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Abstract. It is shown that Jamison sequences, introduced in 2007 by Badea and Gri-

vaux, arise naturally in the study of topological groups with no small subgroups, of

Banach or normed algebra elements whose powers are close to identity along subse-

quences, and in characterizations of (self-adjoint) positive operators by the accretiveness

of some of their powers. The common core of these results is a description of those

sequences for which non-identity elements in Lie groups or normed algebras escape an

arbitrary small neighborhood of the identity in a number of steps belonging to the given

sequence. Several spectral characterizations of Jamison sequences are given and other

related results are proved.

1. Introduction

1.A. Jamison sequences. The main characters of this manuscript are the so-called

Jamison sequences of integers. This notion was introduced in the paper [1], following

the original work of Jamison in [26] and the subsequent extensions of Ransford in [40]

and Ransford and Roginskaya in [41]. It is part of the general study of the relationships

between the geometry of a (complex, separable) Banach space X, the growth of the iter-

ates T n of a bounded operator T ∈ B(X), and the size of (parts of) its spectrum. More

precisely, the following definition was introduced in [1].

Definition 1.1 (Jamison sequences). A sequence of integers (nk)k≥0 with n0 = 1 is said

to be a Jamison sequence if the following spectral property holds: for any bounded linear

operator T on a complex separable Banach space such that supk≥0 ‖T nk‖ < +∞, the set

of eigenvalues of modulus 1 of T is countable.

Jamison [26] proved the result that the set of eigenvalues of modulus 1 of a power-

bounded operator on a complex separable Banach space is countable. This can be for-

mulated as “nk = k + 1 is a Jamison sequence”, whence the terminology used in Defi-

nition 1.1. We also know (see for example [3]) that the sequence nk = 2k is a Jamison
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sequence. More generally, sequences with bounded quotients, that is sequences (nk) with

n0 = 1 and supk≥0
nk+1

nk
≤ c < +∞ are Jamison sequences. We refer to Subsection 1.D

below for more information and for other examples of Jamison sequences. See also [3] and

the references therein for a recent survey of results concerning Jamison sequences and

related notions, as well as for many examples of Jamison sequences. On the other hand,

the sequences given by nk = k! or by n0 = 1 and nk = 22k for k ≥ 1 are not Jamison

sequences.

The following characterization has been obtained by two authors of the present paper

in [2].

Theorem 1.2 (characterizing Jamison sequences; [2]). A sequence of integers (nk)k≥0

with n0 = 1 is a Jamison sequence if and only if there exists ε > 0 such that for every

λ ∈ T \ {1},
sup
k≥0
|λnk − 1| ≥ ε. (1.1)

It will be helpful in this paper to pass from the (qualitative) definition of Jamison

sequences to the (quantitative) definition of Jamison pairs.

Definition 1.3 (Jamison pairs and Jamison constants). Given a sequence (nk)k≥0 of

integers with n0 = 1 and a real number ε > 0, we say that ((nk)k≥0 , ε) is a Jamison

pair whenever (1.1) holds for every λ ∈ T \ {1}. If (nk)k≥0 is a Jamison sequence, the

supremum of all ε’s such that ((nk)k≥0 , ε) is a Jamison pair is called the Jamison constant

of (nk)k≥0 .

The above condition (1.1) can be interpreted as a Diophantine approximation condition.

Indeed, using the fact that the quantities |ei2πnα − 1| and 〈〈nα〉〉, α ∈ R, are comparable,

where 〈〈·〉〉 denotes the distance to the closest integer, one can interpret (1.1) for λ = ei2πα

as the impossibility to well approximate α by rationals with prescribed denominators from

the sequence (nk)k≥0 . An analogue of this Diophantine approximation condition also has

been used in [14] by one of the authors to give a version of Theorem 1.2 for C0-semigroups.

See also Section 3.E for more on Jamison sequences in R.

The same condition (1.1) has the following dynamical interpretation in terms of non-

trivial circle rotations Rλ : T 3 z 7→ λz ∈ T. If (nk)k≥0 is a Jamison sequence, then there

exists a neighborhood V of 1 in T such that Rnk
λ (1) “escapes V ”, that is Rnk

λ (1) /∈ V for

some k ≥ 0.

1.B. What this paper is about. The aim of the present paper is to obtain some surpris-

ingly general characterizations of Jamison sequences and Jamison pairs. We summarize

the main results obtained in this paper as follows.
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(1) A sequence (nk) is Jamison if and only if, for any Lie group G, there is a neighbor-

hood U of the identity element e in G such that for any g 6= e in G, the sequence

(gnk) “escapes U”, that is gnk /∈ U for some k ≥ 0. The same holds true for any

linear Banach-Lie group.

(2) If (nk)k≥0 has bounded quotients, then it satisfies the same property as in (1)

for any Banach-Lie group G, and for any topological group admitting a minimal

metric (a notion introduced recently by Rosendal [42]).

(3) A pair ((nk), ε) is Jamison with ε ≤ 1 if and only if for any complex normed

algebra A with identity e and with any a 6= e in A, the sequence (ank) escapes the

ball B(e, r) for every r < ε.

(4) The pair ((nk),
√

2) is Jamison if and only if any Hilbert space operator T such

that ReT nk > 0 for all k ≥ 0 is a positive invertible operator. The pair ((nk),
√

2)

is a “strict” Jamison pair (i.e. strict inequality holds in (1.1)), if and only if any

Hilbert space operator T such that ReT nk ≥ 0 for all k ≥ 0 is a positive operator.

As explained in Section 2 below, these results are generalizations of classical results

obtained by Gotô and Yamabe (for Lie groups), Chernoff (for normed algebras) and Shiu

(for positive operators) in the case nk := 2k.

1.C. Organization of the paper. We end this introduction by presenting some ex-

amples of Jamison sequences, including a sharp estimate of the Jamison constant of a

sequence with bounded quotients. In the next section we state the main results of this

paper and the background behind them. Section 3 is devoted to the study of sequences

verifying an analogue of the “escape property” in normed algebras: we prove there The-

orem 2.4 and state some consequences. The characterization of sequences verifying an

“escape property” for Lie groups (Theorem 2.2) is proved in Section 4. Section 5 is

devoted to the proof of Theorem 2.9, while the results of Subsection 2.D below about

sequences characterizing positive operators are proved in the final Section 6.

1.D. Jamison sequences: some examples. So as not to interrupt the flow of the

presentation, we have postponed to this subsection our discussion of some examples of

Jamison sequences. The reader impatient to know the statement of the main results of

this paper can go directly to Section 2.

The first class of examples of Jamison sequences that we consider here is the class of

sequences with bounded quotients. The fact that such sequences are Jamison was proved

in [41, Theorem 1.5]. Using Theorem 1.2 we give here a quick proof of this result, including

an estimate of the Jamison constant.
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Proposition 1.4 (Sequences with bounded quotients are Jamison). Let (nk)k≥0 be a se-

quence of integers with n0 = 1 and

sup
k≥0

nk+1

nk
≤ c < +∞.

Then ((nk)k≥0 , 2 sin(π/(c+ 1))) is a Jamison pair.

