_{i \in I} \in (\mathbb{R}_+)^I$ (i.e.: $\forall i \in I, u_i \in \mathbb{R}_+$).

Proposition 1 L'ensemble :

$$S(u) = \left\{ \sum_{i \in F} u_i \middle| F \in \mathscr{P}_f(I) \right\}$$

admet une borne supérieure dans $\overline{\mathbb{R}_+} = [0, +\infty]$.

Démonstration L'ensemble S(u) est une partie de \mathbb{R} (même de \mathbb{R}_+) qui est non vide d'où le résultat d'après la propriété de la borne supérieure.

Définition 1 (somme d'une famille sommable) La quantité $\sup(S(u))$ est appelée somme de la famille $(u_i)_{i\in I}$ et est notée $\sum_{i\in I} u_i$.

Remarques:

- * La somme existe toujours et $\sum_{i \in I} u_i \in [0, +\infty]$.
- ★ Par définition de la borne supérieure, on a :

$$\forall F \in \mathscr{P}_f(I), \qquad \sum_{i \in F} u_i \leqslant \sum_{i \in I} u_i$$

Définition 2 (famille sommable positive) La famille $(u_i)_{i \in I}$ est dite sommable si :

$$\sum_{i \in I} u_i \in \mathbb{R}_+ \qquad i.e. \qquad \sum_{i \in I} u_i < +\infty$$

Exemple 2 La famille (positive) $(x)_{x \in \mathbb{Q}_+}$ n'est pas sommable. En effet, pour tout $N \in \mathbb{N}$, on a $F_N = [0, N] \in \mathscr{P}_f(\mathbb{Q}_+)$ donc :

$$\sum_{x\in\mathbb{Q}_+}x\geqslant\sum_{x\in\llbracket 0,N\rrbracket}x=N+1$$

Ainsi, $\sum_{n\in\mathbb{Q}_+}x$ majore l'ensemble $\mathbb{N}^*,$ ce qui signifie que $\sum_{x\in\mathbb{Q}_+}x={\scriptscriptstyle +}\infty.$

Exemple 3 Soit $x \in]0,1[$. Montrons que la famille $u=(x^{|n|})_{n\in\mathbb{Z}}$ est sommable. Soit $F\in\mathscr{P}_f(\mathbb{Z})$. Alors :

$$\sum_{n \in F} x^{|n|} = \underbrace{\sum_{n \in F \cap \mathbb{N}} x^n}_{\text{not\'ee } S_1} + \underbrace{\sum_{n \in F \setminus \mathbb{N}} \frac{1}{x^n}}_{\text{not\'ee } S_2}$$

Posons $M = \max\{|n| \mid n \in F\}$. Pour tout $n \in \mathbb{Z}$, on a $x^n \ge 0$ donc :

$$S_1 \leqslant \sum_{n=0}^{M} x^n = \frac{1 - x^{M+1}}{1 - x} \leqslant \frac{1}{1 - x}$$
 et $S_2 \leqslant \sum_{n=-M}^{-1} x^{-n} = \sum_{n=1}^{M} x^n \leqslant \frac{x}{1 - x}$

Ainsi:

$$\sum_{n \in F} x^{|n|} = S_1 + S_2 \leqslant \frac{1+x}{1-x}$$

On en déduit que l'ensemble S(u) est majoré (et est non vide) donc admet une borne supérieure (finie) d'après la propriété de la borne supérieure. Autrement dit, la famille u est sommable. De plus, en considérant la famille $F_N = \llbracket -N, N \rrbracket \in \mathscr{P}_f(\mathbb{Z})$ pour tout $N \in \mathbb{N}$, on a :

$$\sum_{x \in F_{-}} x^{|x|} = \sum_{n=-N}^{N} x^{|n|} = \sum_{n=0}^{N} x^{n} + \sum_{n=1}^{N} x^{n} = \frac{1 + x - 2x^{N+1}}{1 - x} \xrightarrow[N \to +\infty]{} \frac{1 + x}{1 - x}$$

Comme $x^{N+1} \xrightarrow[N \to +\infty]{} 0$ (puisque $x \in]0,1[)$, on a :

$$\sum_{x \in F_N} x^{|x|} \xrightarrow[N \to +\infty]{} \frac{1+x}{1-x}$$

Comme on sait aussi que $\frac{1+x}{1-x}$ majore S(u), la caractérisation séquentielle de la borne supérieure nous permet de conclure que :

$$\sum_{n \in \mathbb{Z}} x^{|n|} = \frac{1+x}{1-x}$$

Proposition 2 (sous-famille d'une famille sommable positive) Soient $(u_i)_{i \in I} \in (\mathbb{R}_+)^I$ une famille sommable et $J \subset I$. Alors :

 \star la famille $(u_i)_{i \in J}$ est sommable;

$$\star$$
 on a l'inégalité $\sum_{i \in J} u_i \leqslant \sum_{i \in I} u_i$.

