
 

 

 

Department of Mechanical and Mechatronics Engineering 

University of Waterloo 

 

 

 

 

ME 303 – Advanced Engineering Mathematics 

 

 

 

PDEs and Heat Equations Analysis 
 
 

Prepared by: 

Ali Muizz 

Yasir Ahmed 

Vikesh Mistry 

Krypton Purnama  

Saleem Mohammed Ali 

 

 

 

Prepared for: 

ME 303 Teaching Team 

 

 

Submitted on: 

Sunday, September 14, 2025 

 



1 

 

1.0 1D Heat Equation in Spherical Coordinates 

 

 The first partial differential equation (PDE) that is analyzed is the generic heat equation 

where ‘u’ represents temperature, ‘t’ is time and ‘𝛼’ is the coefficient of diffusivity. 

 

𝜕𝑢

𝜕𝑡
= 𝛼∇2𝑢 (1) 

 

This section focuses on solving this second-order Laplacian equation numerically to model 

the boiling of an egg. 

 

1.1 Defining the PDE 

 

To accurately use this PDE, the following assumptions are made about the geometry and 

material properties of an egg and the cooking process. 

 

1) The egg is a perfect sphere with radius R 

2) Assume constant thermal diffusivity of the eggshell, whites and yolk 

3) The egg remains completely submerged in constant boiling water 

 

These assumptions make modelling the behaviour less computationally demanding and set 

simple boundary conditions. First, the right-hand side (RHS) of Equation 1 is expanded using the 

spherical coordinates (𝑟, 𝜃, ∅). 

 

𝛼∇2𝑢 = 𝛼 (
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑢

𝜕𝑟
) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑢

𝜕𝜃
) +

1

𝑟2 sin2 𝜃

𝜕2𝑢

𝜕𝜙2
) 

 

Since the egg is assumed to be perfectly spherically and completely submerged in water 

during the cooking process, it transfers heat at the same rate at any given angle. So, 𝑑𝜃 and 𝑑∅ 

are equal to 0, creating a purely radial 1D heat equation given below. 

 

𝜕𝑢

𝜕𝑡
=

𝛼

𝑟2

𝜕

𝜕𝑟
(r2

𝜕𝑢

𝜕𝑟
)  

 

Product and Chain Rule: 

 

𝜕𝑢

𝜕𝑡
=

𝛼

𝑟2

𝜕

𝜕𝑟
(r2

𝜕𝑢

𝜕𝑟
) =

𝛼

𝑟2
(2𝑟

𝜕𝑢

𝜕𝑟
+ 𝑟2

𝜕2𝑢

𝜕𝑟2
) = 𝛼 (

2

𝑟

𝜕𝑢

𝜕𝑟
+

𝜕2𝑢

𝜕𝑟2
) 

 



2 

 

𝜕𝑢

𝜕𝑡
= 𝛼 (

2

𝑟

𝜕𝑢

𝜕𝑟
+

𝜕2𝑢

𝜕𝑟2
) (2) 

 

Equation 2 gives the rate of heating or cooling based as a function of radius. This was solved 

through numerical approximation as seen in the next section. 

 

1.2 Solving the PDE 

 

Equation 2 is then numerically solved using finite differences in the work below. Note, 𝑢𝑖
𝑘 

notation will be used where ‘k’ represents a single time frame, and ‘i’ is a point along the radius. 

For example, 𝑢𝑅
0  is the initial condition before the egg is placed in the boiling point. 

 

Euler’s Method: 

𝜕𝑢

𝜕𝑡
=

𝑢𝑖
𝑘+1 − 𝑢𝑖

𝑘

∆𝑡
 

 

Central Difference: 

 

𝜕𝑢

𝜕𝑟
=

𝑢𝑖+1
𝑘 − 𝑢𝑖−1

𝑘

2∆𝑟
 

 

𝜕2𝑢

𝜕𝑟2
=

𝑢𝑖+1
𝑘 − 2𝑢𝑖

𝑘 + 𝑢𝑖−1
𝑘

(∆𝑟)2
 

 

Substitute into Equation 2: 

 

𝑢𝑖
𝑘+1 − 𝑢𝑖

𝑘

∆𝑡
=  𝛼 (

2

𝑟

𝑢𝑖+1
𝑘 − 𝑢𝑖−1

𝑘

2∆𝑟
+

𝑢𝑖+1
𝑘 − 2𝑢𝑖

𝑘 + 𝑢𝑖−1
𝑘

(∆𝑟)2
) 

 

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 +
𝛼∆𝑡

(∆𝑟)2
(𝑢𝑖+1

𝑘 − 2𝑢𝑖
𝑘 + 𝑢𝑖−1

𝑘 ) +
𝛼∆𝑡

𝑟∆𝑟
(𝑢𝑖+1

𝑘 − 𝑢𝑖−1
𝑘 ) (3) 

 

Stability Condition: 

 

(1 −
2𝛼∆𝑡

(∆𝑟)2
) 𝑢𝑖

𝑘 →  
2𝛼∆𝑡

(∆𝑟)2
< 1 →  ∆𝑡 <

(∆𝑟)2

2𝛼
(4) 

 

With this equation, the boundary conditions (BC) are defined as followed. The first 

Dirichlet boundary condition follows the third assumption, setting boiling water equal to 100°C. 

 

𝑢(𝑅, 𝑡) = 100 



3 

 

 

The following Neumann BC is set because at the centre of the egg there is no direction of 

heat flow. This ensures that heat is not flowing across the centre. 

 

𝜕𝑢

𝜕𝑡
(0, 𝑡) = 0 

 

 The initial conditions selected for the model is based on the average temperature of a 

fridge, assuming the egg has a constant temperature throughout (4°C). 

 

𝐼𝐶: 𝑢(𝑟, 0) = 4 

 

 These assumptions imply that the water will remain at a constant 100°C after placing the 

egg in, that the heat transfer is perfectly linear, and that the entire egg has a constant temperature 

of 4°C throughout right before being boiled, respectively. 

 

1.3 Finding Stable Condition 

 

With these conditions and the derived solution, the model was developed in MATLAB to 

graph the result, and the code can be found in Appendix A. The values used in the code were 

calculated/researched as shown below. To find radial steps and time steps that fit the stability 

condition, a value of ∆𝑟 = 0.1mm was chosen based on the smallest egg’s radius being around 

15mm. Choosing a radius step of 0.1mm will plot a minimum of 150 points which was 

determined to be valid for this solution. Note, the ∆𝑟 was not reduced as the time step would 

exceed the computational power available for running the simulations as seen below. 