The constant 2 sin(π/(c + 1)) from Proposition 1.4 is sharp, as the example of the

sequence given by nk = ck, for a positive integer c, shows. Indeed, for µ = e2iπ/(c+1) we

have

sup
k≥0
|µnk − 1| = sup

k≥0

∣∣∣e2ickπ/(c+1) − 1
∣∣∣ = 2 sin

(
π

c+ 1

)
.

In particular, for the sequence nk = 2k of powers of 2, the Jamison constant is exactly√
3 = 2 sin(π/3). The same value

√
3 is the Jamison constant of the sequence nk = k + 1

(see [3, Exemple 2.11]). This is one possible explanation for the fact that several results

described below, known for the sequence given by nk = k + 1, are valid also for the

sequence of powers of 2.

Proof of Proposition 1.4. Suppose that n0 = 1 and nk+1 ≤ cnk if k ≥ 0. Suppose that

λ = eiθ, with |θ| ≤ π, satisfies |λnk − 1| ≤ ε < 2 sin(π/(c + 1)) for every k ≥ 0. For

the sake of contradiction, suppose that λ 6= 1. Without loss of generality we can assume

that θ ∈]0, π]. Since n0 = 1, we have 2 sin(θ/2) =
∣∣eiθ − 1

∣∣ < 2 sin(π/(c + 1)). Thus

0 < θ < 2π/(c + 1). Let j be the smallest positive integer such that nj+1θ ≥ 2π/(c + 1).

Then
2π

c+ 1
≤ nj+1θ ≤ cnjθ ≤ 2π − 2π

c+ 1
and thus |λnj+1 − 1| = 2 sin (nj+1θ/2) ≥ 2 sin(π/(c+1)), a contradiction. Therefore θ = 0.

It follows from Theorem 1.2 that ((nk)k≥0 , 2 sin(π/(c+ 1))) is a Jamison pair. �

The next class of Jamison sequences, considered in [2], shows that not only the growth of

the sequence matters, but also its arithmetical properties. Recall that a set Σ = {σk : k ≥
0} of real numbers is said to be dense modulo 1 if the set Σ +Z = {σk +n : k ≥ 0, n ∈ Z}
is dense in R. For any η > 0, the set Σ is said to be η-dense modulo 1 if the set Σ + Z
intersects every open sub-interval of R of length greater than η.

Proposition 1.5 (arithmetic Jamison sequences; [2]). Let (nk)k≥0 be a sequence of inte-

gers with n0 = 1. If there exists a number 0 < η < 1 such that the set

Dη = {θ ∈ R : (nkθ)k≥0 is not η-dense modulo 1}

is countable, then (nk)k≥0 is a Jamison sequence. In particular, if (nkθ)k≥0 is dense modulo

1 for every irrational θ, then (nk)k≥0 is a Jamison sequence.
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It is more difficult to give here an estimate of the Jamison constant of (nk)k≥0 since the

proof of Proposition 1.5 is based upon a qualitative statement ([2, Corollary 2.11]):

Theorem 1.6 (a second characterization of Jamison sequences; [2]). A sequence (nk)k≥0

of integers with n0 = 1 is a Jamison sequence if and only if there exists an ε > 0 such

that the set

Λε := {λ ∈ T : sup
k≥0
|λnk − 1| < ε}

is countable.

Several other examples of Jamison sequences are presented in [1–3,41].

2. Background and main results

We start by describing the sequences (nk)k≥0 of positive integers which have the prop-

erty that given a Lie group G or a normed algebra A, powers xnk of an element x different

from the identity element e escape some prescribed neighborhood of e.

2.A. NSS sequences in Lie groups. It is well known that the sequence nk = k + 1,

k ≥ 0, has this escape property for every Lie group G. Indeed, real or complex Lie groups

have no small subgroups, that is there exists a neighborhood of the identity element which

contains no subgroup other than the trivial one. See for instance [25, Proposition 2.17]

for the classical argument, or the proof of Theorem 2.9 below. The standard terminology

is that Lie groups are NSS (No Small Subgroups).

As part of the solution, due to Gleason, Montgomery, Yamabe and Zippin, of Hilbert’s

fifth problem (the topological characterization of locally compact Lie groups), we know

that, conversely, locally compact groups with no small subgroups are isomorphic to Lie

groups. We refer the reader to the expositions in [34] or [44] for this result and related

aspects concerning Hilbert’s fifth problem.

It was proved in 1951 by Gotô and Yamabe [20] that a locally compact group G with

no small subgroups (so isomorphic to a Lie group) has the following property: for every

x 6= e in a sufficiently small neighborhood U of the identity e in G, there exists an integer

k such that x2k 6∈ U . Note that powers of 2 plays a special role in the construction of

(weak) Gleason metrics (see for instance [44]), a fundamental toolkit in the solution of

Hilbert’s fifth problem. It is a natural question to ask which sequences of integers can

replace the powers of 2 in the result of Gotô and Yamabe. By sequence of integers, we

will always mean a strictly increasing sequence (nk)k≥0 of positive integers with n0 = 1.

In light of the preceding discussion we introduce the following definition:
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Definition 2.1 (NSS sequences for topological groups). Let G be a topological group

and let (nk)k≥0 be a sequence of integers with n0 = 1. We say that (G, (nk)k≥0 ) is NSS

if there exists a neighborhood U of the identity e of G such that if gnk ∈ U for every k,

then g = e. We say that (nk)k≥0 is NSS for a class C of topological groups if (G, (nk)k≥0 )

is NSS for each group G in the class C.

Our first main result is a characterization of NSS sequences for (real or complex) Lie

groups, in surprisingly simple terms. We write T = {λ ∈ C ; |λ| = 1}.

Theorem 2.2 (A characterization of NSS sequences, Lie groups version). Let (nk)k≥0 be

a sequence of integers. The following assertions are equivalent:

(i) (nk)k≥0 is NSS for the class of all Lie groups;

(ii) (T, (nk)k≥0) is NSS;

(iii) (nk)k≥0 is a Jamison sequence.

Notice that the equivalence of (ii) and (iii) of Theorem 2.2 follows from Theorem 1.2.

2.B. NSS sequences in normed algebras. In order to prove Theorem 2.2, an impor-

tant step will be to prove that Jamison sequences are NSS for linear Lie groups, i.e.

for matrix groups. The groups GLn(R) and GLn(C) have No Small Subgroups; see for

instance [25, Proposition 2.17] for an argument valid for all Lie groups. For complex ma-

trices the following result has been proved as early as 1966 by Cox [11] (see also [4]): if

M is a square matrix with complex entries such that supn≥1 ‖Mn − I‖ < 1, then M is

the identity matrix I. This result gives the maximal radius of the ball around I in which

GLn(C) has no nontrivial subgroups. To show maximality, take M = δI for small δ. Cox’s

result has been extended to bounded linear operators on a Hilbert space by Nakamura

and Yoshida [37] and to arbitrary normed algebras by Hirschfeld [24] and Wallen [46].

See also the related paper by Wils [47]. The fact that the group of invertible elements

of a complex Banach algebra A has no small subgroups was proved as early as 1941 by

Gelfand [16]; see for instance the explanations in Kaplansky’s book [29, p. 88]. Notice

that, by taking completions, one can always assume that the considered normed agebra

is in fact a Banach algebra.

