[2]:

[3]:

projB1
January 10, 2025

1 Project B1: Spam/Ham Classification

1.1 Introduction

You will use what you’'ve learned in class to create a binary classifier that can distinguish spam
(junk, commercial, or bulk) emails from ham (regular non-spam) emails. In addition to providing
some skeleton code to fill in, we will evaluate your work based on your model’s accuracy and your
written responses in this notebook.

After this project, you should feel comfortable with the following;:

o Feature engineering with text data.
e Using the sklearn library to process data and fit models.
o Validating the performance of your model and minimizing overfitting.

This first part of the project focuses on initial analysis, feature engineering, and logistic regression.
In the second part of this project (which will be released next week), you will build your own
spam/ham classifier.

1.2 Content Warning

This is a real-world dataset —— the emails you are trying to classify are actual spam and
legitimate emails. As a result, some of the spam emails may be in poor taste or be considered
inappropriate. We think the benefit of working with realistic data outweighs these inappropriate
emails but wanted to provide a warning at the beginning of the project so that you are aware.

Run this cell to suppress all FuturelWarnings.
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)

More readable exceptions.
%pip install --quiet iwut
%load_ext iwut

%wut on

Note: you may need to restart the kernel to use updated packages.

import numpy as np
import pandas as pd

[4] :

[5]:

[5]:

import matplotlib.pyplot as plt
Jmatplotlib inline

import seaborn as sns

sns.set(style = "whitegrid",
color_codes = True,
font_scale = 1.5)

2 The Data

In email classification, our goal is to classify emails as spam or not spam (referred to as “ham”)
using features generated from the text in the email. The dataset is from SpamAssassin. It consists
of email messages and their labels (0 for ham, 1 for spam). Your labeled training dataset contains
8,348 labeled examples, and the unlabeled test set contains 1,000 unlabeled examples.

Note: The dataset is from 2004, so the contents of emails might be very different from those in
2024.

Run the following cells to load the data into a DataFrame.
The train DataFrame contains labeled data you will use to train your model. It has four columns:

id: An identifier for the training example.

subject: The subject of the email.

email: The text of the email.

spam: 1 if the email is spam, 0 if the email is ham (not spam).

B0 o=

The test DataFrame contains 1,000 unlabeled emails. In Project B2, you will predict labels for
these emails and submit your predictions to the autograder for evaluation.

import zipfile

Loading training and test datasets
with zipfile.ZipFile('spam_ham_data.zip') as item:
with item.open("train.csv") as f:
original_training data = pd.read_csv(f)
with item.open("test.csv") as f:
test = pd.read_csv(f)

Convert the emails to lowercase as the first step of text processing.
original_training_data['email'] = original_training data['email'].str.lower ()
test['email'] = test['email'].str.lower()

original_training_data.head()

id subject \
O O Subject: A%L Daily to be auctioned in bankrupt..
1 1 Subject: Wired: "Stronger ties between ISPs an..
2 2 Subject: It's just too small

https://spamassassin.apache.org/old/publiccorpus/

3 3 Subject: liberal defnitions\n

4 4 Subject: RE: [ILUG] Newbie seeks advice - Suse..
email spam

0 wurl: http://boingboing.net/#855634171\n date: n.. 0

1 wurl: http://scriptingnews.userland.com/backiss.. 0

2 <html>\n <head>\n </head>\n <body>\n <font siz.. 1

3 depends on how much over spending vs. how much.. 0

4 hehe sorry but if you hit caps lock twice the .. 0

First, let’s check if our data contains any missing values. We have filled in the cell below to print
the number of NaN values in each column. If there are NaN values, we replace them with appropriate
filler values (i.e., NaN values in the subject or email columns will be replaced with empty strings).
Finally, we print the number of NaN values in each column after this modification to verify that
there are no NaN values left.

Note: While there are no NaN values in the spam column, we should be careful when replacing NaN
labels. Doing so without consideration may introduce significant bias into our model.

[6]: print('Before imputation:')
print(original_training data.isnull().sum())
original_training data = original_training data.fillna('')

print('After imputation:')
print(original_training_data.isnull().sum())

Before imputation:

id 0
subject 6
email 0
spam 0

dtype: int64

After imputation:

id 0
subject 0
email 0
spam 0

dtype: int64

3 Part 1: Initial Analysis

In the cell below, we have printed the text of the email field for the first ham and the first spam
email in the original training set.