 

∆𝑟 = 0.1𝑚𝑚 = 0.0001𝑚 

 

(∆𝑟)2

2𝛼
=

(0.0001)2

2(1.5𝑥10−7)
=

1

30
≈ 0.03, ∆𝑡 = 0.01 

 

Or, selecting a smaller ∆𝑟, 

 

∆𝑟 = 0.01𝑚𝑚 = 0.00001𝑚 

 

(∆𝑟)2

2𝛼
=

(0.00001)2

2(1.5𝑥10−7)
=

1

3000
≈ 0.0003, ∆𝑡 = 0.0001 

 

𝑁𝑡 =
1𝑠

1𝑥10−5𝑠
= 1𝑥105 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠/𝑠 

 

 



4 

 

 To approximate the eggs temperature every second, it would take 105 steps. From 

common knowledge, an egg should take over 5mins to cook, so ∆𝑟 = 0.01𝑚𝑚 is very 

computationally expensive. Thus, instead, a time step of 0.01s will be used. Next the coefficient 

of diffusivity of an egg was researched to be around, 𝛼 = 1.5𝑥10−7𝑚2/𝑠 [1]. Based off 

measurements the average radius of a quail, chicken and ostrich egg was found to be 1.5cm, 

2.2cm, and 6.5cm [1]. The amount of estimated temperature points along the radius of each egg 

‘N’ was calculated in the code using the formula above.  

 

  𝑁 = 𝑟𝑜𝑢𝑛𝑑 (
𝑅

𝑑𝑟
) 

 

1.4 Results and Discussion 

 

 This section will provide the simulations demonstrating boiling an egg based on the 

solution and parameters derived in previous sections. A criterion to determine when the egg is 

fully cooked is defined as follows: 

 

1) The entire egg must be heated to 80°C for 𝑡 ≥ 10𝑠, 𝑢(𝑟, 𝑡) ≥ 80℃  

 

 With the preliminary setup complete, the 3D heating plot of the egg is shown in Figure 1. 

Furthermore, Figure 2 shows that a larger radius increases the time to heat the center of each at 

(r = 0). 

 

 

Figure 1: 3D model of the 1D heating of an egg 

 

Figure 2: Time to reach 80°C internal temperature 



5 

 

 The centre temperature of the egg was plotted against time to determine when it reached 

80°C. Based on the previous conditions to cook an egg (add 10 seconds to each of the times 

listed on the plot), the time to cook each egg is seen in Table 1. To test the accuracy of this 

model, a chicken egg will be cooked, recording the internal temperature after around 12 minutes. 

This will be completed in the following section. 

Table 1: Cooking time data 

Type of Egg Time to Cook 

Quail 5mins 52sec 

Chicken 12mins 22sec 

Ostrich 107mins 28sec 

 

 

1.5 Live Experiment 

1.5.1 Results 
 

 Three chicken eggs with an average diameter of 4.5cm were placed into boiling water 

directly from the fridge. The eggs were removed at different times: 10-minutes, 12-minutes and 

14-minutes. The resulting egg from each experiment is seen in Figure 3. Note, the internal 

temperature was also recorded after time boiled. Additionally, before the eggs were cut, the 

internal temperature was recorded for each egg and is listed in Table 2. 

 

  

Figure 3: The cross-sections of the egg after boiling (from left to right: 10 mins, 12 mins and 14 mins) 

Table 2: Experimental data 

Time Cooked (minutes) Internal Temperature (°C) 

10 55 

12 60 

14 65 

 

 For the 10-minute boiling experiment, the egg appears to be soft to medium boiled. The 

egg whites are completely set, and the center of the yolk is runny. The internal temperature was 

55°C, not meeting the requirements for a cooked egg. 

 

 For the 12-minute boiling experiment, the egg appears to be medium to hard boiled. The 

center yolk has a darker yellow, undercooked section. It only reached an internal temperature of 

60°C, again, not meeting the criterion for a safe to eat egg. 



6 

 

 For the 14-minute boiling experiment, the egg appears to be a fully cooked hard-boiled 

egg with even yolk colouring and fully set whites. The core only reached 65°C which is 

considered undercooked based on the model. The reasoning for the differences between the live 

experiment and the derived approximation is discussed in the following section. 

 

1.5.2 Deviation Between Theory and Experiments  

  
 There are three main reasons that explain the deviation between the live experiments and 

the theoretical approximation. 

 

1) The assumption that water temperature remains constant around the egg 

 

 The water was brought to a boil and then the three eggs were added simultaneously. Since 

the eggs were in the fridge for more then 24 hours, they had a thorough temperature of around 

4°C. This would drop the water temperature, increasing the time required to reach an internal 

temperature of 80°C. This can explain why throughout the experiments, none of the eggs reach 

the target internal temperature. The mathematical model does not account for this as the 

boundary condition is 𝑢(𝑅, 𝑡) = 100, assuming constant water temperature. This can be 

improved by making a modular boundary condition that changes based on time and the water 

temperature. However, this would increase the complexity of the PDE problem and require more 

processing power. 

  

2)  The assumption that the geometry of the eggs are uniform spheres 

 

 The mathematical model assumes that the eggs are perfectly spherical with an exact 

radius R. This is not true in the real world as eggs have an elliptical shape and variable radius. 

This changes the time that is required to heat the centre of the egg, and accounts for 

discrepancies between the theory and experiments. 

 

3) Uncalibrated testing equipment 

 

 The thermometer used was a typical food-grade thermometer without any prior 

calibration so the measurements may not be accurate. Before adding the eggs, the thermometer 

read the boiling water temperature to be 97°C, so it is expected to have around -3°C tolerance. 

 

4) Model simplifications 

 

 There were many simplifications in the model that do not accurately describe the boiling 

of an egg. First, heat diffusivity of the eggshell, egg whites, and yolk were all assumed to be the 

same, which is not true. Next, there are cases of heat impulses into the system during cooking, 

such as the heat transfer from the pot to the egg if it touches the bottom of the pot. This is not 

accounted for with the current model.  

 



7 

 

 In conclusion, the current model underestimates the time needed to hard-boil an egg. This 

is mainly due to the assumption that there is a constant water temperature of 100°C. After 12 

minutes, the egg was still undercooked, reaching only 60°C internally. A model accounting for 

the factors listed above would provide a closer result to theoretical expectations.  

 

1.6 Future Improvements 

 

 As discovered, boiling an egg is a time-consuming process, and one that takes longer than 

theoretically expected. For this reason, this section explores more economical ways in terms of 

energy consumption to cook eggs. 

