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Abstract

Rice sustains over three billion people, yet its yield formation is highly vulnerable to cli-
matic extremes, input price volatility, and heterogeneous management by smallholder farmers.
Anticipating yield outcomes under these uncertainties is both a scientific challenge and a policy
necessity. We present a season-specific machine learning (ML) framework that formalizes rice
yield prediction as supervised learning under distributional shift across ecotypes: Boro (irrigated
dry-season), T.Aus (pre-monsoon), and T.Aman (monsoon).

Our contributions are fourfold. We fuse agronomic inputs (fertilizer applications of N, P,
K, S; irrigation; biological nitrogen fixation) with high-frequency NASA POWER, weather vari-
ables (temperature, precipitation, relative humidity), aggregated to phenology-aware windows.
We benchmark eight regression families under leakage-controlled pipelines and identify ecotype-
specific optima: Linear Regression for Boro (R?=0.878), Support Vector Regression for T.Aus
(R?=0.862), and K-Nearest Neighbors for T.Aman (R?=0.857). We expand interpretability
through bias—variance decomposition, mutual information analysis, and causal structural equa-
tion modeling, providing theory-grounded explanations of why different inductive biases dom-
inate per season. Finally, we quantify predictive uncertainty using bootstrap ensembles and
deploy the pipelines in a lightweight Streamlit tool that supports real-time “what-if” scenario
testing (e.g., rainfall shocks, fertilizer adjustments). The results illustrate how interpretable and
uncertainty-aware ML can provide a transferable framework for data-driven, climate-resilient
agriculture in smallholder contexts.

1 Introduction

Rice sustains over 3.5 billion people worldwide, providing more than 20% of global caloric intake [I].
Its centrality is particularly pronounced in South and Southeast Asia, where smallholder farmers
dominate production and where climatic variability, rising input costs, and fragile infrastructure
combine to create systemic risks. Anticipating rice yield under uncertainty is therefore both a
scientific and policy priority: accurate forecasts inform food security planning, insurance, and
subsidy allocation.
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Traditional process-based crop growth models such as DSSAT [2], APSIM [3], and ORYZA [4]
provide mechanistic insight by simulating crop—soil-climate interactions. However, they require
fine-grained calibration (soil chemistry, cultivar genetics) rarely available in smallholder systems
and often struggle to capture sub-seasonal weather extremes or heterogeneous farmer practices,
limiting predictive fidelity.

Machine learning (ML) offers a complementary paradigm: by directly learning from observa-
tional data, ML can capture nonlinear dependencies and high-order interactions between manage-
ment practices and weather events. Recent advances have demonstrated success in predicting yield
from remote sensing and weather data [5H7], yet much of this work either aggregates rice into a
single category, ignoring ecotypic differences, or focuses narrowly on retrospective accuracy without
building operational pipelines.

Research gap

In South Asia, rice spans three ecotypes with distinct hydrological regimes and climate sensi-
tivities. Boro is a dry-season crop that is fully irrigated and therefore relatively controlled but
energy-intensive. T.Aus is a short-duration pre-monsoon crop that is highly vulnerable to heat
and rainfall shocks. T.Aman is a long-duration monsoon crop, largely rain-fed and exposed to
floods and nutrient leaching. Treating these ecotypes as a single distribution p(y| X) mis-specifies
the problem; each season induces a distinct conditional distribution ps(y | X) shaped by local hy-
drology, farmer decisions, and climatic variability. This mismatch introduces systematic bias and
undermines interpretability.

Contributions

We propose a season-specific ML framework that integrates district-level management data with
high-frequency NASA POWER weather series. Our contributions are fourfold.

First, we design ecotype-specific predictors and show that the inductive bias must match eco-
type complexity: linear models excel in Boro, kernel methods in T.Aus, and local instance-based
methods in T.Aman.

Second, we provide a theoretical lens—bias—variance decomposition, mutual information, and
structural causal models—that explains why these choices work and connects ML with agronomic
theory.

Third, we quantify uncertainty using bootstrap-based prediction intervals and Bayesian base-
lines, which is essential for risk-aware agricultural planning.