[7]1:

first_ham = original_training_data.locl[original_training datal['spam'] == 0,
<'email'].iloc[0]

first_spam = original_training_data.locloriginal_training datal['spam'] == 1,
<'email'].iloc[0]

print("Ham Email:")

print(first_ham)

print("Spam Email:")
print(first_spam)

Ham Email:
url: http://boingboing.net/#85534171
date: not supplied

arts and letters daily, a wonderful and dense blog, has folded up its tent due
to the bankruptcy of its parent company. a&l daily will be auctioned off by the
receivers. link[1] discuss[2] (_thanks, misha!_)

[1] http://www.aldaily.com/
[2] http://www.quicktopic.com/boing/h/z1fterjnd6jf

Spam Email:
<html>

<head>

</head>

<body>

 a man endowed with a 7-8" hammer is simply

better equipped than a man with a 5-6"hammer.

would you rather have
more than enough to get the job done or fall =
short. it's totally up
to you. our methods are guaranteed to increase y=
our size by 1-3"
 <a href=3d"http://209.163.187.47/cgi-bin/index.php?710=
004">come in here and see how

</body>

</html>

3.1 Question 1

Discuss one attribute or characteristic you notice that is different between the two emails that may
allow you to uniquely identify a spam email.

[8]:

The spam email uses HTML tags and formatting such as ‘html’, ‘body’, ‘head’, ‘font size’ and so
on, which are likely to be automated messages. In contrast, the ham email has a more natural and
straightforward text.

3.2 Training-Validation Split

The training data we downloaded is all the data we have available for both training models and
validating the models that we train. We, therefore, need to split the training data into separate
training and validation datasets. You will need this validation data to assess the performance of
your classifier once you are finished training. Note that we set the seed (random_state) to 42. This
will produce a pseudo-random sequence of random numbers that is the same for every student. Do
not modify this random seed in the following questions, as our tests depend on it.

This creates a 90/10 train-validation split on our labeled data.
from sklearn.model_selection import train_test_split

train, val = train_test_split(original_training data, test_size = 0.1,
wrandom_state = 42)

4 Part 2: Feature Engineering

We want to take the text of an email and predict whether the email is ham or spam. This is a
binary classification problem, so we can use logistic regression to train a classifier. Recall that to
train a logistic regression model, we need a numeric feature matrix X and a vector of corresponding
binary labels Y. Unfortunately, our data are text, not numbers. To address this, we can create
numeric features derived from the email text and use those features for logistic regression.

Fach row of X is an email. Each column of X contains one feature for all the emails. We’ll guide
you through creating a simple feature, and you’ll create more interesting ones as you try to increase
the accuracy of your model.

4.1 Question 2

Create a function words_in_texts that takes in a list of interesting words (words) and a Series
of emails (texts). Our goal is to check if each word in words is contained in the emails in texts.

The words_in_texts function should output a 2-dimensional NumPy array that contains one
row for each email in texts and one column for each word in words. If the j-th word in words is
present at least once in the ¢-th email in texts, the output array should have a value of 1 at the
position (i, 7). Otherwise, if the j-th word is not present in the i-th email, the value at (4, j) should
be 0.

In Project B2, we will be applying words_in_texts to some large datasets, so implementing some
form of vectorization (for example, using NumPy arrays, Series.str functions, etc.) is highly
recommended. You are allowed to use only one list comprehension or for loop, and you
should look into how you could combine that with the vectorized functions discussed above. Do
not use a double for loop, or you will run into issues later on in Project B2.

For example:

>>> words_in_texts(['hello', 'bye', 'world'],
pd.Series(['hello', 'hello worldhello']l))

array([[1, O, 0],
(1, 0, 111)

Importantly, we do not calculate the number of occurrences of each word; only if the word is
present at least once. Take a moment to work through the example on your own if need be
understanding what the function does is a critical first step in implementing it.

The provided tests make sure that your function works correctly so that you can use it for future
questions.

[9]: def words_in_texts(words, texts):
Args:
words (list): Words to find.
texts (Series): Strings to search in.

Returns:
A 2D NumPy array of Os and 1s with shape (n, d) where
n 1s the number of texts, and d is the number of words.
indicator_array = np.array([texts.str.contains(word, regex=False).
—astype(int) for word in words]).T
return indicator_array

[10]: # Run this cell to see what your function outputs. Compare the results to the,
—wexample provided abowve.
words_in_texts(['hello', 'bye', 'world'], pd.Series(['hello', 'hello
owworldhello']))

[10]: array([[1, O, 0],
(1, 0, 111D

5 Part 3: EDA

We need to identify some features that allow us to distinguish spam emails from ham emails. One
idea is to compare the distribution of a single feature in spam emails to the distribution of the same
feature in ham emails. Suppose the feature is a binary indicator, such as whether a particular word
occurs in the text. In that case, this compares the proportion of spam emails with the word to the
proportion of ham emails with the word.