Démonstration Posons $u' = (u_i)_{i \in J}$ et :

$$S(u) = \left\{ \sum_{i \in F} u_i \,\middle|\, F \in \mathscr{P}_f(I) \right\} \quad \text{et} \quad S(u') = \left\{ \sum_{i \in F} u_i \,\middle|\, F \in \mathscr{P}_f(J) \right\}$$

Comme $J \subset I$, pour toute partie finie F de J, F est aussi une partie finie de I donc $\sum_{i \in F} u'_i \in S(u)$. On en déduit, par définition de la borne supérieure, que :

$$\sum_{i \in F} u_i \leqslant \sup(S(u)) \qquad i.e. \qquad \sum_{i \in F} u_i \leqslant \sum_{i \in I} u_i$$

L'ensemble S(u') est majoré par $\sum_{i \in I} u_i$ (qui est un nombre réel par sommabilité de u). Comme $\sup(S(u'))$ est le plus petit majorant de S(u'), on a :

$$\sup(S(u')) \leqslant \sum_{i \in I} u_i$$
 i.e. $\sum_{i \in J} u_i \leqslant \sum_{i \in I} u_i$,

d'où le résultat.

Proposition 3 (théorème de comparaison pour les familles positives) Soient $(u_i)_{i \in I}$ et $(v_i)_{i \in I}$ deux familles de réels positifs telles que :

$$\forall i \in I, \qquad u_i \leqslant v_i \tag{*}$$

Alors (l'inégalité a lieu dans $[0, +\infty]$):

$$\sum_{i \in I} u_i \leqslant \sum_{i \in I} v_i$$

Remarque : il n'y a pas besoin d'hypothèse de sommabilité des familles.

Démonstration Soit $F \in \mathscr{P}_f(I)$. D'après (*), on a :

$$\sum_{i \in F} u_i \leqslant \sum_{i \in F} v_i \leqslant \sup(S(v))$$

Ceci entraîne que $\sup(S(v))$ majore S(u). Par définition de la borne supérieure, il vient :

$$\sup(S(u)) \leqslant \sup(S(v))$$
 i.e. $\sum_{i \in I} u_i \leqslant \sum_{i \in I} v_i$,

ce qu'il fallait démontrer.

2) Sommabilité et sommes finies, sommabilité vs convergence de série

Proposition 4 (sommabilité et somme d'une famille finie positive) Soit $I = \{i_1, \dots, i_n\}$ un ensemble fini. Toute famille $(u_i)_{i \in I} \in (\mathbb{R}_+)^I$ est sommable et :

$$\sum_{i \in I} u_i = \sum_{k=1}^n u_{i_k}$$

Démonstration Soit $(u_i)_{i\in I} \in (\mathbb{R}_+)^I$. Par positivité de la suite, on a pour tout $F \in \mathscr{P}(I)$ (une partie de I est finie car I est finie):

$$\sum_{i \in F} u_i \leqslant \sum_{k=1}^n u_{i_k}$$

 $\operatorname{Donc} \, \sum_{k=1}^n u_{i_k} \in \mathbb{R}_+ \, \operatorname{majore} \, S(u) \, \operatorname{donc} \, u \, \operatorname{est \, sommable} \, \operatorname{et \, sup}(S(u)) \leqslant \sum_{k=1}^n u_{i_k}. \, \operatorname{Ce \, majorant} \, \operatorname{\acute{e}tant} \, \operatorname{atteint} \, \operatorname{pour} \, F = I,$

on a
$$\sup(S(u)) = \sum_{k=1}^n u_{i_k}$$
, c'est-à-dire $\sum_{i \in I} u_i = \sum_{k=1}^n u_{i_k}$.

Remarque: ouf.

Proposition 5 (sommabilité et convergence de séries à termes positifs) Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite de réels positifs. Alors :

- \star la famille $(u_n)_{n\in\mathbb{N}}$ est sommable si et seulement si la série $\sum_{n\geq 0}u_n$ converge;
- ★ dans tous les cas, on a l'égalité :

$$\sum_{n\in\mathbb{N}} u_n = \sum_{n=0}^{+\infty} u_n,$$

où on a posé $\sum_{n=0}^{+\infty} u_n = +\infty$ si la famille $(u_n)_{n\in\mathbb{N}}$ n'est pas sommable.

Démonstration \star Soient $F \in \mathscr{P}_f(\mathbb{N})$ et $N = \max(F) \in \mathbb{N}$. Si la série $\sum_{n \geqslant 0} u_n$ est convergente, alors par

positivité de la suite u, on a :

$$\sum_{n \in F} u_n \leqslant \sum_{n=0}^N u_n \leqslant \sum_{n=0}^{+\infty} u_n$$

Comme S(u) est majoré par $\sum_{n=0}^{+\infty} u_n \in \mathbb{R}_+$, la famille $(u_n)_{n \in \mathbb{N}}$ est sommable et, par définition de la borne supérieure, on a :

$$\sum_{n \in \mathbb{N}} u_n \leqslant \sum_{n=0}^{+\infty} u_n$$

Pour obtenir l'égalité, il suffit de remarquer que pour $F_N = [0, N]$, on a :

$$\sum_{n \in F_N} u_n = \sum_{n=0}^N u_n \xrightarrow[N \to +\infty]{} \sum_{n=0}^{+\infty} u_n$$

4

D'après la caractérisation séquentielle de la borne supérieure, on a $\sum_{n\in\mathbb{N}}u_n=\sum_{n=0}^{+\infty}u_n$.