It seems that the first who considered, in the framework of normed algebras, powers of

elements along subsequences was Chernoff [10]. In 1969, he proved that if A is a complex

normed algebra with unit e and a ∈ A is such that supk≥0 ‖a2k − e‖ < 1, then a = e.

This is the normed algebras counterpart of the result of Gotô and Yamabe [20] for the

sequence of powers of 2. Chernoff’s result has been extended/generalized in [19] and [28].
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It is thus natural to introduce the following definition. Recall that a unital normed

algebra with unit e satisfies ‖e‖ = 1 and ‖xy‖ ≤ ‖x‖ ‖y‖ for every x, y ∈ A.

Definition 2.3. (NSS for normed algebras) A triplet (A, (nk)k≥0, ε) consisting of a normed

unital algebra A with unit e, a sequence of integers (nk)k≥0 with n0 = 1 and a positive

real number ε is said to be NSS if the following implication holds true: the only element

a ∈ A satisfying supk≥0 ‖ank − e‖ < ε is a = e.

Here NSS stands again for No Small Subgroups. Then Chernoff’s result can be expressed

shortly as “(A, (2k)k≥0, 1) is NSS” for any complex normed algebra A.

Our second main result, which extends [19, Theorem 2] and [28, Corollary 4.2], is the

following:

Theorem 2.4 (A characterization of NSS sequences, normed algebras version). Let ε > 0

be a real number and let (nk)k≥0 be a sequence of integers with n0 = 1. Then the following

assertions are equivalent:

(i) (A, (nk)k≥0, ε) is NSS for any complex normed algebra A;

(ii) (C, (nk)k≥0, ε) is NSS;

(iii) ((nk)k≥0 , ε) is a Jamison pair with ε ≤ 1.

Note that the assumption that (C, (nk)k≥0, ε) is NSS for the Banach algebra C of all

complex numbers is a minimal requirement to have that (A, (nk)k≥0, ε) is NSS for any

complex normed algebra A. By considering a = 0 in the definition of a Jamison pair, it

is clear that the condition ε ≤ 1 is necessary in Theorem 2.4.

2.C. NSS sequences in Banach-Lie groups and groups with a minimal metric. A

rather easy consequence of Theorem 2.4 is that Jamison sequences are NSS for the class of

linear Banach-Lie groups. In this paper, a real (resp. complex) linear Banach-Lie group

G is a topological group for which there exists an injective continuous homomorphism

from G into the group of invertible elements of a real (resp. complex) Banach algebra A.

Corollary 2.5 below follows directly from Theorem 2.4 above when one considers complex

linear Banach-Lie groups. The same result holds true for real linear Banach-Lie groups,

by considering the complexification of real Banach algebras as in [7, p. 68].

Corollary 2.5 (Characterizing NSS sequences for linear Banach-Lie groups). Let (nk)k≥0

be a sequence of integers with n0 = 1. The following assertions are equivalent:

(i) (nk)k≥0 is NSS for the class of linear Banach-Lie groups;

(ii) (nk)k≥0 is a Jamison sequence.
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We do not know whether Corollary 2.5 can be extended to the class of Banach-Lie

groups. See Remark 4.1 after the proof of Theorem 2.2 for a discussion of the difficulties

that arise when considering Banach-Lie groups instead of (finite dimensional) Lie groups.

Problem 2.6. Let (nk)k≥0 be a Jamison sequence with n0 = 1. Is (nk)k≥0 NSS for the

class of Banach-Lie groups?

Another interesting class of topological groups which has been recently introduced and

studied by Rosendal in [42] is that of groups possessing a minimal metric.

Definition 2.7 (minimal metric; [42]). A metric d on a (metrizable) topological group

G is said to be minimal if it is compatible with the topology of G, left-invariant (that

is, d(hg, hf) = d(g, f) for all g, f , h in G) and, for every other compatible left-invariant

metric ∂ on G, the map

id: (G, ∂) 7→ (G, d)

is Lipschitz in a neighborhood of the identity e of G, i.e. , there is a neighborhood U of e

and a positive constant K such that for all g, f ∈ U ,

d(g, f) ≤ K · ∂(g, f).

Remark that minimal metrics coincide with metrics which are termed weak Gleason in

[44] as they underlie Gleason’s results in [17]; see [42] and [44]. It should be also noted

that groups with minimal metrics have no small subgroups ([42, p. 198]) and thus locally

compact groups with minimal metrics are isomorphic to Lie groups. It comes as a natural

question to ask:

Problem 2.8. Let (nk)k≥0 be a Jamison sequence with n0 = 1. Is (nk)k≥0 NSS for the

class of groups with a minimal metric?

The following result provides a partial answer to Problems 2.6 and 2.8 for sequences

with bounded quotients.

Theorem 2.9 (Sequences with bounded quotients as NSS sequences). Let (nk)k≥0 be a

sequence of integers with n0 = 1 and

sup
k≥0

nk+1

nk
≤ c < +∞.

Then (nk)k≥0 is NSS for the class of Banach-Lie groups and for the class of topological

groups possessing a minimal metric.

2.D. Sequences characterizing positive operators. Jamison sequences also appear

naturally in characterizations of (self-adjoint) positive operators by the accretiveness of
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some of their powers. It has been proved by Johnson [27] for matrices and by DePrima

and Richard [13] for operators that a bounded linear operator A on a complex Hilbert

space H is a (semi-definite) positive operator if and only if all iterates An, n ≥ 0, are

accretive. See also [12, 18, 45] for related results. Recall that an operator B is said to be

positive (we write B ≥ 0) if 〈Bx, x〉 ≥ 0 for every x ∈ H. The operator B is accretive

if ReB ≥ 0, where ReB = (B + B∗)/2. We also write B > 0 when B is positive and

invertible; notice that this is equivalent to B ≥ εI for some positive ε. It is also true [13]

that A > 0 if and only if ReAn > 0 for all n ≥ 0. Concerning subsequences, Shiu proved

in [43] that powers of 2 suffice: if ReA2k ≥ 0 for every k ≥ 0, then A ≥ 0. The same

proof show that A > 0 whenever ReA2k > 0 for every k ≥ 0.

The reader should not be surprised now that we ask which sequences can replace the

powers of 2 in Shiu’s result. The answer is obtained in the following theorems, which give

all admissible sequences characterizing positive invertible operators by the accretiveness of

some of their powers. We start with the characterization of positive invertible operators.

Theorem 2.10 (Sequences characterizing positive invertible operators). Let (nk)k≥0 be a

sequence of integers with n0 = 1. The following assertions are equivalent:

(a) Every Hilbert space operator A for which ReAnk > 0 for every k ≥ 0 is a positive

invertible operator;

(b) Every complex number c with Re cnk > 0 for every k ≥ 0 is real and satisfies c > 0;

(c) The pair ((nk)k≥0 ,
√

2) is a Jamison pair.

We also have the following variant for positive operators.

Theorem 2.11 (Sequences characterizing positive operators). Let (nk)k≥0 be a sequence

of integers with n0 = 1. The following assertions are equivalent:

(a) Every Hilbert space operator A for which ReAnk ≥ 0 for every k ≥ 0 is a positive

operator;

(b) Every complex number c with Re cnk ≥ 0 for every k ≥ 0 is real and satisfies c ≥ 0;

(c) Every λ ∈ T such that supk≥0 |λnk − 1| ≤
√

2 satisfies λ = 1.