Finally, we operationalize the best pipelines in a Streamlit tool that enables real-time scenario
testing for agronomists and policymakers.

2 Related Work

Yield prediction spans process-based models, statistical approaches, and modern ML. Early works
relied on regressions using aggregated climate indices [10]; process-based models such as DSSAT and
ORYZA offered physiological realism but required heavy calibration. With the rise of ML, studies
demonstrated that satellite vegetation indices and weather features could explain yield variability at
scale [5], and deep models trained on weather and soil achieved state-of-the-art results in large row
crops [6]. Reviews highlight opportunities and pitfalls for deep learning in agriculture [7]. Within
South Asia, prior work has explored rice yield and price prediction [9] and climate impacts on
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Bangladesh rice yields [8]. However, season-specific modeling and operational deployment remain
under-explored; our work addresses both.

3 Problem Formulation

We formalize rice yield prediction as supervised regression with distributional shift across ecotypes.
Let Dy = {(XZ-(S),y(s))}?;1 for s € {Boro, T.Aus, T.Aman}, where XZ-(S) € RY are feature vectors and

i

ygs) € R are yields (t/ha). Each season defines a distinct conditional distribution ps(y|X).

Learning objective. For each season s, we learn f(*) : R R that minimizes
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Figure 1: Bias—variance schematic. The dashed red line illustrates a high-bias underfit, the brown
wiggly curve a high-variance overfit, and the solid blue curve the underlying true function.

This motivates different inductive biases across seasons: linear for Boro (low variance), kernel
for T.Aus (nonlinear climate sensitivity), and local instance-based for T.Aman (heterogeneity).
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Multi-task sharing. We couple seasons via (%) = () + A() and estimate

9(0) {A(s)}ZZ( )T(e( )+ Al > +)\Z |A s)||1’ (5)

Boro T.Aus T.Aman
A(Boro) A(T.Aus) A(TlAman)

0 =0 1 A with group-sparse penalty >_[|A®)]|;.

Figure 2: Multi-task sharing of parameters. The global parameter #(®) captures universal rela-
tionships (e.g., baseline nutrient response), while season-specific deviations A®) capture ecotype
heterogeneity (e.g., rainfall sensitivity in T.Aus, irrigation dominance in Boro). This encourages
statistical efficiency through shared structure while preserving critical seasonal adaptations.

Uncertainty modeling. Point estimates alone are insufficient for agricultural decision-making
under climate variability. We therefore complement predictions with uncertainty quantification via
a Bayesian linear regression baseline:

y| X, 0 ~N(XT0,06%), 6~ N(0,72),
yielding the posterior predictive distribution
p(y | X, D) = MX]0, X]SX, + 0?).

This formulation provides not only a point forecast but also calibrated confidence intervals. In
practice, narrower bands (e.g., in Boro under stable irrigation) indicate greater reliability, while
wider bands (e.g., in T.Aman under volatile monsoon conditions) reveal high environmental uncer-
tainty.
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Figure 3: Bayesian uncertainty. The solid blue line is the posterior mean; the shaded region
denotes the 95% predictive band. For rice yield prediction, such intervals provide actionable insight:
stable ecotypes (Boro) exhibit tighter bands, while volatile ecotypes (T.Aman) display wider ones,
highlighting where forecasts should be treated with caution.

Information-theoretic view. We assess the characteristic signal through mutual information,
estimated with £-NN methods, complementing correlation-based diagnostics.
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Figure 4: Mutual information: low-MI cloud (left) vs. high-MI, nonlinear dependency (right).
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4 Methodology

Our methodology integrates multi-source data, leakage-safe preprocessing, model benchmarking,
and deployment. Figure [5] summarizes the pipeline from acquisition to operational use.

Data Data Cleaning Feature Train/Test
Acquisition & Preprocessing Engineering Split
( \
Deployment & Model Hyperparameter Model Selection
Tool Development Evaluation Tuning & Training

Figure 5: Pipeline process with iterative feedback loop.