 

 In boiling an egg, the medium used to transfer heat from the source to the egg was water. 

Water can only hold so much heat before it changes form into vapor. To overcome this heat 

capacity issue, direct conduction can be used instead. Cooking the egg in an enclosed highly 

conductive metallic container allows the egg to cook without water as a medium. This allows 

more heat to be transferred to the egg in a shorter period and avoids the formation of water 

vapor. This reduces the amount of energy and time needed to cook the egg to the desired internal 

temperature. This can be reflected within the simulation by modifying the boundary condition 

used from a constant temperature to a convection equation. This allows a more realistic and 

optimized heat transfer scenario that can reflect the energy savings.  

 

 Another method to save energy is with a microwave. A microwave delivers energy 

directly to the egg using electromagnetic energy to vibrate the water molecules within the egg 

itself to generate heat. Depending on the efficiency of the microwave, this reduces the total 

amount of work required as an entire pot of water is not required to boil, rather just the water 

within the egg is heated. However, with the buildup of steam and pressure within the egg, there 

is a large chance of the egg exploding. So, although this is potentially a more efficient way of 

cooking an egg, is not the safest. 

 

 The third method of reducing the energy consumption is by boiling water in a kettle, then 

using low heat to simmer the eggs for a longer time. A kettle is more efficient for boiling water 

requiring around 1500W of energy and taking around 5 minutes to boil 1 pot of water (1.7L) [2]. 

While a coil stove requires around 1000W on high power and around 10 minutes to boil a pot of 

water [3]. Once the water is boiled in the kettle the pot can be placed on the stovetop burner on a 

lower setting to maintain the water temperature when placing the eggs in. The combination of the 

kettle and the lowered stovetop heat settings will give the same boiled egg for less energy. 

However, the downside of this idea is that it will take more time to cook. 

 

 By utilizing the above techniques, direct conduction, a microwave or a kettle to boil the 

water, are all ways to cook an egg in a more energy efficient manner. 

 

  



8 

 

2.0 Cartesian 1D Heat Equation 

 

 The following PDE was solved numerically and analytically using the conditions below. 

 

PDE 

𝑢𝑡 = 2𝑢𝑥𝑥, 𝑥 𝜖 (0,1), 𝑡 𝜖 (0, ∞) 

BC 

𝑢(𝑥 = 0, 𝑡) = 0, 𝑢(𝑥 = 1, 𝑡) = 2, 𝑡 𝜖 [0 , ∞) 

IC 

𝑢(𝑥, 𝑡 = 0) = cos(𝜋𝑥) , 𝑥 𝜖 (0,1) 

 

2.1 Numerical Solution 

 

 Starting with a numerical approach, Euler’s Method and the Central Difference formula 

was used to approximate the PDE with a first order of accuracy. 

 

Euler’s Method: 

 

𝜕𝑢

𝜕𝑡
=

𝑢𝑖
𝑘+1 − 𝑢𝑖

𝑘

∆𝑡
 

 

Central Difference: 

 

𝜕2𝑢

𝜕𝑥2
=

𝑢𝑖+1
𝑘 − 2𝑢𝑖

𝑘 + 𝑢𝑖−1
𝑘

(∆𝑥)2
 

 

Replace in PDE: 

 

𝑢𝑖
𝑘+1 − 𝑢𝑖

𝑘

∆𝑡
= 2 (

𝑢𝑖+1
𝑘 − 2𝑢𝑖

𝑘 + 𝑢𝑖−1
𝑘

(∆𝑥)2
) 

 

𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 +
2∆𝑡

(∆𝑥)2
(𝑢𝑖+1

𝑘 − 2𝑢𝑖
𝑘 + 𝑢𝑖−1

𝑘 ) (5) 

 

Stability Condition: 

 

𝑢𝑖
𝑘 −

2∆𝑡

(∆𝑥)2
2𝑢𝑖

𝑘 = (1 −
4∆𝑡

(∆𝑥)2
) 𝑢𝑖

𝑘,
4∆𝑡

(∆𝑥)2
< 1 → ∆𝑡 <

(∆𝑥)2

4
 

 

 With the numerical approximation for this PDE given as Equation 5, ∆𝑥 was selected to 

solve for the ∆𝑡 that met the stability condition of this approximation and computational power 



9 

 

available. Note, the choice of grid spacing (∆𝑥) is explained in Section 2.4. The results are 

plotted and compared to the analytical solution in the following sections. 

 

∆𝑥 = 0.01𝑚 

 

∆𝑡 <
(0.01)2

4
= 2.5𝑥10−5, ∆𝑡 = 2𝑥10−5𝑠 

 

2.2 Analytical Solution 

  

 Using an analytical approach, the same PDE as the previous question was solved. The 

hand calculations, which the solution below follows, can be found in Appendix B.  

 

 First, considering the inhomogeneity of BC at x = 1, the term 𝑣(𝑥, 𝑡) and 𝜑(𝑥, 𝑡) are 

introduced where 𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝜑(𝑥, 𝑡). This form displays the inhomogeneous term u as a 

summation of a homogeneous term v and a shift 𝜑 allowing to solve for v using separation of 

variables.  

 

 Utilizing the given u BCs and the 0 BC values of v, due to its homogeneity, values of 𝜑 

can be found at x = 0 and x = 1. 

 

𝑢(𝑥 = 0, 𝑡) = 𝑣(𝑥 = 0, 𝑡) + 𝜑(𝑥 = 0, 𝑡) 

 

0 = 0 + 𝜑(𝑥 = 0, 𝑡) 

 

𝜑(𝑥 = 0, 𝑡) = 0 

 

Using the same approach, 

 

𝜑(𝑥 = 1, 𝑡) = 2 

 

From the values of 𝜑 at x=0 and x=1, a slope and therefore a linear function for 𝜑 is derived: 

 

𝜑(𝑥) = 2𝑥 

  

Therefore,  

 

𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 2𝑥 

 

Taking the first derivative with respect to time to achieve the LHS of the PDE and taking the 

second derivative with respect to x to achieve the u component in the RHS of the PDE 

respectively yields: 



10 

 

𝑢𝑡(𝑥, 𝑡) = 𝑣𝑡(𝑥, 𝑡) 

𝑢𝑥𝑥(𝑥, 𝑡) = 𝑣𝑥𝑥(𝑥, 𝑡) 

 

Therefore, the PDE can be written as: 

 

𝑣𝑡(𝑥, 𝑡) = 2𝑣𝑥𝑥(𝑥, 𝑡) 

 

Furthermore, since the IC for u is given as: 

 

𝑢(𝑥, 𝑡 = 0) = cos(𝜋𝑥) 

 

THE IC for v can be calculated as: 

 

𝑣(𝑥, 𝑡 = 0) = cos(𝜋𝑥) − 2𝑥 

 

Thus, the PDE, two Dirichlet BCs, and IC of homogeneous v was acquired, and can be solved 

using separation of variables.  