Remark 2.12. We obtain from Theorems 2.11 and 2.10 the amusing consequence that

the following operator-theoretical implication holds true. If the assertion “Every Hilbert

space operator A for which ReAnk ≥ 0 for all k ≥ 0 is a positive operator” is true,

then “Every Hilbert space operator A for which ReAnk > 0 for all k ≥ 0 is a positive

invertible operator” is also true. Indeed, the (c) of Theorem 2.11 is stronger than the (c)

of Theorem 2.10. We are not aware of a simple argument proving directly this operator-

theoretical implication.
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Remark 2.13. Notice also that there are sequences satisfying the equivalent conditions of

Theorem 2.10 which do not satisfy the conditions of Theorem 2.11. Consider for instance

the sequence nk = 3k for k ≥ 0. Then, by Proposition 1.4, (nk)k≥0 is a Jamison sequence

with Jamison constant 2 sin(π/4) =
√

2. Thus the sequence of powers of 3 satisfies the

conclusions of Theorem 2.10. On the other hand, the sequence nk = 3k does not satisfy

condition (b) of Theorem 2.11: we have Re i3
k

= 0 for every k ≥ 0.

Remark 2.14. Recall the following result proved by Shiu in [43], and which has been

generalized in Theorems 2.11 and 2.10: for a Hilbert space bounded linear operator A, if

ReA2k ≥ 0 for every k ≥ 0, then A ≥ 0. Shiu’s result is very sensitive to perturbations, in

the sense that replacing one term into the sequence of powers of 2 can destroy the property

above. Indeed, consider the sequence (mk)k≥0 whose terms are given by 1, 3, 4, 8, 16, . . .,

which is obtained by replacing 2 by 3 on the second place of the sequence of powers

of 2. The sequence (mk)k≥0 does not satisfy the analogue of Shiu’s result. Indeed, we

have Re (imk) ≥ 0 for every k ≥ 0. The reason is that replacing one term of the sequence

can drastically change the Jamison constant. Observe that the Jamison constant of the

sequence (mk)k≥0 is
√

2 (while the Jamison constant of the sequence (2k)k≥0 of powers

of 2 is
√

3). Indeed, suppose that λ ∈ T is such that supk≥0 |λmk − 1| <
√

2. Then

supk≥0 |(λ4)2k − 1| <
√

2 <
√

3, so that λ4 = 1. Since |λ − 1| <
√

2, λ = 1. Hence

((mk)k≥0,
√

2) is a Jamison pair. Since supk≥0 |imk − 1| =
√

2,
√

2 is the Jamison constant

of (mk)k≥0. A recent note dealing with perturbations of Jamison sequences is [39].

3. Jamison sequences in normed algebras

Our aim in this section is to prove Theorem 2.4, as well as some related results and con-

sequences, including in particular several spectral characterizations of Jamison sequences

in normed algebras (see Theorem 3.2 below). Given an element a of a Banach algebra

A, we denote by σ(a) the spectrum of the element a, and by r(a) its spectral radius. We

write D = {λ ∈ T ; |λ| ≤ 1} and T = {λ ∈ C ; |λ| = 1}.
We begin with the proof of Theorem 2.4.

3.A. Proof of Theorem 2.4. It is clear that if (A, (nk)k≥0, ε) is NSS for any complex

normed algebra A, then, in particular, (C, (nk)k≥0, ε) is also NSS.

Suppose now that (C, (nk)k≥0, ε) is NSS. Then z = 1 is the only complex number

satisfying supk≥0 |znk−1| < ε. In particular, ((nk)k≥0, ε) is a Jamison pair. By considering

z = 0 we obtain that ε ≤ 1.

Suppose now that (nk)k≥0 is a Jamison sequence and let ε ≤ 1 be such that ((nk)k≥0, ε)

is a Jamison pair. We undertake the proof that (A, (nk)k≥0, ε) is NSS for any complex



ESCAPING A NEIGHBORHOOD 11

normed algebra A. By considering the completion of the normed algebra, we can assume

without loss of any generality that A itself is a Banach algebra. Suppose that a ∈ A

satisfies

‖ank − e‖ < ε (3.1)

for every k ≥ 0. This implies that ‖ank‖ ≤ 1 + ε and thus the spectral radius of a satisfies

r(a) = limk→∞ ‖ank‖1/nk ≤ 1. So σ(a) ⊂ D. Since n0 = 1 and ε ≤ 1, the equation (3.1)

for k = 0 implies that a is invertible. We have

‖a−nk‖ ≤ ‖a−nk − e‖+ 1 = ‖a−nk(e− ank)‖+ 1 ≤ ‖a−nk‖ε+ 1. (3.2)

Therefore ‖a−nk‖ ≤ 1
1−ε which implies that r(a−1) ≤ 1 and σ(a−1) ⊂ D. Thus r(a) = 1

and σ(a) ⊂ T. Let λ ∈ σ(a). Then |λ| = 1 and λnk − 1 ∈ σ(ank − e) for every k. Hence

|λnk − 1| ≤ r(ank − e) ≤ ‖ank − e‖ < ε,

for every k. Since ((nk)k≥0, ε) is a Jamison pair, we obtain that λ = 1. Thus σ(a) = {1}.
In a Banach algebra it is possible to define the logarithm (principal branch) of some

elements x ∈ A by the holomorphic functional calculus. In particular, for x ∈ A with

‖x− e‖ < 1 we have

ln(x) =
∞∑
j=1

(−1)j−1

j
(x− e)j.

As ‖ank − e‖ < ε, we can write

ln(ank) =
∞∑
j=1

(−1)j−1

j
(ank − e)j

and thus

‖ln(ank)‖ ≤
∞∑
j=1

1

j

∥∥(ank − e)j
∥∥ ≤ ∞∑

j=1

1

j
‖ank − e‖j ≤

∞∑
j=1

εj ≤ ε

1− ε
(3.3)

for every k. The principal branch of the logarithm satisfies the identity

ln(zj) = j ln(z) whenever − π

j
< Arg(z) ≤ π

j

where Arg(z) ∈ (−π, π). Since σ(a) = {1}, we have ln(znk) = nk ln(z) in a neighborhood

of the spectrum of a. By the classical properties of the holomorphic functional calculus

in a Banach algebra we have ln(ank) = nk ln(a). Therefore, using (3.3),

nk ‖ln(a)‖ = ‖ln(ank)‖ ≤ ε

1− ε
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for every k. Thus ln(a) = 0. Denoting by exp the exponential function, we have

exp(lnx) = x whenever ‖x− e‖ < 1. Therefore a = exp(0) = e. This proves that

(A, (nk)k≥0, ε) is NSS. �

3.B. Explicit constants for sequences with bounded quotients. A generalization

of the result of Chernoff quoted in the introduction has been proved by Gorin in [19]. It

runs as follows: suppose that A is a unital normed algebra, 0 < ε < 1 and the sequence

(nk)k≥0 verifies
nk+1

nk
<
π − arcsin(ε/2)

arcsin(ε/2)
for every k ≥ 0.