The following plot (created using sns.barplot) compares the proportion of emails in each class
containing a particular set of words. The bars colored by email class were generated by setting the
hue parameter of sns.barplot to a column containing the class (spam or ham) of each data point.
An example of how this class column was created is shown below:

Frequency of Words in Spam/Ham Emails

1.0
B Ham
B Spam
0.8
n
'©
£ 0.6
I
M
o
c
o
5
a 0.4
o
| .
o
0.2 I I I I
0.0 IIII
body business html money offer please

Words

You can use DataFrame’s .melt (documentation) method to “unpivot” a DataFrame. See the
following code cell for an example.

[12]: from IPython.display import display, Markdown
= pd.DataFrame ({
'word_1': [1, O, 1, O],
'word_2': [0, 1, O, 11,
'type': ['spam', 'ham', 'ham', 'ham']
b
display(Markdown("> Our original “DataFrame ™ has a “type column and some
—columns corresponding to words. You can think of each row as a sentence, and,
~the value of 1 or O indicates the number of occurrences of the word in thisy
«sentence."))
display(df);

https://pandas.pydata.org/docs/reference/api/pandas.melt.html

display(Markdown("> "melt” will turn columns into entries in a variable column.

<Notice how "word_ 1" and “word_2 become entries in “variable ; their valuesy
ware stored in the “value ™ column."))

display(df .melt("type"))

Our original DataFrame has a type column and some columns corresponding to words.
You can think of each row as a sentence, and the value of 1 or 0 indicates the number

of occurrences of the word in this sentence.

word_1 word_2 type

1
0
1
0

0

= O

spam
ham
ham
ham

melt will turn columns into entries in a variable column. Notice how word_1 and word_2
become entries in variable; their values are stored in the value column.

type variable

0
1
2
3
0 spam
1 ham
2 ham
3 ham
4 spam
5 ham
6 ham
7 ham

word_1
word_1
word_1
word_1
word_2
word_2
word_2
word_2

5.1 Question 3

value

O, OO O K-

Create the bar chart above by comparing the proportion of spam and ham emails containing specific
words. Choose a set of 6 words other than those shown in the example. These words
should have different proportions for the two classes (i.e., noticeably different bar heights across
spam and ham). Make sure only to consider emails from train. Your words_in_texts function
from the previous part will be useful here.

Hint: This is a pretty challenging question. The suggested approach is to first look at the example
bar plot and make sure you can interpret what is being plotted - what does a bar represent? What

does the height mean?

Next, see how to make this plot with sns.barplot. Take a look at the documentation and determine
what the inputs should be. A possible data input is given below:

<th>type</th>

<td>Ham</td>

<th>variable</th>

<td>word_1</td>

<th>value</th>

<td>0.021269</td>

</tr>

</tr>

</thead>

<tbody>

https://seaborn.pydata.org/generated/seaborn.barplot.html

[13]:

<td>Ham</td> <td>word_2</td> <td>0.101519</td> </tr>

2

<td>Spam</td> <td>word_3</td> <td>0.059160</td> </tr>
3

<td>Spam</td> <td>word_2</td> <td>0.017694</td> </tr>
4

<td>Ham</td> <td>word_4</td> <td>0.013226</td> </tr>

<td>...</td> <td>...</td> <td>...</td> </tr>

Finally, you will need to chain some pandas functions together. Try to add one function at a time
and see how that affects the DataFrame. It may help to use a new cell or print out the DataFrame
for debugging purposes as you work towards achieving the desired format above.

Create your bar chart in the following cell:

train = train.reset_index(drop=True) # We must do this in order to preserve they,
<ordering of emails to labels for words_in_tezxts.
plt.figure(figsize=(8,6))

chosen_words = ['head', 'click', 'pay', 'text', '100%', '$']

word_indicators = words_in_texts(chosen_words, train['email'])

word_indicators_df = pd.DataFrame(word_indicators, columns=chosen_words)

word_indicators_df['type'] = train['spam'].replace({1: 'Spam', 0: 'Ham'})

melted_df = word_indicators_df.melt(id_vars='type')

proportion_df = melted_df.groupby(['type', 'variable']).agg(np.mean).
wreset_index()

sns.barplot (data=proportion_df, x='variable', y='value', hue='type')
plt.title('Frequency of Words in Spam/Ham Emails')
plt.xlabel('Words"')

plt.ylabel('Proportion of Emails')

plt.tight_layout ()
plt.show()

Frequency of Words in Spam/Ham Emails

type

0.5 mmm Ham
" B Spam
'© 0.4
=
L
IS
- 0.3
o
o
S 0.2
o
o

01 I

0.0

100% click head pay text
Words

When the feature is binary, it makes sense to compare its proportions across classes (as in the
previous question). Otherwise, if the feature can take on numeric values, we can compare the
distributions of these values for different classes.