Data collection. We integrate district-level management records (N, P, K, S application rates
in kg/ha; irrigation in mm; biological nitrogen fixation) with NASA POWER daily weather series
(mean temperature in °C, precipitation in mm, relative humidity in %). The study covers Bogura
and Cumilla over 2020-2021, spanning Boro, T.Aus, and T.Aman.

Preprocessing. Weather series are aligned to crop calendars, and for each stage (vegetative,
reproductive, ripening) we compute cumulative rainfall and mean temperature and humidity,

1
— 2 : cum 2 :
wstage = T Wy, stage = We.
|7gtage|

tE'Tstage te,rstage

Rows with critical missing values are removed; clear data entry errors are excluded while genuine
extremes are retained. Continuous features are z-normalized and categorical variables one-hot
encoded. All steps are encapsulated in scikit-learn Pipelines fitted only on training folds to
prevent leakage.

Feature engineering. We include nutrient balances (e.g., N/K), an irrigation-to-rainfall ratio
as a proxy for water reliance, and explicit interactions such as N x Rainfall and Temp x Irrigation
that reflect agronomic mechanisms.

Model families and training. We benchmark Ordinary Least Squares, Ridge, Lasso, Support
Vector Regression (RBF kernel), K-Nearest Neighbors, Random Forest, Gradient Boosting, and
XGBoost. For each season we perform an 80/20 train-test split stratified by district and tune
hyperparameters with 5-fold cross-validation. We report RMSE, MAE, and R? on held-out test
sets and compute 95% prediction intervals via nonparametric bootstrap:

[Gower: Jupper] = [Quantileg go5, Quantileg g75] {G(z) 521

Interpretability. We rely on permutation importance, correlation heatmaps, and residual diag-
nostics; tree models can be complemented with SHAP for local attributions.
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5 Results and Analysis

Season-specific performance. Different inductive biases dominate by ecotype (Table . In
Boro, linear regression achieves R?=0.878 with low RMSE, consistent with controlled irrigation and
near-linear dynamics. In T.Aus, SVR captures nonlinear rainfall-temperature responses (R2=0.862).
In T.Aman, KNN adapts to local heterogeneity under monsoon variability (R?=0.857).

Table 1: Test-set performance across seasons (best per season in bold).
Season (Best Model) RMSE MAE  R?
Boro (Linear Regression) 0.422 0.338 0.878

T.Aus (SVR, RBF kernel) 0.471 0.385 0.862
T.Aman (KNN, k=5) 0.494 0401 0.857

Residual diagnostics. Residuals are symmetric and homoscedastic in Boro (Fig. @, indicating
linear adequacy. T.Aus shows under-prediction in extreme rainfall years (Fig. , consistent with
unmodeled higher-order climate shocks. T.Aman has the widest residual spread (Fig. , reflecting
monsoon-driven heterogeneity and possible unobserved factors.

Boro - Model Comparison (RMSE)

0.6

0.5

RMSE

03

0.2

0.1

) i "
LinearRegression Ridge Lasso RandomForest GBM XGBoost SVR KNN

Figure 6: Residual distribution for Boro (Linear Regression): symmetry and low spread indicate
linear adequacy.
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Figure 7: Residual distribution for T.Aus (SVR): heavier negative tails correspond to extreme
rainfall under-prediction.

T.Aman - Model Comparison (RMSE)
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Figure 8: Residual distribution for T.Aman (KNN): wide dispersion reflects local heterogeneity
under monsoon conditions.

Temporal and spatial generalization. Performance is lower in 2021 than in 2020, i.e., AR? =
R%.51 — R2050 < 0, aligning with rainfall anomalies (Fig. E[) Spatially, Boro generalizes better
in Bogura (strong irrigation infrastructure), while T.Aman generalizes better in Cumilla (greater
varietal flood resilience) (Fig. [10)).
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Figure 9: Temporal comparison (2020 vs. 2021): reduced accuracy in 2021 corresponds to anomalous
rainfall.
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Figure 10: Spatial comparison (Bogura vs. Cumilla): patterns align with irrigation capacity and
flood resilience.
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Feature importance and drivers. Permutation importance shows irrigation and nitrogen dom-
inate Boro; reproductive-stage temperature and rainfall dominate T.Aus; and nitrogen—rainfall
interactions dominate T.Aman, consistent with leaching risks. The heatmaps in Figs. sum-
marize linear associations that are coherent with these findings.