𝑉𝑡 = 2 𝑉𝑥𝑥 

 

 

BC:  
𝑉(0, 𝑡) = 0, 𝑉(1, 𝑡) = 0 

 

IC: 

𝑉(𝑥, 𝑡 = 0) = 𝑢(𝑥, 𝑡 = 0) − 𝜙(𝑥) = cos(𝜋𝑥) − 2𝑥 

 

Separating V into X(x) and T(t): 

 

𝑉(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) = 𝑋𝑇 

Plugging into the PDE: 

 

𝑋𝑇′ = 2𝑋′′𝑇 

 

Separating X(x) and its derivatives from T(t) and its derivatives and equating to a constant k: 

 

𝑋′′

𝑋
=

𝑇′

𝛼2𝑇
= 𝑘 

 

(𝑖), 𝑋′′ − 𝑘𝑥 = 0 

(𝑖𝑖), 𝑇′ − 𝑘𝛼2𝑇 = 0 

 

Calculating BCs of X(x) at x = 0 and x = 1 knowing BCs of 𝑉(𝑥, 𝑡): 

 



11 

 

𝑉 = 𝑋𝑇 

 

BC 1: 

 

𝑉(𝑥 = 0, 𝑡) = 0 = 𝑋(0)𝑇(𝑡) → 𝑋(0) = 0 

BC 2: 

 

𝑉(𝑥 = 1, 𝑡) = 0 = 𝑋(1)𝑇(𝑡) → 𝑋(1) = 0 

 

 

Considering (𝑖) when; k= 0, k = 𝜇2 > 0, and 𝑘 < 𝜇20, 

 

At 𝑘 = 0 

𝑋′′ = 0 

𝑋 = 𝑎𝑥 + 𝑏 

 

Applying the two BCs for X(x), a trivial solution is computed: 

 

0 = 𝑎(0) + 𝑏 → 𝑏 = 0 

0 = 𝑎(1) + 0 → 𝑎 = 0 

 

At 𝑘 = 𝜇2 > 0 

 

𝑋′′ − 𝜇2𝑋 = 0 

𝑋 = 𝐴𝑒−𝜇𝑥 + 𝐵𝑒𝜇𝑥 

 

0 = 𝐴 + 𝐵 

0 = 𝐴𝑒−𝜇 + 𝐵𝑒𝜇 

 

Substituting the first equation into second, 

 

𝐵(−𝑒−𝜇 + 𝑒𝜇) = 0 

 

𝐵 = 0, 𝐴 = 0 

 

therefore, a trivial solution is achieved. 

 

At 𝑘 = −𝜇2 < 0 

 

𝑋′′ + 𝜇2𝑋 = 0 

 

𝑋 = 𝐴 cos(𝜇𝑥) + 𝐵 sin(𝜇𝑥) 

 



12 

 

0 = 𝐴 cos(0) + 𝐵 sin(0) → 𝐴 = 0 

0 = 𝐴 cos(𝜇) + 𝐵 sin(𝜇) → 𝐵 sin(𝜇) = 0 → sin(𝜇) = 0 

 

Therefore, 

𝜇 = 𝑛𝜋, 𝑛 = 1,2,3 … 

𝑘𝑛 = −(𝑛𝜋)2, 𝑛 = 1,2,3 … 

𝑋𝑛(𝑥) = 𝐵 sin(𝑛𝜋𝑥) = sin(𝑛𝜋𝑥) 

 

Note that constant B is omitted as it will later be combined with constant Cn found from 

equation (𝑖𝑖). Plugging 𝑘𝑛 into equation (𝑖𝑖): 

 

𝑇′ − 2𝑘𝑇 = 0 

𝑇′ + 2(𝑛𝜋)2𝑇 = 0 

 

𝑇𝑛(𝑡) = 𝐶𝑛𝑒−2(𝑛𝜋)2𝑡 

 

𝑉(𝑥, 𝑡) = ∑ 𝑉𝑛(𝑥, 𝑡)

∞

𝑛=1

= ∑ 𝑋𝑛(𝑥)𝑇𝑛(𝑡)

∞

𝑛=1

= ∑ sin(𝑛𝜋𝑥) (𝐶𝑛𝑒−2(𝑛𝜋)2𝑡)

∞

𝑛=1

 

 

Considering the IC for V: 

 

𝑉(𝑥, 𝑡 = 0) = cos(𝜋𝑥) − 2𝑥 

 

∑ sin(𝑛𝜋𝑥) (𝐶𝑛)

∞

𝑛=1

= cos(𝜋𝑥) − 2𝑥 

 

Since V is only a summation of sine terms, the Fourier formula, 𝑐𝑛 =
2

𝐿
 ∫ 𝑓(𝑥) sin (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0
 can 

be used to calculate the coefficients 𝐶𝑛 

 

𝐶𝑛 =
2

1
∫ (cos(𝜋𝑥) − 2𝑥) sin (𝑛

𝜋

1
𝑘) 𝑑𝑥

1

0

 

𝐶𝑛 = 2 ∫ (cos(𝜋𝑥) − 2𝑥) sin(𝑛𝜋𝑘) 𝑑𝑥
1

0

 

𝐶𝑛 = 2 [∫ (cos(𝜋𝑥) sin(𝑛𝜋𝑥))𝑑𝑥
1

0

− ∫ 2𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥
1

0

] 

 

Left Integral 𝐼1 = ∫ (cos(𝜋𝑥) sin(𝑛𝜋𝑥))𝑑𝑥
1

0
 

 

Since cos 𝐴 sin 𝐵 =
1

2
[sin(𝐴 + 𝐵) − sin(𝐴 − 𝐵)] 



13 

 

 

cos(𝜋𝑥) sin(𝑛𝜋𝑥) =
1

2
[sin((𝑛 + 1)𝜋𝑥) − sin((1 − 𝑛)𝜋𝑥)] 

 

Plugging into left integral I1 

 

1

2
[∫ sin((𝑛 + 1)𝜋𝑥)

1

0

𝑑𝑥 − ∫ sin((1 − 𝑛)𝜋𝑥)
1

0

𝑑𝑥] 

 

1

2
[
− cos((𝑛 + 1)𝜋𝑥)