* Réciproquement, si la série $\sum_{n\geqslant 0}u_n$ diverge alors, comme il s'agit d'une série à termes positifs, on a (on pose encore $F_N=[\![0,N]\!]$):

$$\sum_{n \in F_N} u_n = \sum_{n=0}^N u_n \xrightarrow[N \to +\infty]{} +\infty$$

Exemple 4 On a $\sum_{n \in \mathbb{N}^*} \frac{1}{n} = \sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$ puisque la série harmonique est divergente.

3) Opérations sur les sommes

Proposition 6 (invariance de la somme par permutation) Soient $u=(u_i)_{i\in I}\in (\mathbb{R}_+)^I$ et $\sigma:I\longrightarrow I$ une bijection. Alors :

$$\sum_{i \in I} u_{\sigma(i)} = \sum_{i \in I} u_i \qquad (\text{égalité dans } [0, +\infty])$$

En particulier, la famille $(u_{\sigma(i)})_{i\in I}$ est sommable si et seulement si la famille $(u_i)_{i\in I}$ l'est.

Démonstration On pose $u_{\sigma} = (u_{\sigma(i)})_{i \in I}$.

* Soit $F \in \mathscr{P}_f(I)$. Alors $G = \sigma(F) \in \mathscr{P}_f(I)$ donc (en utilisant le changement d'indice $j = \sigma(i)$, qui est licite car σ est injective) :

$$\sum_{i \in F} u_{\sigma(i)} = \sum_{j \in G} u_j \leqslant \sup(S(u))$$

par définition de la borne supérieure. Toujours par définition de la borne supérieure, on a :

$$\sup(S(u_{\sigma})) \leqslant \sup(S(u))$$
 i.e. $\sum_{i \in I} u_{\sigma(i)} \leqslant \sum_{i \in I} u_i$

* Réciproquement, soient $F \in \mathscr{P}_f(I)$ et $H = \sigma^{-1}(F) \in \mathscr{P}_f(I)$. En effectuant le changement d'indice $j = \sigma^{-1}(i)$ (licite par bijectivité de σ), on a :

$$\sum_{i \in F} u_i = \sum_{i \in F} u_{\sigma(\sigma^{-1}(i))} = \sum_{j \in H} u_{\sigma(j)} \leqslant \sup(S(u_{\sigma}))$$

et donc:

$$\sup(S(u)) \leqslant \sup(S(u_{\sigma})) \qquad i.e. \qquad \sum_{i \in I} u_{i} \leqslant \sum_{i \in I} u_{\sigma(i)},$$

d'où l'égalité.

Remarque: en général, c'est faux pour une famille qui n'est pas positive. Par exemple, on a vu que la série $\sum_{k>1} \frac{(-1)^{k-1}}{k}$ est convergente de somme (notons la S) égale à $\ln(2)$, ce qui s'écrit en extension:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots = \ln(2)$$

Ici, on ne peut pas modifier l'ordre des termes sans incidence. Par exemple, faisons des paquets de trois:

$$\left(1 - \frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{6} - \frac{1}{8}\right) + \left(\frac{1}{5} - \frac{1}{10} - \frac{1}{12}\right) + \dots + \left(\frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n}\right) + \dots \\
= \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{6} - \frac{1}{8}\right) + \left(\frac{1}{10} - \frac{1}{12}\right) + \dots + \left(\frac{1}{4n-2} - \frac{1}{4n}\right) + \dots \\
= \frac{1}{2}\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) \\
= \frac{S}{2} \\
= \frac{\ln(2)}{2}$$

Proposition 7 (combinaison linéaire positive) Soient $u = (u_i)_{i \in I}, v = (v_i)_{i \in I} \in (\mathbb{R}_+)^I$ et $\lambda \in \mathbb{R}_+$. Alors:

$$\sum_{i \in I} (u_i + \lambda v_i) = \sum_{i \in I} u_i + \lambda \sum_{i \in I} v_i \qquad (\text{égalité dans } [0, +\infty])$$

Démonstration Soit $F \in \mathscr{P}_f(I)$. Par linéarité des sommes finies, on a :

$$\sum_{i \in F} (u_i + \lambda v_i) = \sum_{i \in F} u_i + \lambda \sum_{i \in F} v_i \leqslant \sup(S(u)) + \lambda \sup(S(v))$$

par définition de la borne supérieure et car $\lambda \geqslant 0$. Ainsi (toujours par définition de la borne supérieure) :

$$\sup(S(u+\lambda v))\leqslant \sup(S(u))+\lambda \sup(S(v)) \qquad i.e. \qquad \sum_{i\in I} (u_i+\lambda v_i)\leqslant \sum_{i\in I} u_i+\lambda \sum_{i\in I} v_i$$