Then (A, (nk)k≥0, ε) is NSS. See also the paper [28] by Kalton, Montgomery-Smith,

Oleszkiewicz and Tomilov. As a consequence of Theorem 2.4, we retrieve Gorin’s re-

sult, as well as the following variant which was stated (in a slightly different form) and

proved in [28, Corollary 4.2]:

Corollary 3.1 (explicit constants; [28]). Let A be a complex normed algebra and let

(nk)k≥0 be an increasing sequence of positive integers with n0 = 1 and

sup
k≥0

nk+1

nk
≤ c.

Then the triplet (A, (nk)k≥0 ,min(2 sin(π/(c+1)), 1)) is NSS for complex normed algebras.

Thus the triplet (A, (nk)k≥0 , 2 sin(π/(c+ 1))) is NSS for c ≥ 5 and (A, (nk)k≥0 , 1) is NSS

whenever c < 5.

Proof. The proof follows from Theorem 2.4 and Proposition 1.4. �

3.C. Spectral characterizations of Jamison sequences. The following result, which

is in part a strengthening of Theorem 2.4, provides other spectral characterizations of

Jamison sequences. If T is a bounded operator on a complex Banach space X, we denote

by σ(T ) the spectrum of T , and by σp(T ) its point spectrum (i.e. the set of its eigenvalues).

The set σp(T ) ∩ T of all eigenvalues of modulus 1 of T is called the unimodular point

spectrum of T .

Theorem 3.2 (spectral characterizations). Let (nk)k≥0 be a sequence of integers with

n0 = 1. The following assertions are equivalent:

(i) (nk)k≥0 is a Jamison sequence;

(ii) There exists ε ∈]0, 1] such that for every complex normed algebra A with unit e we

have

sup
k≥0
‖ank − e‖ < ε =⇒ a = e;
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(iii) There exists ε ∈]0, 1] such that for every complex Banach algebra A with unit e we

have

sup
k≥0
‖ank − e‖ < ε =⇒ σ(a) is countable;

(iv) There exists ε ∈]0, 1] such that for any bounded operator T on a complex separable

Banach space X, we have

sup
k≥0
‖T nk − I‖ < ε =⇒ σ(T ) is countable;

(v) There exists ε ∈]0, 1] such that for any bounded operator T on a complex separable

Hilbert space H, we have

sup
k≥0
‖T nk − I‖ < ε =⇒ σ(T ) is countable;

(vi) There exists ε ∈]0, 1] such that for any bounded operator T on a complex separable

Hilbert space H, we have

sup
k≥0
‖T nk − I‖ < ε =⇒ σp(T ) is countable;

(vii) There exists ε ∈]0, 1] such that for any bounded operator T on a complex separable

Hilbert space H, we have

sup
k≥0
‖T nk − I‖ < ε =⇒ σp(T ) ∩ T is countable.

3.D. Proof of Theorem 3.2. Let (nk)k≥0 be a Jamison sequence and let ε ∈]0, 1] be

such that ((nk)k≥0 , ε) is a Jamison pair. It was proved in Theorem 2.4 that (A, (nk)k≥0, ε)

is NSS for any complex normed algebra A. This shows the implication (i) ⇒ (ii). The

implications (ii)⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) ⇒ (vii) are obvious.

Suppose now that (vii) holds true for some constant ε ∈ (0, 1], that is, for every T ∈
B(H) we have that

sup
k≥0
‖T nk − I‖ ≤ ε =⇒ σp(T ) is countable.

We want to show that (nk)k≥0 is a Jamison sequence; the proof is a modification of a

construction in [15]. Suppose, for the sake of contradiction, that (nk)k≥0 is not a Jamison

sequence. Denote by (en)n≥1 the canonical basis of `2(N). It is proved in [15, Theorem 2.1]

that there exists an operator T on `2(N) with uncountable unimodular point spectrum

such that supk≥0 ||T nk || < +∞. More precisely, T has the form T = D+B, where D is a

diagonal operator and B is a weighted backward shift with respect to the basis (en)n≥1.

We have Den = λnen for every n ≥ 1, where the λn’s are distinct complex numbers with

|λn| = 1, and Be1 = 0, Ben = αn−1en−1, n ≥ 2, where the αn’s are certain positive
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weights. The diagonal coefficients λn are chosen using the fact that (nk)k≥0 is a non-

Jamison sequence, and belong to a perfect compact subset K of T. Notice that what

we denote here by K is called K ′ in [15] and that it is proved in [15] that this subset is

separable for the metric on T defined by d(nk)(λ, µ) = supk≥0 |λnk − µnk |, λ, µ ∈ T.

Let ε > 0 be an arbitrarily small number. Although it is not used in the proof of

[15, Theorem 2.1], one can suppose without loss of generality that d(nk)(λ, 1) < ε/2 for

every λ ∈ K. Thus supk≥0 |λnk
n −1| < ε/2 for every n ≥ 1, so that supk≥0 ||Dnk−I|| < ε/2.

Moreover, the proof of [15, Theorem 2.1] shows that the construction can be carried out in

such a way that supk≥0 ||T nk −Dnk || < ε/2. Putting these two estimates together yields

that supk≥0 ||T nk − I|| < ε.

We have thus shown that if (nk)k≥0 is not a Jamison sequence, there exists for every ε >

0 a Hilbert space operator T with σp(T )∩T uncountable such that supk≥0 ||T nk − I|| < ε.

This contradiction shows that (nk)k≥0 has to be a Jamison sequence.

3.E. Jamison sets of real numbers. Some of the results presented until now have

analogues for Jamison sequences (or sets) in other semigroups than N. We present here a

consequence of Theorem 2.4 for Jamison sets in [0,+∞).

Definition 3.3. Let E be a set of nonnegative real numbers. We say that E is a Jamison

set in R if for every separable complex Banach space X and for every C0-semigroup (Tt)t≥0

of bounded linear operators on X (with infinitesimal generator A) which is partially

bounded with respect to the set E, that is supt∈E ‖Tt‖ < +∞, the set σp(A) ∩ iR is

countable.

Observe that a Jamison subset of [0,+∞) is necessarily unbounded. We may, without

any loss of generality, suppose that 0 ∈ E. Since a Jamison set is unbounded, E contains

a nonzero element. By dividing with this number we can, without any loss of generality,

suppose also that 1 ∈ E. We recall now a characterization, obtained in [14, Lemma 3.8

and Theorem 3.9], of Jamison sets of positive real numbers. Let F = {btc : t ∈ E}, where

bxc denotes the largest integer less or equal to the real number x. Since {0, 1} ⊂ E, both

F \{0} and F +1 := {f+1 : f ∈ F} are sets of positive integers containing 1. It therefore

makes sense to speak about Jamison sets in N for these two sets: we say for instance that

F + 1 is a Jamison set (in N) if the strictly increasing sequence of its elements, (nk)k≥0,

starting from n0 = 1, is a Jamison sequence.

Theorem 3.4 (characterization of Jamison sets in R; [14]). Let E ⊂ [0,+∞) be a set of

real numbers such that {0, 1} ⊂ E. The following assertions are equivalent:

(1) E is a Jamison set in R;
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(2) F \ {0} is a Jamison set in N;

(2) F + 1 is a Jamison set in N.