(𝑛 + 1)𝜋
|

0

1

−
− cos((1 − 𝑛) 𝜋𝑥)

(1 − 𝑛)𝜋
|

0

1

] 

 

1

2
[
− cos((𝑛 + 1)𝜋)

(𝑛 + 1)𝜋
− (−

cos(0)

(𝑛 + 1)𝜋
) − [

− cos((1 − 𝑛) 𝜋)

(1 − 𝑛)𝜋
−

− cos(0)

(1 − 𝑛)𝜋
 ]] 

 

1

2
[
− cos((𝑛 + 1)𝜋) + 1

(𝑛 + 1)𝜋
− (

− cos((1 − 𝑛)𝜋) + 1

(1 − 𝑛)𝜋
)] 

 

Since cos(𝑘𝜋) = (−1)𝑘 

 

𝐼1 =
1

2
[
−(−1)𝑛+1 + 1

(𝑛 + 1)𝜋
− (

−(−1)1−𝑛 + 1

(1 − 𝑛)𝜋
)] 

Simplifying I1,  

 

𝐼1 =
1

2𝜋
[
(−1)𝑛 + 1

𝑛2 − 1
] 

 

Right Integral 𝐼2 = ∫ 2𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥
1

0
 

 

Using Integration by parts and letting 𝑢 = 𝑥, 𝑑𝑢 = 𝑑𝑥 

 

𝑣 = −
− cos(𝑛𝜋𝑥)

𝑛𝜋
, 𝑑𝑣 = sin(𝑛𝜋𝑥) 𝑑𝑥 

 

−
𝑥 cos(𝑛𝜋𝑥)

𝑛𝜋
− ∫ −

cos(𝑛𝜋𝑥)

𝑛𝜋
𝑑𝑥

1

0

 

 

[
𝑥 cos(𝑛𝜋𝑥)

𝑛𝜋
+

1

𝑛𝜋

sin(𝑛𝜋𝑥)

𝑛𝜋
]

0

1

 



14 

 

 

−
cos(𝑛𝜋)

𝑛𝜋
+

1

𝑛𝜋
[
sin(𝑛𝜋)

𝑛𝜋
] 

 

−
cos(𝑛𝜋)

𝑛𝜋
+

sin(𝑛𝜋)

(𝑛𝜋)2
 

 

Since cos(𝑛𝜋) = (−1)𝑛 and sin(𝑛𝜋) = 0 for n=1,2,3, … 

 

−
(−1)𝑛

𝑛𝜋
+

0

(𝑛𝜋)2
= −

(−1)𝑛

𝑛𝜋
 

 

𝐼2 = 2
(−1)𝑛

𝑛𝜋
 

 

𝐶𝑛 = 2[𝐼1 + 𝐼2] = 2 [
1

2𝜋
[
(−1)𝑛 + 1

𝑛2 − 1
] + 2

(−1)𝑛

𝑛𝜋
] 

 

𝐶𝑛 =
1

𝜋
[
(−1)𝑛 + 1

𝑛2 − 1
] + 4

(−1)𝑛

𝑛𝜋
 

 

However, since in this form of I1, C1 would be dividing by 0. Therefore, C1 is calculated 

separately by substituting n=1 to Cn, 

 

2 [∫ (cos(𝜋𝑥) sin(𝜋𝑥))𝑑𝑥
1

0

− ∫ 2𝑥 sin(𝜋𝑥) 𝑑𝑥
1

0

] 

 

 

Since cos 𝐴 sin 𝐵 =
1

2
[sin(𝐴 + 𝐵) − sin(𝐴 − 𝐵)] 

 

cos(𝜋𝑥) sin(𝜋𝑥) =
1

2
[sin((𝑛 + 1)𝜋𝑥) − sin((1 − 𝑛)𝜋𝑥)] 

 

Plugging into left integral I1 

 

2 [∫ sin(2𝜋𝑥) − sin (0)
1

0

𝑑𝑥 − 4 ∫ x sin(𝜋𝑥)
1

0

𝑑𝑥] 

 

[−
1

2
cos(2𝜋)]

0

1

− 4 ([−
𝑥 cos(𝜋𝑥)

𝜋
]

0

1

− ∫ −
cos(𝜋𝑥)

𝜋
𝑑𝑥

1

0

) 

 



15 

 

0 − 4 (
1

𝜋
+

sin(𝜋𝑥)

𝜋2
−

sin(0)

𝜋2
) = −

4

𝜋
 

 

Thus,  

𝑉1(𝑥, 𝑡) = sin(𝜋𝑥) [−
4

𝜋
] 𝑒−2(𝜋)2𝑡 

 

And therefore,  

 

𝑉𝑛(𝑥, 𝑡) = −
4

𝜋
sin(𝜋𝑥) 𝑒−2(𝜋)2𝑡 + [∑ sin(𝑛𝜋𝑥)

∞

𝑛=1

[
1

𝜋
[
(−1)𝑛 + 1

𝑛2 − 1
] + 4

(−1)𝑛

𝑛𝜋
] 𝑒−2(𝑛𝜋)2𝑡] 

, 𝑓𝑜𝑟 𝑛 = 2,3,4, … 

 

 

Since 𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝜑(𝑥, 𝑡), 

 

𝑈𝑛(𝑥, 𝑡) = −
4

𝜋
sin(𝜋𝑥) 𝑒−2(𝜋)2𝑡 + ∑ sin(𝑛𝜋𝑥)

∞

𝑛=1

[
1

𝜋
[
(−1)𝑛 + 1

𝑛2 − 1
] + 4

(−1)𝑛

𝑛𝜋
] 𝑒−2(𝑛𝜋)2𝑡 + 2𝑥 

𝑓𝑜𝑟 𝑛 = 2,3,4, … 

 

 

This is the final analytical function that gives the temperature along the rod at any time. Since 

infinite terms cannot be summed, 𝑛 ∈ [1,1000] was selected as its reduces computational power 

demand, whilst remaining relatively accurate in comparison to the numerical solution. 

 

2.3 Comparing Numerical and Analytical Solutions 

 

Since both numerical and analytical solutions are valid from 𝑡 ∈ [0, ∞], specific time 

instances were used to compare each method of solving the PDE. The time steps chosen are the 

following: t = 0.001s, t = 0.01s,  t = 0.1s, and t = 10s. Figure 4 shows the results, using the 

previously derived time step for the numerical solution and 𝑁 = 1000 terms for the analytical 

solution. 



16 

 

 

Figure 4: Numerical and analytical solutions 

 From Figure 4, the two solutions appear near identical. So, the root-means-squared 

(RMS) of the difference between each solution was plotted at each time instance as seen in 

Figure 5. 