6 Part 4: Basic Classification

Notice that the output of words_in_texts(words, train['email']) is a numeric matrix con-
taining features for each email. This means we can use it directly to train a classifier!

6.1 Question 4

We've given you 5 words that might be useful as features to distinguish spam/ham emails. Use
these words and the train DataFrame to create two NumPy arrays: X_train and Y_train. X_train
should be a 2D array of Os and 1s created using your words_in_texts function on all the emails in
the training set. Y_train should be a vector of the correct labels for each email in the training set.

The provided tests check that the dimensions of your design matriz (X) are correct and that your
features and labels are binary (i.e., consist only of Os and 1s). It does not check that your function
is correct; that was verified in Question 2.

10

[14]:

[14]:

[16]:

[17]:

some_words = ['drug', 'bank', 'prescription', 'memo', 'private']

X_train = words_in_texts(some_words, train['email'])
Y_train = train['spam'].values

X_train[:5], Y_train[:5]

(array([[0, O, O, O, O],
[0, o, 0, 0, 0],
(o, o, o, o, o1,
[o, o, o, o, o1,

[0, 0, 0, 1, 011),
array([0, 0, 0, 0, 01))

6.2 Question 5

Now that we have matrices, we can build a model with sklearn! Using the LogisticRegression
classifier, train a logistic regression model using X_train and Y_train. Then, output the model’s
training accuracy below. You should get an accuracy of around 0.76.

The provided tests check that you initialized your logistic regression model correctly.
from sklearn.linear_model import LogisticRegression

my_model = LogisticRegression()
my_model.fit(X_train, Y_train)

training accuracy = my_model.score(X_train, Y_train)
print("Training Accuracy: ", training_accuracy)

Training Accuracy: 0.7576201251164648

assert np.allclose(my_model.coef_, np.array([[0.3876794 , 1.41303343, 2.
04437707, -0.53676679, 0.92334944]1]))

7 Part 5: Evaluating Classifiers

That doesn’t seem too shabby! But the classifier you made above isn’t as good as the accuracy
would make you believe. First, we are evaluating the accuracy of the model on the training set,
which may be a misleading measure. Accuracy on the training set doesn’t always translate to
accuracy in the real world (on the test set). In future parts of this analysis, we will make use of
the data we held out for model validation and comparison.

Presumably, our classifier will be used for filtering, or preventing messages labeled spam from
reaching someone’s inbox. There are two kinds of errors we can make: - False positive (FP): A
ham email gets flagged as spam and filtered out of the inbox. - False negative (FN): A spam
email gets mislabeled as ham and ends up in the inbox.

11

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

[19]:

[19]:

To be clear, we label spam emails as 1 and ham emails as 0. These definitions depend both on the

true labels and the predicted labels. False positives and false negatives may be of differing impor-

tance, leading us to consider more ways of evaluating a classifier in addition to overall accuracy:

Precision: Measures the proportion of emails flagged as spam that are actually spam. Mathemat-

. TP

lcally, TP1FD"

Recall: Measures the proportion of spam emails that were correctly flagged as spam. Mathemati-
TP

Cally, TPIFN"

False positive rate: Measures the proportion of ham emails that were incorrectly flagged as spam.

Mathematically, FPI“;%.

One quick mnemonic to remember the formulas is that Precision involves TP and FP, Recall does
not. In the final, the reference sheet will also contain the formulas shown above, but you should be
able to interpret what they mean and their importance depending on the context.

The below graphic (modified slightly from Wikipedia) may help you understand precision and recall
visually:

Note that a True Positive (TP) is a spam email that is classified as spam, and a True Negative
(TN) is a ham email that is classified as ham.

7.1 Question 6a

Suppose we have a hypothetical classifier called the “zero predictor.” For any inputted email, the
zero predictor always predicts 0 (it never makes a prediction of 1 for any email). How many false
positives and false negatives would this classifier have if it were evaluated on the training set and
its results were compared to Y_train? Assign zero_predictor_fp to the number of false positives
and zero_predictor_fn to the number of false negatives for the hypothetical zero predictor on
the training data.