Ensuite, par la caractérisation séquentielle de la borne supérieure dans $[0, +\infty]$, il existe des suites de sous-ensemble finis $(F_n)_{n\in\mathbb{N}}$ et $(G_n)_{n\in\mathbb{N}}$ de I tels que :

$$\sum_{i \in F_n} u_i \xrightarrow[n \to +\infty]{} \sum_{i \in I} u_i \qquad \text{et} \qquad \sum_{i \in G_n} v_i \xrightarrow[n \to +\infty]{} \sum_{i \in I} v_i$$

Pour tout $n \in \mathbb{N}$, on a $F_n \subset F_n \cup G_n$ et la famille u est positive donc :

$$\sum_{i \in F_n} u_i \leqslant \sum_{i \in F_n \cup G_n} u_i \leqslant \sum_{i \in I} u_i$$

Le théorème des gendarmes implique que :

$$\sum_{i \in F_n \cup G_n} u_i \xrightarrow[n \to +\infty]{} \sum_{i \in I} u_i$$

De même :

$$\sum_{i \in F_n \cup G_n} v_i \xrightarrow[n \to +\infty]{} \sum_{i \in I} v_i$$

On en déduit que :

$$\sum_{i \in F_n \cup G_n} (u_i + \lambda v_i) \xrightarrow[n \to +\infty]{} \sum_{i \in I} (u_i + \lambda v_i)$$

La caractérisation séquentielle de la borne supérieure permet de conclure quant à l'égalité souhaitée.

4) Sommation par paquets

Théorème 1 (de sommation par paquets positif) Soient $u = (u_i)_{i \in I}$ et $(I_j)_{j \in J}$ une famille de sous-ensembles deux à deux disjoints de I tels que :

$$I = \bigsqcup_{j \in J} I_j$$

Alors:

$$\sum_{i \in I} u_i = \sum_{j \in J} \sum_{i \in i_j} u_i \qquad \text{(égalité dans } [0, +\infty]\text{)}$$

Démonstration admis

Remarque : lorsqu'on utilise ce résultat, on peut faire les calculs directement. La valeur finale obtenue (un réel positif ou $+\infty$) permet de conclure quant à la sommabilité de la famille u.

Exemple 5 \star Soit $x \in]0,1[$. La famille $u=(x^{|n|})_{n\in\mathbb{Z}}$ est sommable.

Justification. On a $\mathbb{Z} = (-\mathbb{N}^*) \sqcup \mathbb{N}$ donc, comme u est positive et d'après le théorème de sommation par paquets positifs, on a :

$$\sum_{n\in\mathbb{Z}} x^{|n|} = \sum_{n\in(-\mathbb{N}^*)} x^{|n|} + \sum_{n\in\mathbb{N}} x^{|n|} = \sum_{n\in(-\mathbb{N}^*)} x^{-n} + \sum_{n=0}^{+\infty} x^n$$

$$= \sum_{n\in\mathbb{N}^*} x^n + \frac{1}{1-x} \qquad \text{(th\'eor\`eme de permutation des termes)}$$

$$= \frac{x+1}{1-x} \in \mathbb{R}_+,$$

ce qu'on avait déjà obtenu.

 \star Étudions la sommabilité de la famille $u = \left(\frac{1}{(m+n)^3}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ en considérant, pour tout $d\in\mathbb{N}\setminus\{0,1\}$, l'ensemble $I_d=\left\{(m,n)\in(\mathbb{N}^*)^2\,\middle|\,m+n=d\right\}$. On a bien :

$$\mathbb{N}^* \times \mathbb{N}^* = \bigsqcup_{d \ge 2} I_d$$

et la famille u est positive donc, d'après le théorème de sommation par paquets positifs, on a :

$$\sum_{(m,n)\in(\mathbb{N}^*)^2} \frac{1}{(m+n)^3} = \sum_{d=2}^{+\infty} \sum_{(m,n)\in I_d} \frac{1}{(m+n)^3} = \sum_{d=2}^{+\infty} \frac{|I_d|}{d^3} = \sum_{d=1}^{+\infty} \frac{d-1}{d^3} = \zeta(2) - \zeta(3) \in \mathbb{R}_+$$

donc la famille u est sommable et on vient d'obtenir sa somme.

Le résultat suivant est très pratique lorsque I s'écrit comme un produit cartésien.