 

 

Figure 5: Comparing the analytical and numerical solutions 

 As seen in Figure 5, there is a very small difference in the solutions with the largest 

variation being around 0.087 at t = 0.001s and converging to around 0.01 average difference. 

 

2.4 Changing Accuracy of Solutions 

 

 Starting with the numerical solution, this section will investigate the effect of the grid 

spacing on the accuracy of the solution. For this check, a maximum time of 10 seconds and a 1-

meter rod length is used. 

 

 To observe the effect a grid spacing of ∆𝑥 = 0.1𝑚 will have on the numerical solution, it 

was plotted against the analytical solution as shown in Figure 6 with 𝑛 ∈ [1,1000]. Since the 

analytical solution is unaffected by grid spacing and only the number of terms in the summation, 



17 

 

both solutions will use a ∆𝑥 = 0.1𝑚 for the 1m rod. Note, with this grid spacing ∆𝑡 = 2𝑥10−3𝑠 

to meet the stability condition for the numerical number. So, the first-time instance plotted was 

changed from t = 0.001s to t = 0.002s. The other time instances are the same as defined 

previously. 

 

 

Figure 6: Reduced grid spacing's effect on accuracy of  numerical solution 

 Figure 6 demonstrates that with a reduced grid spacing value of ∆𝑥 = 0.1𝑚 the 

maximum difference jumps to 0.958. So, a grid spacing of ∆𝑥 = 0.01𝑚 is a good choice for 

accuracy with minimal computational power requirements. 

 

 In terms of reducing grid spacing, ∆𝑥 = 0.001𝑚 would result in exponentially more 

demanding processing power, shown below. 

 

∆𝑥 = 0.001𝑚, 𝑁𝑥 =
1

1𝑥10−3
= 103 𝑠𝑡𝑒𝑝𝑠 

 

∆𝑡 <
(0.001)2

4
= 2.5𝑥10−7, ∆𝑡 = 2𝑥10−7, 𝑁𝑡 =

10𝑠

2𝑥10−7𝑠
= 5𝑥107 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 

 

 This would require a 1 thousand x 50 million matrix to solve every time step which 

exceeds the computational power available. Thus, the difference in accuracy from ∆𝑥 = 0.01𝑚 

to ∆𝑥 = 0.001𝑚 would not justify using more increased processing power required to solve. As 

proved previously, using the analytical as a ground truth, the error with grid spacing of ∆𝑥 =

0.01𝑚 was less than 0.087 which is already a very low tolerance. 

 

 Next, the accuracy of the analytical solution will be compared at different number of 

summation terms. A ground truth of N = 1000 will be used since there was a very small deviation 

from the values with this N and the numerical solution at ∆𝑥 = 0.01𝑚. Using the same time 

instances, the function will sum the first 10, 100 and 1000 terms, and is plotted in Figure 7. 



18 

 

 

 

Figure 7: Changing number of summation terms in the analytical solution 

 There is a small difference when N = 10, with an RMS value of 0.06 at t = 0.01s. When N 

= 100 the solution is near identical with the RMS value of 0 (rounding). So, the analytical 

solution is more robust and does not require as much computational power as the numerical 

approach. 

 

 

 

 

  



19 

 

References 

 

[1]  S. K. F. D. K. L. K. D. Buay, "How long does it take to boil an egg? Revisited," 04 04 

2025. [Online]. Available: 

https://www.researchgate.net/publication/243414074_How_long_does_it_take_to_boil_an

_egg_Revisited. 

[2]  "Estimating Appliance and Home Electronic Energy Use," 04 04 2025. [Online]. 

Available: https://www.energy.gov/energysaver/estimating-appliance-and-home-

electronic-energy-use. 

[3]  "Is Induction More Efficient Than Electric Coil or Gas? An Energy Efficiency 

Comparison Between Stoves," 04 04 2025. [Online]. Available: 

https://www.centurylife.org/is-induction-more-efficient-than-electric-coil-or-gas-an-

energy-efficiency-comparison-between-stoves/. 

 

 

 

 

 

 

 

 

 

 

 

  



20 

 

 

Statement of Task Division 

 

The tasks in this project were divided among the five group members, ensuring an even 

distribution of work. Each member contributed to different aspects of the project, as outlined 

below: 

 

Vikesh Mistry: Developed the numerical solutions and MATLAB code used throughout the 

project. Wrote sections of the report. 

 

Ali Muizz: Wrote sections of the report, performed edits, and supported MATLAB code 

development. 

 

Yasir Ahmed: Performed the live experiments for the egg cooking/measurements and wrote it in 

the report. 

 

Krypton Purnama: Performed the hand calculations for the project and wrote about it within the 

report. Supported MATLAB code conception. 

 

Saleem Mohammed Ali: Edited the report and provided support for MATLAB coding. 

 

Statement of Generative AI Usage 

 

Generative AI was utilized as a supplementary tool to support work done on this project. 

It was mainly used for troubleshooting MATLAB code. The final code, report writing, and 

analysis was completed entirely by the team. 

  



21 

 

Appendix A – MATLAB Code 

 

1D Heat Equation in Spherical  

 

clear; clc;  

 

alpha = 1.5e-7;      % Diffusivity of egg (m^2/s) 

R = 0.022;           % Radius (m) 

dr = 1e-4; 

N = round(R/dr); 

dt = 0.01;            % Time step 

t_max = 15*60;       % Time (s) 

Nt = round(t_max / dt);    % # Time steps 

 

r = linspace(0, R, N)';     % Radius 

t = linspace(0, t_max, Nt); % Time grid 

U = zeros(N, Nt);           % Temperature storage 

 

% Initial Condition 

U(:,1) = 4; % Fridge Temperature  

 

% Boundary condition at r = R 

U(end,:) = 100; 

 

% Time loop 

for n = 1:Nt-1 

 

    u_new = U(:,n); % Current time step 

 

    % Radial Loop 

    for i = 2:N-1 

 

        % Central Difference 1st order 

        term1 = (U(i+1,n) - 2*U(i,n) + U(i-1,n)) / (dr*dr); 

 

        % 2nd order 

        term2 = (U(i+1,n) - U(i-1,n)) / (r(i) * dr); 

 

        % Final eq 

        u_new(i) = U(i,n) + alpha * dt * (term1 + term2); 

 

    end 



22 

 

 

    % Apply Neumann BC at r = 0 (du/dr = 0) 

    u_new(1) = u_new(2);  

 

    % Store new temperature values 

    U(:,n+1) = u_new; 