Correlation Heatmap: Boro Raw Input Features
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Figure 11: Correlation heatmap—DBoro: strong associations of irrigation and nitrogen with yield.
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Correlation Heatmap: T. Aus Raw Input Features
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Figure 12: Correlation heatmap—T.Aus: reproductive-stage climate variables dominate.

Correlation Heatmap: T. Aman Raw Input Features
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Figure 13: Correlation heatmap—T.Aman: nitrogen—rainfall interplay is most pronounced.

Uncertainty quantification. Bootstrap intervals are tightest in Boro (about +0.2 t/ha), mod-
erate in T.Aus (about £0.35 t/ha), and widest in T.Aman (about £0.5 t/ha). These bounds
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provide actionable worst-case estimates for planners.

6 Discussion and Theoretical Insights

Bias—variance considerations explain the season-specific winners: linear models minimize error in
Boro where irrigation suppresses variance; SVR reduces bias in T.Aus by capturing nonlinear
climate effects; and KNN adapts to local heterogeneity in T.Aman. Information-theoretic analysis
quantifies feature signal: irrigation and N carry the most information in Boro, reproductive-stage
rainfall and temperature in T.Aus, and nitrogen—rainfall interactions in T.Aman. A structural
equation model,

Y = By + B1N + Belrrigation + BsRainfall + B4(N x Rainfall) + U,

clarifies intervention pathways across seasons. Multi-task sharing via 8¢9 = (0 + A®) explains
cross-season commonalities (e.g., nitrogen’s role) while allowing deviations (e.g., irrigation’s season-
specific importance).

7 Limitations and Future Directions

Our dataset spans only two years and two districts, limiting characterization of low-frequency
climate signals and external validity. Domain adaptation and hierarchical modeling can extend
generalization. Omitted variables (soil, pests, cultivars) may confound attributions; multimodal
fusion with remote sensing and soil maps is a natural extension. Bootstrap intervals may understate
tail risk; conformal prediction and Bayesian neural networks could provide calibrated coverage.
Finally, moving from predictive correlation to causal inference (e.g., double machine learning) would
support policy interventions. At scale, federated and online learning, together with cloud-native
deployment, can power national dashboards and early-warning systems.

8 Conclusion

This paper introduced a season-specific machine learning framework for rice yield prediction that
integrates district-level agronomic inputs with high-resolution NASA POWER weather data. By
explicitly modeling the Boro, T.Aus, and T.Aman ecotypes as distinct conditional distributions,
we demonstrated that different inductive biases are optimal in different regimes: linear regression
in irrigated Boro, kernel methods in climate-sensitive T.Aus, and local instance-based methods in
heterogeneous T.Aman.

Beyond empirical performance, we provided a theoretical foundation through bias—variance
decomposition, mutual information analysis, and causal structural modeling, thereby aligning ma-
chine learning with agronomic reasoning. Our use of bootstrap ensembles and Bayesian baselines
delivered calibrated uncertainty estimates, ensuring forecasts can be used in risk-sensitive planning.
Finally, the deployment of a lightweight Streamlit tool bridged the research-to-policy gap, enabling
agronomists and decision-makers to perform real-time scenario testing such as fertilizer adjustments
or rainfall shocks.

The implications extend beyond rice in South Asia: the methodological principles—matching
inductive bias to ecological regime, quantifying predictive uncertainty, and coupling interpretabil-
ity with deployment—represent a transferable blueprint for smallholder-dominated agricultural
systems worldwide. Future work should scale the temporal horizon, incorporate multimodal data
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(soil, genetics, remote sensing), and advance toward foundation models for agriculture that are ro-
bust, interpretable, and causally valid. In doing so, machine learning can evolve from retrospective
analysis into actionable intelligence for climate-resilient food security.
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