Our aim is now to prove the following result, which gives a strong property of Jamison

subsets E ⊂ [0,+∞) which contain a neighborhood of 0 in [0,+∞). Without any loss of

generality we can suppose that [0, 1] ⊂ E.

If E is a Jamison set with [0, 1] ⊂ E ⊂ [0,+∞), let 0 < εF ≤ 1 denote a Jamison

constant for the sequence (nk)k≥0 , with F + 1 = {1, n1, n2, · · · }. We have the following

result:

Theorem 3.5 (Jamison sets and C0-semigroups). Suppose that [0, 1] ⊂ E ⊂ [0,+∞) and

that E is a Jamison set in R. Let ε > 0 be such that ε < min (εF/3, 1/3). Let X be a

complex Banach space and let (Tt)t≥0 be a C0-semigroup of bounded linear operators on

X such that

‖Tt − I‖ ≤ ε for every t ∈ E. (3.4)

Then Tt = I for every t ≥ 0.

Proof of Theorem 3.5. Since [0, 1] is a subset of E, (3.4) implies that supt∈[0,1] ‖Tt−I‖ ≤ ε.

By the triangle inequality, supt∈[0,1] ‖Tt‖ ≤ 1 + ε ≤ 2. Using the notation {t} = t − btc
for the fractional part of t, we have ‖T1−{t}‖ ≤ 2 for every t ≥ 0. Indeed, we have

1− {t} ∈ [0, 1]. Also, we have

‖Tbtc+1 − I‖ = ‖Tt+1−{t} − I‖ = ‖T1−{t}(Tt − I) + T1−{t} − I‖

≤ ‖T1−{t}‖ . ‖Tt − I‖+ ‖T1−{t} − I‖ ≤ 3ε

for every t ≥ 0. So ‖T n1 −I‖ = ‖Tn−I‖ ≤ 3ε for every n ∈ F+1, where F =
{
btc : t ∈ E

}
.

Since F + 1 is a Jamison set in N and 3ε < min (εF , 1), we obtain T1 = I by Theorem 2.4.

Therefore Tn = I for each n ∈ N and Tt = T{t} for every t ≥ 0. Since supt∈[0,1] ‖Tt−I‖ ≤ ε,

it follows that supt≥0 ‖Tt − I‖ ≤ ε. We deduce that, for any fixed t ≥ 0, we have

supk≥0 ‖T k+1
t − I‖ < ε. Since ((k + 1)k≥0, 1) is a Jamison pair, it follows from Theorem

2.4 that Tt = I for every t. �

4. NSS sequences in Lie groups

We begin this section with the proof of Theorem 2.2.

Proof of Theorem 2.2. Suppose that (nk)k≥0 is a Jamison sequence with n0 = 1. Accord-

ing to Corollary 2.5, which follows directly from Theorem 2.4, the sequence (nk)k≥0 is NSS

for the class of linear Banach-Lie groups. We now want to show that (nk)k≥0 is NSS for a

Lie group G, that is, that there exists an open neighborhood V of the identity element e of
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G such that, if gnk ∈ V for every k ≥ 0, then g = e. Without loss of any generality we can

assume that G is connected. We denote by Ad : G 7→ GL(E) the adjoint representation of

G on E = Te(G), the tangent space at e of G. Using Theorem 2.4, we obtain the existence

of an open neighborhood W in GL(E) of the identity I such that, for every M ∈ GL(E),

the following implication holds true: if Mnk ∈ W for every k ≥ 0, then M = I. Consider

W ′ = Ad−1(W ) = {g ∈ G : Ad(g) ∈ W},

which is an open neighborhood of e in G. An element g ∈ G satisfying gnk ∈ W ′ for

every k has the property that Ad(gnk) ∈ W for every k. As the adjoint representation

is a group morphism, we have that M := Ad(g) satisfies Mnk ∈ W for every k, and

thus Ad(g) = M = I. As the kernel of the adjoint representation is the center of the

group, Z(G), we infer that g ∈ Z(G) (recall that the center of G is the set of all elements

commuting with all elements of the group G).

The center Z(G) is an abelian locally compact group and it is a closed subgroup of the

Lie group G. Therefore, Z(G) is an abelian Lie group. Consider the connected component

G0 of Z(G) containing the identity element e. It is a connected, abelian Lie group, and

it is hence isomorphic, as a Lie group, to a group of the form Kn/Γ where Γ is a lattice

in Kn. Here, K = R or C, depending on whether G is a real or complex Lie group. The

lattice Γ has the form Γ = Zu1 + · · · + Zur, where u1, . . . , ur are R-independent vectors

in Kn and 0 ≤ r ≤ n if K = R, while 0 ≤ r ≤ 2n if K = C.

Let || . || be a norm on Kn, and let ε > 0. Let E = spanR [u1, . . . , ur], and let F ⊆ Kn

be a real subspace such that Kn = E ⊕ F . Let x ∈ Kn, which we write as x = u + v =∑r
i=1 αiui + v, u ∈ E, v ∈ F , α1, . . . , αr ∈ R. Suppose that dist(nkx,Γ) = infγ∈Γ ||nkx−

γ|| < ε for every k ≥ 0. Denote by P the projection of Kn on F along E. We have

nk||v|| = ||nkPx|| ≤ ||P ||ε for every k. Hence v = 0, and so x = u ∈ E. Then

inf
a1,...,ar∈Z

∣∣∣∣∣∣ r∑
i=1

(nkαi − ai)ui
∣∣∣∣∣∣ < ε

for every k ≥ 0. For every i = 1, . . . , r, let Pi denote the projection of E onto the span of

the vector ui along the space span [uj ; j 6= i]. Then infai∈Z |nkαi − ai| < ε||Pi||. If ε > 0

is so small that ε||Pi|| is less than the Jamison constant of the sequence (nk)k≥0 for every

i = 1, . . . , r, we get that αi ∈ Z for every i, i.e. that u ∈ Γ. Hence the class of x in the

quotient Kn/Γ is 0, i.e. (nk)k≥0 is NSS for the group Kn/Γ. We have thus proved that

Jamison sequences are NSS for connected abelian Lie groups, in particular for G0.

Let V0 be an open neighborhood of e in G0, of the form V0 = V1∩Z(G), with V1 an open

neighborhood of e in G, such that, for every g ∈ Z(G), we have the following implication:
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if gnk ∈ V0 for every k, then g = e. Let V = V1 ∩W ′ which is an open neighborhood of e.

If g ∈ G is such that gnk ∈ V for every k, then gnk ∈ Z(G) ∩ V1 = V0, and so g = e. �

Remark 4.1. We do not know whether the proof above can be generalized to show that

Jamison sequences are NSS for Banach-Lie groups. The theory of Banach-Lie groups

differs from that of (finite-dimensional) Lie groups in several aspects. For instance, con-

trary to the case of Lie groups, closed subgroups of Banach-Lie groups are not necessarily

Banach-Lie groups (see for instance [25, p. 110]). Also, the description of connected

abelian Lie groups used above is specific to Lie groups (see [38] and [33] for extensions to

much more general settings).

