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1 Project A2: Predicting Housing Prices in Cook County

1.1 Introduction

In Project A1, you performed some basic Exploratory Data Analysis (EDA), laying out the thought
process that leads to certain modeling decisions. Then, you added a few new features to the dataset
and cleaned the data in the process.

In this project, you will specify and fit a linear model to a few features of the housing data to predict
house prices. Next, we will analyze the error of the model and brainstorm ways to improve the
model’s performance. Finally, we’ll delve deeper into the implications of predictive modeling within
the Cook County Assessor’s Office (CCAQ) case study, especially because statistical modeling is
how the CCAO valuates properties. Given the history of racial discrimination in housing policy
and property taxation in Cook County, consider the impacts of your modeling results as you work
through this project, and think about what fairness might mean to property owners in Cook County.

After this part of the project, you should be comfortable with: - Implementing a data processing
pipeline using pandas. - Using scikit-learn to build and fit linear models.

import numpy as np

import pandas as pd
from pandas.api.types import CategoricalDtype

Jmatplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import linear_model as 1m

import warnings
warnings.filterwarnings("ignore")

import zipfile
import os

from ds100_utils import *
from feature_func import *

# Plot settings



plt.rcParams['figure.figsize'] = (12, 9)
plt.rcParams['font.size'] = 12

Let’s load the training, validation, and test data.

[2]: with zipfile.ZipFile('cook_county_data.zip') as item:
item.extractall()

This dataset is split into a training set, a validation set, and a test set. Importantly, the test set does
not contain values for our target variable, Sale Price. In this project, you will train a model on
the training and validation sets and then use this model to predict the Sale Prices of the test set.
In the cell below, we load the training and validation sets into the DataFrame training_val_data
and the test set into the DataFrame test_data.

[3]: training_val_data = pd.read_csv("cook_county_train_val.csv", index_col='Unnamed:
< 0")

test_data = pd.read_csv("cook_county_contest_test.csv", index_col='Unnamed: 0')

As a good sanity check, we should at least verify that the shape of the data matches the description.

[4]: # 204792 observations and 62 features in training data
assert training_val_data.shape == (204792, 62)
# 55311 observations and 61 features in test data
assert test_data.shape == (55311, 61)
# Sale Price is provided in the training/validation data
assert 'Sale Price' in training_val_data.columns.values
# Sale Price is hidden in the test data
assert 'Sale Price' not in test_data.columns.values

Let’s remind ourselves of the data available to us in the Cook County dataset. Remember, a more
detailed description of each variable is included in codebook.txt, which is in the same directory
as this notebook.

[6]: training_val_data.columns.values

[5]: array(['PIN', 'Property Class', 'Neighborhood Code', 'Land Square Feet',
'Town Code', 'Apartments', 'Wall Material', 'Roof Material',
'Basement', 'Basement Finish', 'Central Heating', 'Other Heating',
'Central Air', 'Fireplaces', 'Attic Type', 'Attic Finish',
'Design Plan', 'Cathedral Ceiling', 'Construction Quality',
'Site Desirability', 'Garage 1 Size', 'Garage 1 Material',
'Garage 1 Attachment', 'Garage 1 Area', 'Garage 2 Size',
'Garage 2 Material', 'Garage 2 Attachment', 'Garage 2 Area',

'Porch', 'Other Improvements', 'Building Square Feet',

'Repair Condition', 'Multi Code', 'Number of Commercial Units',
'Estimate (Land)', 'Estimate (Building)', 'Deed No.', 'Sale Price',
'Longitude', 'Latitude', 'Census Tract',

'Multi Property Indicator', 'Modeling Group', 'Age', 'Use',



"0'Hare Noise", 'Floodplain', 'Road Proximity', 'Sale Year',
'Sale Quarter', 'Sale Half-Year', 'Sale Quarter of Year',
'Sale Month of Year', 'Sale Half of Year', 'Most Recent Sale',
'Age Decade', 'Pure Market Filter', 'Garage Indicator',
'Neigborhood Code (mapping)', 'Town and Neighborhood',
'Description’', 'Lot Size'], dtype=object)

1.2 Question 1: Human Context and Ethics

In this part of the project, we will explore the human context of our housing dataset. You should
watch Lecture 15 before attempting this question.

1.2.1 Question 1a

“How much is a house worth?” Who might be interested in an answer to this question? Please
list at least three different parties (people or organizations) and state whether each
one has an interest in seeing the housing price be low or high.

1. Houseowner. They usually have an interest in seeing the housing price be high so that they
can have more money if they choose to sell.

2. Buyers. They hope to see housing porices to be lower so that they can buy them more
affordably.

3. Tax accessors. They usually have an interest in seeing a higher housing price, beacause higher
housing prices usually lead to higher property taxes.

1.2.2 Question 1b

Which of the following scenarios strike you as unfair, and why? You can choose more than one.
There is no single right answer, but you must explain your reasoning. Would you consider some of
these scenarios more (or less) fair than others? Why?