Corollaire 1 (théorème de Fubini positif) Soient A et B deux ensembles non vides et $(u_{m,n})_{(m,n)\in A\times B}\in (\mathbb{R}_+)^{A\times B}$. Alors :

$$\sum_{(m,n)\in A\times B} u_{m,n} = \sum_{m\in A} \sum_{n\in B} u_{m,n} = \sum_{n\in B} \sum_{m\in A} u_{m,n}$$

Démonstration On remarque que :

$$I = \bigsqcup_{m \in A} (\{m\} \times B) = \bigsqcup_{n \in B} (A \times \{n\})$$

Il suffit ensuite d'appliquer le théorème de sommation par paquets.

Exemple 6 \star Soit $x \in [0,1[$. Étudions la sommabilité de la famille $u = (x^{p+q})_{(p,q) \in \mathbb{N}^2}$. Comme il s'agit d'une famille de nombres positifs, on a d'après le théorème de Fubini positif :

$$\begin{split} \sum_{(p,q)\in\mathbb{N}^2} x^{p+q} &= \sum_{p\in\mathbb{N}} \left(\sum_{q\in\mathbb{N}} x^p x^q\right) = \sum_{p\in\mathbb{N}} x^p \left(\sum_{q\in\mathbb{N}} x^q\right) \\ &= \sum_{p\in\mathbb{N}} x^p \times \underbrace{\frac{1}{1-x}}_{\geqslant 0} \\ &= \frac{1}{1-x} \sum_{p\in\mathbb{N}} x^p \qquad \text{(linéarité positive de la somme)} \\ &= \frac{1}{(1-x)^2} \in \mathbb{R}_+ \end{split}$$

En particulier, la famille u est sommable.

* Calculons la somme $S = \sum_{n=1}^{+\infty} \frac{n}{2^n}$. On a :

$$S = \sum_{n \in \mathbb{N}^*} \frac{1}{2^n} \sum_{k=1}^n 1 = \sum_{n \in \mathbb{N}^*} \sum_{k \in [\![1,n]\!]} \frac{1}{2^n} = \sum_{k=1}^{+\infty} \sum_{n=k}^{+\infty} \frac{1}{2^n}$$
 (théorème de Fubini positif)
$$= \sum_{k=1}^{+\infty} 2 \times \frac{1}{2^k}$$

$$= 2$$

* Pour tout $p \in \mathbb{N} \setminus \{0,1\}$, on pose $\zeta(p) = \sum_{n=1}^{+\infty} \frac{1}{n^p}$. Calculer la somme $T = \sum_{n=2}^{+\infty} (\zeta(n) - 1)$. On a :

$$T = \sum_{n=2}^{+\infty} \sum_{k=2}^{+\infty} \frac{1}{k^n} = \sum_{k=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{k^n} \qquad \text{(th\'eor\`eme de Fubini positif)}$$
$$= \sum_{k=2}^{+\infty} \frac{1}{k^2} \times \frac{1}{1 - \frac{1}{k}}$$
$$= \sum_{k=2}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k} \right)$$

donc (somme télescopique) on a T=1.

II – Familles sommables à valeurs dans $\mathbb C$

On généralise ici la notion de famille sommable à une famille à valeurs dans $\mathbb R$ ou $\mathbb C$.

1) Notions de sommabilité

Définition 3 (famille sommable, cas général) Une famille $(u_i)_{\in I} \in \mathbb{C}^I$ est dite *sommable* si la famille $(|u_i|)_{i\in I} \in (\mathbb{R}_+)^I$ de réels positifs est sommable, c'est-à-dire si :

$$\sum_{i \in I} |u_i| < +\infty$$

On note $\ell^1(I)$ l'ensemble des familles sommables complexes indexées par I i.e. :

$$\ell^{1}(I) = \left\{ (u_{i})_{i \in I} \in \mathbb{C}^{I} \left| \sum_{i \in I} |u_{i}| < +\infty \right. \right\}$$

Exemple 7 Si $x \in \mathbb{C}$ est tel que |x| < 1, alors la famille $(x^{|n|})_{n \in \mathbb{Z}}$ est sommable. En effet, on a vu que si $y \in [0, 1[$, alors $\sum_{n \in \mathbb{Z}} x^{|n|} < +\infty$.

Remarques.

- ★ Pour une famille de réels positifs $(u_i)_{i\in I} \in (\mathbb{R}_+)^I$, on retrouve la définition première de la sommabilité (puisque : $\forall i \in I, |u_i| = u_i$ dans ce cas).
- ★ Si $(u_i)_{i \in I} \in \mathbb{C}^I$ est sommable et si J est une partie de I, alors la famille $(u_i)_{i \in J}$ est sommable. En effet, on a vu que si $\sum_{i \in I} |u_i| < +\infty$, alors $\sum_{i \in J} |u_i| < +\infty$.
- ★ L'ensemble $\ell^1(\mathbb{N})$ est celui des séries absolument convergentes (d'après le lien établi entre séries numériques et familles sommables).

Exemple 8 Pour tout $\theta \in \mathbb{R}$, la famille $\left(\frac{\mathrm{e}^{in\theta}}{n^2}\right)_{n\geqslant 1}$ est sommable tandis que $\left(\frac{\mathrm{e}^{in\theta}}{n}\right)_{n\geqslant 1}$ ne l'est pas.