The public tests only check that you have assigned appropriate types of values to each response
variable but do not check that your answers are correct. That is, we only check that the number of
false positives and false negatives should be greater than or equal to 0.

zero_predictor_fp = 0
zero_predictor_fn = np.sum(Y_train == 1)
zero_predictor_fp, zero_predictor_fn

(0, 1918)

7.2 Question 6b

What is the accuracy and recall of the zero predictor on the training data? Do not use any sklearn
functions to compute these performance metrics.

The public tests only check that you have assigned appropriate types of values to each response
variable but do not check that your answers are correct. That is, we only check that proportions or

12

https://en.wikipedia.org/wiki/Precision_and_recall

[21]:

[21]:

[23]:

percentages (like precision, recall, accuracy) lie in the interval [0, 1].

zero_predictor_acc = np.sum(Y_train == 0) / len(Y_train)
zero_predictor_recall = 0
zero_predictor_acc, zero_predictor_recall

(0.7447091707706642, 0)

7.3 Question 6¢

Explain your results in q6a and gq6b. How did you know what to assign to zero_predictor_£p,
zero_predictor_fn, zero_predictor_acc, and zero_predictor_recall?

zero__predictor_ fp: The zero predictor never predicts 1, i.e., it never predicts postive, no matter
true or false. So false postive is always 0.

zero_ predictor_fn: False negative of the zero predictor is the count of spam emails in Y__ train.
zero__predictor__acc: The accuracy is correct predictions (true negative) / total predictions.

zero_ predictor_recall: Since the zero predictor never predicts spam, True Positives = 0. So recall
= TP/(TP+FN) = 0.

7.4 Question 6d

Compute the precision, recall, and false positive rate of the LogisticRegression classifier
my_model from Question 5. Do not use any sklearn functions to compute performance met-
rics; the only sklearn method you may use here is .predict to generate model predictions using
my_model and X_train.

The public tests only check that you have assigned appropriate types of values to each response
variable but do not check that your answers are correct. That is, we only check that proportions or
percentages (like precision, recall, false positive rate) lie in the interval [0, 1].

Y_train_hat = my_model.predict(X_train)

TP = np.sum((Y_train_hat == 1) & (Y_train == 1))
TN = np.sum((Y_train_hat == 0) & (Y_train == 0))
FP = np.sum((Y_train_hat == 1) & (Y_train == 0))
FN = np.sum((Y_train_hat == 0) & (Y_train == 1))
logistic_predictor_precision = TP / (TP + FP)
logistic_predictor_recall = TP / (TP + FN)
logistic_predictor_fpr = FP / (FP + TN)

print (£"{TP=}, {IN=}, {FP=}, {FN=}")

print(f"{logistic_predictor_precision=:.2f}, {logistic_predictor_recall=:.2f},
~{logistic_predictor_fpr=:.2f}")

13

[25] :

[25]:

TP=219, TN=5473, FP=122, FN=1699
logistic_predictor_precision=0.64, logistic_predictor_recall=0.11,
logistic_predictor_fpr=0.02

7.5 Question 6e

Is the number of false positives produced by the logistic regression classifier my_model strictly
greater than the number of false negatives produced? Assign to q6e an expression that evaluates
to give your answer (True or False).

qbe = False
q6e

False

7.6 Question 6f

How does the accuracy of the logistic regression classifier my_model compare to the accuracy of the
zero predictor?

Accuracy of my__model: (219+5473)/(7513) = 0.7576201251164648, which is identical to the accu-
racy of the zero predictor.

7.7 Question 6g

Given the word features provided in Question 4, discuss why the logistic regression classifier
my_model may be performing poorly.

Hint: Think about how prevalent these words are in the email set.

The chosen word features (‘drug’, ‘bank’, ‘prescription’, ‘memo’, ‘private’) may not help distin-
guishing spam from ham very well. These words are either too rare or too frequently in both spam
and ham emails.

7.8 Question 6h

Would you prefer to use the logistic regression classifier my_model or the zero predictor classifier
for a spam filter? Why? Describe your reasoning and relate it to at least one of the evaluation
metrics you have computed so far.

I prefer to use the logistic regression classifier my_model. The zero predictor never predicts any
email as spam since it always predicts 0. It completely fails to identify any spam emails since the
recall is 0. This is unacceptable for a spam filter since it can’t filter any spam emails.

14

	Project B1: Spam/Ham Classification
	Introduction
	Content Warning

	The Data
	Part 1: Initial Analysis
	Question 1
	Training-Validation Split

	Part 2: Feature Engineering
	Question 2

	Part 3: EDA
	Question 3

	Part 4: Basic Classification
	Question 4
	Question 5

	Part 5: Evaluating Classifiers
	Question 6a
	Question 6b
	Question 6c
	Question 6d
	Question 6e
	Question 6f
	Question 6g
	Question 6h