It should be also be mentioned that, according to [31] (see also [5]), a connected (finite-

dimensional, real) Lie group G has a continuous faithful embedding into the group of

invertible elements of some Banach algebra with its norm topology if and only if G is a

linear Lie group.

Remark 4.2. We present here an elementary proof, using the Jordan canonical form of a

matrix, that if (nk)k≥0 is a Jamison sequence, then (nk)k≥0 is NSS for the class of compact

Lie groups. Let ε ∈ (0, 1) be such that ((nk)k≥0 , ε) is a Jamison pair. It is known (see

for instance [9, Section II]) that every compact Lie group is a matrix group. Let A be

a n × n matrix such that ‖Ank − I‖ ≤ ε for every k. Then ‖Ank‖ ≤ 1 + ε and thus

σ(A) ⊂ D = {λ ∈ T ; |λ| ≤ 1}. An estimate similar to the one in Equation (3.2) shows

that A is invertible and that σ(A−1) ⊂ D. Thus σ(A) ⊂ T. In fact, the only possible

eigenvalue of A is 1. Indeed, if z is an eigenvalue for A, with normalized eigenvector x, then

|z| = 1 and |znk − 1| = |znk − 1| ‖x‖ = ‖Ankx− x‖ ≤ ε for every k. Since ((nk)k≥0 , ε) is

a Jamison pair, we obtain that z = 1.

Let now L be an invertible matrix such that J = L−1AL is the Jordan canonical form

of A, that is J = L−1AL has ones on the diagonal, zeros and ones on the superdiagonal,

and zeros elsewhere. Suppose k is a positive integer between 1 and n − 1 such that the

(k, k+ 1) entry of the Jordan canonical form J is 1. Then, as a simple proof by induction

shows, the (k, k + 1) entry of Jp is p for every positive integer p. This is in contradiction

to the fact that the sequence of the norms (‖Jnk‖)k≥0 is bounded. Thus J = L−1AL is

the identity matrix, and so the same is true for A. Therefore, (nk)k≥0 is NSS for the class

of compact Lie groups.

A more direct argument can be given using a particular case of Gelfand’s theorem (see

[16] or [48]): a compact Lie group is isomorphic to a subgroup of a unitary group and the

only unitary matrix U whose spectrum is the singleton {1} is the identity matrix.

We now move over to the proof of Theorem 2.9.
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5. Proof of Theorem 2.9

5.A. Proof of Theorem 2.9 for Banach-Lie groups. The proof that sequences with

bounded quotients are NSS for Banach-Lie groups is a generalization of the classical proof

that Lie groups are NSS, see for instance [25, Proposition 2.17] or [35, Theorem 2.7]; for

the convenience of the reader we briefly sketch the argument. Let G be a Banach-Lie

group and let g be the corresponding Banach-Lie algebra. Let (nk)k≥0 be a sequence of

integers with n0 = 1 and

sup
k≥0

nk+1

nk
≤ c.

Without loss of generality, we can suppose that c ≥ 2. Let B be an open neighborhood of 0

in g for the Campbell-Hausdorff topology (see [25] for the definitions) such that there is an

exponential function exp which is an homeomorphism from B onto on open neighborhood

V of e in G, and is such that whenever X ∗Y belongs to B, exp(X ∗Y ) = exp(X) exp(Y ).

In other words, B is a local Banach-Lie group with respect to Hausdorff multiplication.

Set U = exp(1
c
B), which is an open neighborhood of e in G, and let h 6= e belong to U .

We wish to show that there exists k such that hnk does not belong to U . Let x̃ ∈ 1
c
B

be such that h = exp(x̃). Since h 6= e, x̃ 6= 0. Let us show that there exists a k such

that nkx̃ ∈ B \ 1
c
B. We have n1x̃ ∈ n1

c
B = n1

n0

1
c
B ⊂ B. If n1x̃ 6∈ 1

c
B, we are done. Else

n1x̃ ∈ 1
c
B, and n2x̃ ∈ n2

n1

1
c
B ⊂ B, so if n2x̃ 6∈ 1

c
B, we are also done. We continue in

this fashion. Since we cannot have nkx̃ ∈ B for every k, we deduce that there exists a k

such that nkx̃ ∈ B \ 1
c
B. The properties of B and of the exponential function imply that

hnk = exp(nkx̃) ∈ V \ U , and this proves our claim.

5.B. Proof of Theorem 2.9 for groups with a minimal metric. The proof of Theo-

rem 2.9 for groups with a minimal metric will be based upon two auxiliary results. Recall

that we denote by e the identity element of the group G.

Lemma 5.1 ([42]). Let G be a topological group with a minimal metric d. Then there

exist a > 0 and K ≥ 1 such that, for f, g ∈ G and any positive integer n, the following

statements are true:

(1) ( A quantitative NSS condition) If max{d(gi, e) : 1 ≤ i ≤ n} < a, then

d(g, e) ≤ 1

n
· (5.1)

(2) ( The weak Gleason property) If max{d(gi, e) : 1 ≤ i ≤ n} < a, then

nd(g, e) ≤ Kd(gn, e). (5.2)
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(3) ( Multiplication is locally Lipschitz) If max{d(f, e), d(g, e)} < a, then

d(fg, e) ≤ K (d(f, e) + d(g, e)) . (5.3)

Proof. The results follow from conditions (2) and (3) of [42, Theorem 3] and from [42,

Observation 10]. �

Lemma 5.2 (trapping property). Let a and K be the constants from Lemma 5.1. Let

b > 0. If h ∈ G, n is a positive integer, and

max{d(hi, e) : 1 ≤ i ≤ n} < a and d(hn, e) < b, (5.4)

then

max{d(hi, e) : 1 ≤ i ≤ n} ≤ min(a,Kb). (5.5)

Proof. Suppose that h is an element of G such that (5.4) is true. Using (5.2), we obtain

that

d(h, e) ≤ Kd(hn, e)

n
≤ Kb

n
≤ Kb.

Suppose that n ≥ 2. Since d is a left-invariant metric, we obtain

d(h2, e) ≤ d(h2, h) + d(h, e) = 2d(h, e) ≤ 2Kb

n
≤ Kb.

A similar proof shows that

d(hi, e) ≤ iKb

n
≤ Kb

for every 1 ≤ i ≤ n, which proves Lemma 5.2. �

Proof of Theorem 2.9 for groups with a minimal metric. Let G be a group with a mini-

mal metric d. Suppose that nk+1/nk ≤ c. Without loss of any generality we can assume

that c is a positive integer.

Let now x ∈ G be such that

sup{d(xnj , e) : j ≥ 1} < δ :=
a

2K(K + c)
· (5.6)

Thus all the nj-powers of x belong to the neighborhood Bd(e, δ). We want to show that

x = e. Set W = Bd(e,Kδ). We will prove by induction the following claim:

For every integer k ≥ 0, all the elements x, x2, x3, · · · , xnk belong to W. (5.7)

This is surely true for k = 0 since d(x, e) < δ ≤ Kδ. Suppose that (5.7) is true for a

fixed k ≥ 0 and consider an integer i such that nk < i ≤ nk+1. Then we can write i as
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i = qnk + r for some positive integer q and for some integer r with 0 ≤ r < nk. We have

q =
i− r
nk
≤ nk+1 − r

nk
≤ c.