Proposition 8 (théorème de comparaison pour les familles sommables) Soient $(u_i)_{i\in I} \in \mathbb{C}^I$ et $(v_i)_{i\in I} \in (\mathbb{R}_+)^I$. On suppose que :

- \star la famille $(v_i)_{i \in I}$ est sommable;
- $\star \ \forall i \in I, \ |u_i| \leqslant v_i.$

Alors la famille $(u_i)_{i \in I}$ est sommable.

Démonstration D'après le théorème de comparaison pour les familles positives, on a :

$$\sum_{i \in I} |u_i| \leqslant \sum_{i \in I} v_i$$

Comme $\sum_{i\in I} v_i < +\infty$, on a $\sum_{i\in I} |u_i| < +\infty$, ce qui signifie que la famille $(u_i)_{i\in I}$ est sommable.

Exemple 9 La famille $\left(\frac{\sin(n)}{2^{|n|}}\right)_{n\in\mathbb{Z}}$ est sommable car la famille de nombres réels positifs $\left(\frac{1}{2^{|n|}}\right)_{n\in\mathbb{Z}}$ l'est et car : $\forall n\in\mathbb{Z}, \qquad \left|\frac{\sin(n)}{2^{|n|}}\right|\leqslant \frac{1}{2^{|n|}}$

Notation: si $x \in \mathbb{R}$, on pose $x^+ = \max(0, x) \in \mathbb{R}_+$ et $x^- = \max(0, -x) \in \mathbb{R}_+$. On a alors:

$$\forall x \in \mathbb{R}, \quad x = x^{+} - x^{-}, |x| = x^{+} + x^{-} \quad \text{et} \quad x^{\pm} \leq |x|$$

 \star Si $(u_i)_{\in I} \in \mathbb{R}^I$ est une famille sommable, alors d'après le théorème de comparaison positif, on a :

$$\sum_{i \in I} (u_i)^{\pm} \leqslant \sum_{i \in I} |u_i| < +\infty$$

donc les familles positives $(u_i^+)_{i\in I}$ et $(u_i^-)_{i\in I}$ sont sommables.

★ Si maintenant $(u_i)_{i \in I} \in \mathbb{C}^I$ une famille sommable. Pour tout $i \in I$, on a $|\text{Re}(u_i)| \leq |u_i|$ donc, d'après le théorème de comparaison pour les familles sommables, la famille réelle $(\text{Re}(u_i))_{i \in I}$ est sommable. Il en va de même pour la famille $(\text{Im}(u_i))_{i \in I}$.

Ceci nous permet de définir la somme d'une famille sommable réelle ou complexe.

Définition 4 (somme d'une famille sommable quelconque)

 \star Si $(u_i)_{\in I} \in \mathbb{R}^I$ est sommable,

on définit la somme de la famille par :

$$\sum_{i \in I} u_i = \sum_{i \in I} u_i^+ - \sum_{i \in I} u_i^-$$

 \star Si $(u_i)_{\in I} \in \mathbb{C}^I$ est sommable, on pose :

$$\sum_{j \in I} \operatorname{Re}(u_j) + i \sum_{j \in I} \operatorname{Im}(u_j)$$

Proposition 9 Soient $(u_i)_{i\in I} \in \ell^1(I)$ et $\varepsilon > 0$. Alors il existe un sous-ensemble fini F_{ε} de I tel que :

$$\left| \sum_{i \in I} u_i - \sum_{i \in F_{\varepsilon}} u_i \right| \leqslant \varepsilon$$

Démonstration Soit $\varepsilon > 0$.

★ On se place dans le cas où $(u_i)_{i\in I} \in \mathbb{R}^I$. Comme $(u_i)_{i\in I}$ est sommable, les familles de réels positifs $(u_i^+)_{i\in I}$ et $(u_i^-)_{i\in I}$ sont sommables. Notons $S_+ \in \mathbb{R}$ et $S_- \in \mathbb{R}$ leurs sommes respectives. Par définition de la borne supérieure, il existe deux parties finies F_+ et F_- de I telles que :

$$(\forall i \in F_+, u_i > 0)$$
 et $(\forall i \in F_-, u_i < 0)$

et:

$$\left| \sum_{i \in F^+} u_i^+ - S_+ \right| \leqslant \frac{\varepsilon}{2} \quad \text{et} \quad \left| \sum_{i \in F^-} u_i^- - S_- \right| \leqslant \frac{\varepsilon}{2}$$

En remplaçant F_+ et F_- par $F=F_+\cup F_-$, on a aussi :

$$\left| \sum_{i \in F} u_i - S_+ \right| \leqslant \frac{\varepsilon}{2} \quad \text{et} \quad \left| \sum_{i \in F} u_i - S_- \right| \leqslant \frac{\varepsilon}{2}$$

et donc, en utilisant l'inégalité triangulaire :

$$\left| \sum_{i \in I} u_i - \sum_{i \in F} u_i \right| = \left| (S_+ - S_-) - \left(\sum_{i \in F} u_i^+ - \sum_{i \in F} u_i^- \right) \right|$$

$$\leqslant \left| \sum_{i \in F_+} u_i - S_+ \right| + \left| \sum_{i \in F_-} u_i - S_- \right|$$

$$\leqslant \varepsilon$$

* Si $(u_i)_{i\in I}$ est à valeurs complexes, on applique le point précédent aux familles sommables réelles $(\operatorname{Re}(u_i))_{i\in I}$ et $(\operatorname{Im}(u_i))_{i\in I}$ avec le choix $\varepsilon' = \frac{\varepsilon}{\sqrt{2}} > 0$.