 

end 

 

[X, Y] = meshgrid(t, r); 

col = find(U(1,:) >= 80, 1); 

disp(['Time to reach 80C ', num2str(X(1,col)/60,3),' minutes']); 

 

 

GRAPHING 

 

clear; clc;  

 

alpha = 1.5e-7;     % Diffusivity of egg (m^2/s) 

R = 0.022;           % Radius (m) 

dr = 1e-4; 

N = round(R/dr); 

dt = 0.01;            % Time step 

t_max = 15*60;      % Time (s) 

Nt = round(t_max / dt);    % # Time steps 

 

r = linspace(0, R, N)'; % Radius 

t = linspace(0, t_max, Nt); % Time grid 

U = zeros(N, Nt); % Temperature storage 

 

% Initial Condition 

U(:,1) = 4; % Fridge Temperature  

 

% Boundary condition at r = R 

U(end,:) = 100; 

 

 

% Time loop 

for n = 1:Nt-1 

 

    u_new = U(:,n); % Current time step 

 

    % Radial Loop 



23 

 

    for i = 2:N-1 

 

        % Central Difference 1st order 

        term1 = (U(i+1,n) - 2*U(i,n) + U(i-1,n)) / (dr*dr); 

 

        % 2nd order 

        term2 = (U(i+1,n) - U(i-1,n)) / (r(i) * dr); 

 

        % Final eq 

        u_new(i) = U(i,n) + alpha * dt * (term1 + term2); 

 

    end 

 

    % Apply Neumann BC at r = 0 (du/dr = 0) 

    u_new(1) = u_new(2);  

 

    % Store new temperature values 

    U(:,n+1) = u_new; 

 

end 

 

% 3D Surface Plot 

% figure; 

[X, Y] = meshgrid(t, r); 

col = find(U(1,:) >= 80, 1); 

disp(['Time to reach 80C ', num2str(X(1,col)/60,3),' minutes']); 

surf(X, Y, U, 'EdgeColor', 'none'); 

 xlabel('Time (s)'); 

ylabel('Radius (cm)'); 

zlabel('Temperature (°C)'); 

title('1D Heat Diffusion in Spherical Coordinates'); 

colorbar; 

grid on; 

 

 

 

 

 

 

 

 

 

 



24 

 

1D Wave Equation Cartesian Coord 

 

NUMERICAL SOLUTION 

 

clear; clc; 

 

% Parameters 

L = 1;              

Tmax = 1;         % Total time 

Nx = 101;           % Number of spatial steps 

dx = L / (Nx-1);   % Space step size 

dt = 0.4 * (dx*dx / 2); % Time step (stability condition) 

Nt = round(Tmax / dt); % Number of time steps 

 

x = linspace(0, L, Nx);   

t = linspace(0, Tmax, Nt);  

U = zeros(Nx, Nt);  

 

% Initial Condition 

U(:,1) = cos(pi * x); 

 

% Boundary Conditions 

U(1,:) = 0;  % u(0,t) = 0 

U(end,:) = 2; % u(1,t) = 2 

 

figure; 

 

for n = 1:Nt-1 

 

    % Get current time step 

    u_new = U(:,n);  

 

    % Finite difference 

    for i = 2:Nx-1 

        u_new(i) = U(i,n) + (2 * dt / dx^2) ... 

                * (U(i+1,n) - 2*U(i,n) + U(i-1,n)); 

 

    end 

     

    U(:,n+1) = u_new; 

 

end 

 



25 

 

timesteps = round([0.001,0.01,0.1,1]./dt); 

colors = ['r','g','b','c',"#EDB120"]; 

numerical = zeros(Nx,length(timesteps)); 

 

for k = 1:length(timesteps) 

 

    plot(x, U(:,timesteps(k)), 'Color', colors(k), 'LineWidth', 2); 

    hold on; 

 

    %store time values 

    numerical(:,k) = U(:,timesteps(k)); 

 

end 

 

 

ANALYTICAL SOLUTION 

 

 

x = linspace(0, 1, 100); 

t = [0.001, 0.01, 0.1, 10]; % Different time instances 

N = 1000; % Number of terms in the summation 

 

[X, T] = meshgrid(x, t); 

U = zeros(size(X)); 

 

% Compute the series sum 

for n = 2:N 

 

    term1 = (((-1)^n + 1)*2*n) / ((n^2 - 1) * pi); 

    term3 = 4 * (-1)^n / (n * pi); 

     

    % Avoid division by zero 

    if n == 1 

        term1 = 0; 

    end 

     

    U = U + sin(n * pi * X) .* (term1 + term3) ... 

                .* exp(-2 * (n * pi)^2 * T); 

end 

 

% Add the linear term 2x 

U = -(4/pi)*sin(pi.*X).*exp(-2*pi*pi*T) + U + 2 * X; 

 



26 

 

% Plot results 

colors = ['m','y','k',"#4DBEEE","#EDB120"]; 

 

for i = 1:length(t) 

 

    plot(x, U(i,:), 'Color', colors(i), 'LineWidth', 2); 

    hold on; 

 

end 

 

legend('t = 0.001','t = 0.01','t = 0.1','t = 10', ... 

            'Location', 'Northwest'); 

xlabel('Temperature (°C)'); 

ylabel('Position on Rod (m)'); 

title('Numerical and Analytical Solutions'); 

grid on; 

hold off; 

 

%store time values 

analytical = U; 

 

numerical = transpose(numerical); 

 

error = abs(analytical - numerical(:,1:100)); 

 

figure; 

 

for i = 1:length(t) 

 

    error(i,1) = rms(error(i,:)); 

 

end 

 

plot(log(t), error(:,1), 'r', 'LineWidth', 2'); 

xlabel('Log10 Time Instance (s)'); 

ylabel('RMS Difference'); 

title('Analytical - Numerical'); 

grid on; 

 

 

 

 



27 

 

 

GRID SPACING 

 

clear; clc; 

 

% Parameters 

L = 1;              

Tmax = 1;         % Total time 

Nx = 11;           % Number of spatial steps 

dx = L / (Nx-1);   % Space step size 

dt = 0.4 * (dx*dx / 2); % Time step (stability condition) 

Nt = round(Tmax / dt); % Number of time steps 

 

x = linspace(0, L, Nx);   

t = linspace(0, Tmax, Nt);  

U = zeros(Nx, Nt);  

 

% Initial Condition 

U(:,1) = cos(pi * x); 

 

% Boundary Conditions 

U(1,:) = 0;  % u(0,t) = 0 

U(end,:) = 2; % u(1,t) = 2 

 

figure; 

 

for n = 1:Nt-1 

 

    % Get current time step 

    u_new = U(:,n);  

 

    % Finite difference 

    for i = 2:Nx-1 

        u_new(i) = U(i,n) + (2 * dt / dx^2) ... 