Using that multiplication is locally Lipschitz, i.e. the condition (5.3), and the induction

hypothesis, we obtain

d(xi, e) = d(xqnkxr, e) ≤ K (qd(xnk , e) + d(xr, e)) ≤ K (cδ +Kδ) =
a

2
< a

(we have d(xqnk , e) ≤ qd(xnk , e) < cε < a, so that (5.3) can be applied). As a particular

case of (5.6) we have d(xnk+1 , e) < δ. It follows from the trapping property of Lemma 5.2

that

max{d(xi, e) : 1 ≤ i ≤ nk+1} ≤ Kδ.

Therefore all the elements x, x2, x3, · · · , xnk+1 belong to W . By induction, the property

(5.7) holds for every k. Therefore the neighborhood W of e contains all the elements xp,

p ≥ 0. Since a topological group with a minimal metric is NSS by condition (1) of Lemma

5.1, we obtain that x = e, which completes the proof. �

Remark 5.3. Constructing weak Gleason metrics for NSS locally compact groups is an

essential step in proving that every NSS locally compact group is isomorphic to a Lie

group. The condition (5.2) is the so-called escape property of weak Gleason metrics, as

introduced in [44, p. 103 ff]. It is proved in [44, Theorem 5.2.1] that, in the locally compact

setting, every weak Gleason metric is actually Gleason, meaning that it satisfies a further

estimate on commutators.

6. Proofs of Theorems 2.10, 2.11 and of Corollary 6.1

Since the proofs of the two theorems are similar, we only give the proof of Theorem

2.11.

Proof of Theorem 2.11. Let us first prove that the statements (b) and (c) of Theorem 2.11

are equivalent. Suppose that (b) is true, that is, every complex number c with Re cnk ≥ 0

for every k ≥ 0 satisfies c ≥ 0. Let λ ∈ T be such that |λnk − 1| ≤
√

2 for every k. Then

2 Re(λnk) = 2− |λnk − 1|2 ≥ 0 for every k. Using (b), we obtain that λ is a positive real

number. As |λ| = 1, λ = 1.

Suppose now that (c) is true. Let c be a non-zero complex number such that Re cnk ≥ 0

for every k ≥ 0. Let λ = c/|c|. Then |λ| = 1 and Re(λnk) ≥ 0. Therefore |λnk − 1|2 =

2− 2 Re(λnk) ≤ 2. Using (c) we get λ = 1 and thus c = |c| is a nonnegative real number.

Clearly (a) implies (b). In order to show that (b) implies (a), we need to introduce

some notation and to recall some results about the numerical range and fractional powers
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of operators. These results go back to a 1962 paper by Matsaev and Palant [32], see also

[6, 30] and the references therein.

An interlude on fractional powers of operators. Recall that the numerical range of the op-

erator T is the set

W (T ) = {〈Tx, x〉 : ‖x‖ = 1}

and that the closure of W (T ) always contains the spectrum σ(T ) of T . What we will

need in the proof that (b) implies (a) are the following results, which follow for instance

from Theorems 1.2 and 2.8 from [30] (this paper deals with fractional powers of elements

of more general Banach algebras, with or without an involution). Let T ∈ B(H) be a

Hilbert space operator such that W (T ) does not contain any negative real number. Note

that, by convexity of the numerical range, this implies that W (T ) is included in a certain

sector centered in the origin and of opening no greater than π. Let m ≥ 2 be an integer.

(Existence) Under the above hypotheses, T has a m-root, S, in B(H) such that Sm = T

and the numerical range of S lives inside the sector Σ(π/m) centered in the origin and of

opening 2π/m, namely

W (S) ⊂ Σ(π/m) :=
{
reiθ : r ≥ 0, |θ| ≤ π

m

}
.

(Unicity) Moreover, if R ∈ B(H) is another operator such that Rm = T and σ(R) ⊂
Σ(π/m), then R = S.

We shall use the notation T 1/m for the unique m-root of T .

Let us now go back to the proof of Theorem 2.11.

Proof of Theorem 2.11, continued. Assume that (b) holds true and let A be a Hilbert

space operator such that ReAnk ≥ 0 for all k ≥ 0. Then the numerical range of Ank is

in the closed right half-plane C+ = {z ∈ C : Re z ≥ 0}. In particular, W (Ank) does not

contain any negative real number.

Let c ∈ σ(A). Then, by the spectral mapping theorem, cnk ∈ σ(Ank), so cnk belongs

to the closure of W (Ank). Thus Re cnk ≥ 0 for every k. Therefore (b) implies that

σ(A) ⊂ [0,+∞); in particular, the spectrum of A is included in all the sectors Σ(π/(nk)).

By the unicity result of fractional powers we have

(Ank)1/nk = A for every k ≥ 0.

By the existence part we obtain W (A) ⊂ Σ(π/nk) for every k ≥ 0. Therefore W (A) is a

subset of the positive real axis. Thus A is self-adjoint, and in fact positive since ReA ≥ 0.

This completes the proof. �
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Some generalizations are possible by considering a sequence of sectors, S(n), centered

in the origin and replacing (b) by the condition “cnk ∈ S(nk) for every k”. The situa-

tion considered in Theorem 2.11 corresponds to the case where all the sectors S(n) are

the closed right half-plane C+ := {z ∈ C : Re z ≥ 0}. This problem, as well as the

corresponding vectorial problem (a), have been addressed for matrices in several papers

[21–23]. We decided not to pursue this topic here.

We also obtain the following corollary, generalizing [36, Theorem 1].

Corollary 6.1. Let (nk)k≥0 be a sequence of integers with n0 = 1 such that the only

complex number λ ∈ T with supk≥0 |λnk − 1| ≤
√

2 is λ = 1. Then, for a Hilbert space

operator A ∈ B(H), the following two statements are equivalent:

(i) supk≥0 ‖Ank − I‖ ≤ 1;

(ii) 0 ≤ A ≤ I.

Proof. If 0 ≤ A ≤ I then 0 ≤ An ≤ I for every n ≥ 1 and thus ‖I − An‖ ≤ 1 for every

n ≥ 1.

Suppose now that ‖I−Ank‖ ≤ 1 for every k ≥ 1. Let x ∈ H be a unit vector. We have

|1− 〈Ankx, x〉| = |〈(I − Ank)x, x〉| ≤ ‖I − Ank‖ ‖x‖2 ≤ 1.

This implies that z = 〈Ankx, x〉 satisfies Re(z) ≥ |z|2 /2 ≥ 0. Therefore the numerical

range of Ank is in the right closed half-plane for every k ≥ 1. Using Theorem 2.10 we

obtain that A is (self-adjoint and) positive.

Let now λ ∈ σ(A). Then λ ≥ 0 and λnk − 1 is in σ(Ank − I) for all k. Therefore

|λnk − 1| ≤ ‖Ank − I‖ ≤ 1. This implies |λnk | ≤ 2 for all k ; hence |λ| ≤ 1. Thus

σ(A) ⊂ [0, 1] and 0 ≤ A ≤ I. �

Corollary 6.1 applies for instance to every Jamison sequence with Jamison constant

<
√

2.
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