Proposition 10 Soient $(u_i)_{i\in I}, (v_i)_{i\in I} \in \ell^1(I)$ et $\lambda \in \mathbb{C}$. Alors:

- ★ la famille $(u_i + \lambda v_i)_{i \in I}$ est sommable;
- $\star \ \sum_{i \in I} \left(u_i + \lambda v_i \right) = \sum_{i \in I} u_i + \lambda \sum_{i \in I} v_i.$

Démonstration

 \star Pour tout $i \in I$, on a:

$$|u_i + \lambda v_i| \leq |u_i| + |\lambda| |v_i|$$

Par hypothèse et par linéarité positive, la famille de réels positifs $(|u_i| + |\lambda| |v_i|)_{i \in I}$ est sommable. D'après le théorème de comparaison pour les familles sommables, la famille $(u_i + \lambda v_i)_{i \in I}$ est sommable.

★ admis

Corollaire 2 L'ensemble $\ell^1(I)$ est un \mathbb{C} -espace vectoriel.

Démonstration C'est une conséquence immédiate de la proposition précédente : $\ell^1(I)$ est un \mathbb{C} -sous-espace vectoriel de \mathbb{C}^I .

3) Sommation par paquets

Théorème 2 (de sommation par paquets général) Soit $(I_j)_{j\in J}$ une famille de sous-ensembles deux à deux disjoints de I telle que :

$$I = \bigsqcup_{j \in J} I_j$$

Soit $(u_i)_{i\in I}\in\mathbb{C}^I$ une famille sommable. Alors :

- (i) pour tout $j \in J$, la famille $(u_i)_{i \in I_j}$ est sommable;
- (ii) la famille $\left(\sum_{i\in I_j} u_i\right)_{j\in J}$ est sommable.

De plus, on a l'égalité :

$$\sum_{i \in I} u_i = \sum_{j \in J} \left(\sum_{i \in I_j} u_i \right)$$

Démonstration admis

Corollaire 3 (théorème de Fubini général) Soient A et B deux ensembles non vides et $(u_{m,n})_{(m,n)\in A\times B}\in (\mathbb{C})^{A\times B}$ une famille sommable. Alors :

$$\sum_{(m,n)\in A\times B} u_{m,n} = \sum_{m\in A} \sum_{n\in B} u_{m,n} = \sum_{n\in B} \sum_{m\in A} u_{m,n}$$

En particulier, si $(a_i)_{i \in I} \in \mathbb{C}^I$ et $(b_{i'})_{i' \in I'} \in \mathbb{C}^{I'}$ sont des familles sommables, alors la famille $(a_i b_{i'})_{(i,i') \in I \times I'}$ est sommable et :

$$\sum_{(i,i')\in I\times I'}a_ib_{i'}=\left(\sum_{i\in I}a_i\right)\left(\sum_{i'\in I'}b_{i'}\right)$$

Remarque: pour appliquer ces deux résultats avec une famille $(u_i)_{i\in I} \in \mathbb{C}^I$, on commence par appliquer le résultat correspondant pour la famille positive $(|u_i|)_{i\in I}$. Ceci permettra d'affirmer que la famille initiale est sommable. On peut ensuite faire les calculs sans modules.

Solution Montrer que la famille $u = \left(\frac{\mathrm{e}^{2ik\pi/n}}{2^n}\right)_{\substack{(n,k)\in(\mathbb{N}^*)^2\\n\geqslant k+1}}$ est sommable et calculer sa somme

notée S.

Solution.

★ On étudie la sommabilité de la famille en appliquant le théorème de Fubini positif. Selon ce théorème, on a (les calculs ayant lieu dans $[0, +\infty]$):

$$\sum_{\substack{(n,k)\in(\mathbb{N}^*)^2\\n\geqslant k+1}} \left| \frac{\mathrm{e}^{2ik\pi/n}}{2^n} \right| = \sum_{\substack{(n,k)\in(\mathbb{N}^*)^2\\n\geqslant k+1}} \frac{1}{2^n} = \sum_{k=1}^{+\infty} \frac{1}{2^{k+1}} \underbrace{\sum_{n=k+1}^{+\infty} \frac{1}{2^{n-(k+1)}}}_{-2} = 1 \in \mathbb{R}_+$$

La famille u est donc sommable.