                * (U(i+1,n) - 2*U(i,n) + U(i-1,n)); 

 

    end 

     

    U(:,n+1) = u_new; 

 

end 

 

timesteps = round([0.002,0.01,0.1,1]./dt); 



28 

 

colors = ['r','g','b','c',"#EDB120"]; 

numerical = zeros(Nx,length(timesteps)); 

 

for k = 1:length(timesteps) 

 

    plot(x, U(:,timesteps(k)), 'r', 'LineWidth', 2); 

    hold on; 

 

    %store time values 

    numerical(:,k) = U(:,timesteps(k)); 

 

end 

 

 

 

%----------------------------------------------------------------- 

 

x = linspace(0, 1, 10); 

t = [0.002, 0.01, 0.1, 10]; % Different time instances 

N = 1000; % Number of terms in the summation 

 

[X, T] = meshgrid(x, t); 

U = zeros(size(X)); 

 

% Compute the series sum 

for n = 2:N 

 

    term1 = (((-1)^n + 1)*2*n) / ((n^2 - 1) * pi); 

    term3 = 4 * (-1)^n / (n * pi); 

     

    % Avoid division by zero 

    if n == 1 

        term1 = 0; 

    end 

     

    U = U + sin(n * pi * X) .* (term1 + term3) ... 

                .* exp(-2 * (n * pi)^2 * T); 

end 

 

% Add the linear term 2x 

U = -(4/pi)*sin(pi.*X).*exp(-2*pi*pi*T) + U + 2 * X; 

 

% Plot results 



29 

 

colors = ['m','y','k',"#4DBEEE","#EDB120"]; 

 

for i = 1:length(t) 

 

    plot(x, U(i,:), 'g', 'LineWidth', 2); 

    hold on; 

 

end 

 

legend('Numerical','','','','Analytical', ... 

            'Location', 'Northwest'); 

xlabel('Temperature (°C)'); 

ylabel('Position on Rod (m)'); 

title('Numerical and Analytical Solutions (dx = 0.1m)'); 

grid on; 

hold off; 

 

%store time values 

analytical = U; 

 

numerical = transpose(numerical); 

 

error = abs(analytical - numerical(:,1:10)); 

 

figure; 

 

for i = 1:length(t) 

 

    error(i,1) = rms(error(i,:)); 

 

end 

 

plot(log(t), error(:,1), 'r', 'LineWidth', 2'); 

xlabel('Log10 Time Instance (s)'); 

ylabel('RMS Difference'); 

title('Analytical - Numerical (dx = 0.1m)'); 

grid on; 

 

 

 

 

 

 



30 

 

ANALYICAL NO TERMS TEST 

 

clc; clear;  

 

x = linspace(0, 1, 100); 

t = [0.001, 0.01, 0.1, 10]; % Different time instances 

N = 10; % Number of terms in the summation 

 

[X, T] = meshgrid(x, t); 

U = zeros(size(X)); 

 

% Compute the series sum 

for n = 2:N 

 

    term1 = (((-1)^n + 1)*2*n) / ((n^2 - 1) * pi); 

    term3 = 4 * (-1)^n / (n * pi); 

     

    % Avoid division by zero 

    if n == 1 

        term1 = 0; 

    end 

     

    U = U + sin(n * pi * X) .* (term1 + term3) ... 

                .* exp(-2 * (n * pi)^2 * T); 

end 

 

% Add the linear term 2x 

U = -(4/pi)*sin(pi.*X).*exp(-2*pi*pi*T) + U + 2 * X; 

 

% Plot results 

figure; 

%colors = ['r','g','b','c',"#EDB120"]; 

 

for i = 1:length(t) 

 

    plot(x, U(i,:), 'r', 'LineWidth', 2); 

    hold on; 

 

end 

 

first_ans = U; 

 

N = 100; 



31 

 

U = zeros(size(X)); 

 

% Compute the series sum 

for n = 2:N 

 

    term1 = (((-1)^n + 1)*2*n) / ((n^2 - 1) * pi); 

    term3 = 4 * (-1)^n / (n * pi); 

     

    % Avoid division by zero 

    if n == 1 

        term1 = 0; 

    end 

     

    U = U + sin(n * pi * X) .* (term1 + term3) ... 

                .* exp(-2 * (n * pi)^2 * T); 

end 

 

% Add the linear term 2x 

U = -(4/pi)*sin(pi.*X).*exp(-2*pi*pi*T) + U + 2 * X; 

 

% Plot results 

for i = 1:length(t) 

 

    plot(x, U(i,:), 'g', 'LineWidth', 2); 

    hold on; 

 

end 

 

second_ans = U; 

 

N = 1000; 

U = zeros(size(X)); 

 

% Compute the series sum 

for n = 2:N 

 

    term1 = (((-1)^n + 1)*2*n) / ((n^2 - 1) * pi); 

    term3 = 4 * (-1)^n / (n * pi); 

     

    % Avoid division by zero 

    if n == 1 

        term1 = 0; 

    end 



32 

 

     

    U = U + sin(n * pi * X) .* (term1 + term3) ... 

                .* exp(-2 * (n * pi)^2 * T); 

end 

 

% Add the linear term 2x 

U = -(4/pi)*sin(pi.*X).*exp(-2*pi*pi*T) + U + 2 * X; 

 

% Plot results 

%colors = ['r','g','b','c',"#EDB120"]; 

 

for i = 1:length(t) 

 

    plot(x, U(i,:), 'b', 'LineWidth', 2); 

    hold on; 

 

end 

 

third_ans = U; 

 

first_error = third_ans - first_ans; 

first_error = rms(first_error,"all"); 

 

second_error = third_ans - second_ans; 

second_error = rms(second_error,"all"); 

 

legend('N = 10','','','','','N = 100','','','','N = 1000', ... 

            'Location', 'Northwest'); 

xlabel('Temperature (°C)'); 

ylabel('Position on Rod (m)'); 

title('Analytical Solution (Different Ns)'); 

grid on; 

hold off; 

 

 

 

 

 

 

 

 

 

 



33 

 

Appendix B – Hand Calculations 

 

 The hand calculations for the analytical solution of the PDE solved in Section 2 is 

provided in the series of images below. 

 

 



34 

 



35 

 



36 

 



37 

 



38 

 

 