★ D'après le théorème de Fubini général, on a maintenant :

$$S = \sum_{\substack{(n,k) \in (\mathbb{N}^*)^2 \\ n \geqslant k+1}} \frac{e^{2ik\pi/n}}{2^n} = \sum_{n=2}^{+\infty} \frac{1}{2^n} \underbrace{\sum_{k=1}^{n-1} e^{i\frac{2k\pi}{n}}}_{=-1} = -\frac{1}{2}$$

III - Produit de Cauchy

Définition 5 (produit de Cauchy) Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites complexes. On appelle produit de Cauchy des séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ la série $\sum_{n\geqslant 0}w_n$ où le terme général est défini par :

$$\forall n \in \mathbb{N}, \qquad w_n = \sum_{k=0}^n u_k v_{n-k}$$

En général, la convergence des séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ ne garantit pas celle du produit de Cauchy.

Exemple 10 Pour tout $n \in \mathbb{N}$, posons $u_n = v_n = \frac{(-1)^n}{\sqrt{n+1}}$. La série alternée $\sum_{n \ge 0} u_n$ est convergente. Le

produit de Cauchy $\sum_{n\geq 0} w_n$ n'est cependant par convergent car, pour tout $n\in\mathbb{N}$, on a :

$$w_n = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}}$$

donc:

$$|w_n| = \sum_{k=0}^n \frac{1}{\sqrt{(k+1)(n-k+1)}} \geqslant \frac{2(n+1)}{n+1} = 2$$

Donc $(w_n)_{n\in\mathbb{N}}$ ne converge pas vers 0, d'où la divergence (grossière) de la série produit de Cauchy.

Proposition 11 Soit $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ telles que les séries $\sum_{n\geqslant 0}u_n$ et $\sum_{n\geqslant 0}v_n$ soient absolument

convergentes. Alors le produit de Cauchy $\sum_{n\geqslant 0} w_n$ de ces deux séries définit une série absolument convergente

et on a l'égalité:

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$

Remarque: en extension, cette égalité se réécrit

$$(u_0 + u_1 + u_2 + \dots)(v_0 + v_1 + v_2 + \dots) = \underbrace{u_0 v_0}_{i+j=0} + \underbrace{\underbrace{(u_0 v_1 + u_1 v_0)}_{i+j=1}} + \underbrace{\underbrace{(u_0 v_2 + u_1 v_1 + u_2 v_0)}_{i+j=2}}_{i+j=2} + \dots$$

Démonstration D'après le lien entre séries et familles sommables, les familles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont sommables. D'après le théorème de Fubini, la famille $(u_pv_q)_{(p,q)\in\mathbb{N}^2}$ est sommable et on a l'égalité :

$$\left(\sum_{p\in\mathbb{N}} u_p\right) \left(\sum_{q\in\mathbb{N}} v_q\right) = \sum_{(p,q)\in\mathbb{N}^2} u_p v_q$$

On applique maintenant le théorème de sommation par paquets. On écrit :

$$\mathbb{N}^2 = \bigsqcup_{n \in \mathbb{N}} I_n$$
 où $I_n = \{(p, q) \in \mathbb{N}^2 \mid p + q = n\}$

D'après ce théorème on peut écrire (par sommabilité de $(u_pv_q)_{(p,q)\in\mathbb{N}^2}$) que :

$$\sum_{\substack{(p,q)\in\mathbb{N}^2}} u_p v_q = \sum_{\substack{n\in\mathbb{N}\\p+q=n}} \sum_{\substack{(p,q)\in\mathbb{N}^2\\p+q=n}} u_p v_q = \sum_{\substack{n\in\mathbb{N}\\p=0}} \sum_{\substack{n=1\\n\in\mathbb{N}}} u_p v_{n-p} = \sum_{\substack{n\in\mathbb{N}\\p\neq q=n}} w_n,$$

la convergence de la dernière série étant assurée par le même théorème.

En utilisant le produit de Cauchy, on retrouve une propriété bien connue de l'exponentielle complexe.

Corollaire 4 (exp) L'application :

$$\exp: \left\{ \begin{array}{ccc} (\mathbb{C},+) & \longrightarrow & (\mathbb{C}^*,\times) \\ z & \longmapsto & \mathrm{e}^z \end{array} \right.$$

est un morphisme de groupes.

Démonstration Soient $z, w \in \mathbb{C}$. On sait que :

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$
 et $e^w = \sum_{n=0}^{+\infty} \frac{w^n}{n!}$,

les séries définissant e^z et e^w étant absolument convergentes. Le produit de Cauchy de celles-ci est donc une série (absolument) convergente et on a l'égalité :

$$e^{z} e^{w} = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{z^{k}}{k!} \times \frac{w^{n-k}}{(n-k)!} \right) = \sum_{n=0}^{+\infty} \frac{(z+w)^{n}}{n!} = e^{z+w}$$

en utilisant la formule du binôme de Newton.