A. A homeowner whose home is assessed at a higher price than it would sell for.

B. A homeowner whose home is assessed at a lower price than it would sell for.

C. An assessment process that systematically overvalues inexpensive properties and undervalues
expensive properties.

D. An assessment process that systematically undervalues inexpensive properties and overvalues
expensive properties.

‘A’ seems to be unfair. When a home is assessed at a higher price that it would sell for, the
homeowner would be paying for more in taxes that they should be, which would cause a financial
burden.

‘C’ seems to be more unfair than ‘A’ since a lower-income homeowner pay more taxes and a high-
income homeowner pay less taxes.

‘A’ is an unfair situation between all homeowners and the government. And ‘C’ is an unfair situation
between low-income and high-income houseowners.


https://ds100.org/fa24/lecture/lec15/
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1.2.3 Question 1c

Consider a model that is fit to n = 50 training observations. We denote the response as y (Log
Sale Price), the prediction as g, and the corresponding residual to be y — . Which residual plot
corresponds to a model that might make property assessments that result in regressive taxation?
Recall from Lecture 15 that regressive taxation overvalues inexpensive properties and undervalues
expensive properties. Assume that all three plots use the same vertical scale and that the horizontal
line marks y — y = 0. Assign qlc to the string letter corresponding to your plot choice.

Hint: When a model overvalues a property (predicts a Sale Price greater than the actual Sale
Price), what are the relative sizes of y and y? What about when a model undervalues a property?

qlC = MAM

1.3 The CCAO Dataset

You'll work with the dataset from the Cook County Assessor’s Office (CCAO) in Illinois. This
government institution determines property taxes across most of Chicago’s metropolitan areas and
nearby suburbs. In the United States, all property owners must pay property taxes, which are then
used to fund public services, including education, road maintenance, and sanitation. These property
tax assessments are based on property values estimated using statistical models considering multiple
factors, such as real estate value and construction cost.

However, this system is not without flaws. In late 2017, a lawsuit was filed against the office of Cook
County Assessor Joseph Berrios for producing “racially discriminatory assessments and taxes.” The
lawsuit included claims that the assessor’s office undervalued high-priced homes and overvalued low-
priced homes, creating a visible divide along racial lines. Wealthy homeowners, who were typically
white, paid less in property taxes, whereas working-class, non-white homeowners paid more.

The Chicago Tribune’s four-part series, “The Tax Divide,” delves into how this was uncovered.
After “compiling and analyzing more than 100 million property tax records from the years 2003
through 2015, along with thousands of pages of documents, then vetting the findings with top
experts in the field,” they discovered that “residential assessments had been so far off the mark for
so many years.” You can read more about their investigation here.

Make sure to watch Lecture 15 before answering the following questions!

1.3.1 Question 1d

What were the central problems with the earlier property tax system in Cook County as reported
by the Chicago Tribune? What were the primary causes of these problems?

Note: Along with reading the paragraph above, you will need to watch Lecture 15 to answer this
question.

The central problems with the earlier property tax system were inequities in property assessments
that led to regressive taxation. Lower-priced properties were consistently overvalued, while "higher-
priced properties were undervalued.


https://www.chicagotribune.com/politics/ct-cook-county-board-assessor-berrios-met-20170718-story.html
https://www.chicagotribune.com/news/breaking/ct-cook-county-assessor-berrios-sued-met-20171214-story.html
https://www.chicagotribune.com/investigations/ct-tax-divide-investigation-20180425-storygallery.html
https://apps.chicagotribune.com/news/watchdog/cook-county-property-tax-divide/assessments.html
https://ds100.org/fa24/lecture/lec15/
https://ds100.org/fa24/lecture/lec15/
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The primary cause of these problems was not due to a faulty model. It was more about the appeals
systems, which allowed wealthier homeowners to take advantage of the system and successfully
challenge their assessments.

1.3.2 Question le

In addition to being regressive, how did the property tax system in Cook County place a dispro-
portionate tax burden on non-white property owners?

Most low-income homeowners are non-white, and they typically do not have the resources or ability
to appeal their home assessments, which puts a higher tax burden on them.

1.4 Question 2: Preparing Data

Let’s split the dataset into a training set and a validation set. We will use the training set to
fit our model’s parameters and the validation set to evaluate how well our model will perform
on unseen data drawn from the same distribution. If we used all the data to fit our model, we
would not have a way to estimate model performance on unseen data such as the test set in
cook_county_contest_test.csv.

In the cell below, complete the function train_val_split that splits data into two smaller
DataFrames named train and validation. Let train contain 80% of the data, and let validation
contain the remaining 20%. You should not import any additional libraries for this ques-
tion.

You should only use NumPy functions to generate randomness! Your answer should use the variable
shuffled_indices defined for you. Take a look at the documentation for np.permutation to
better understand what shuffled_indices contains.

Hint: While there are multiple solutions, one way is to create two NumPy arrays named
train_indices and validation_indices (or any variable names of your choice) that contain
a random 80% and 20% of the indices, respectively. Then, use these arrays to index into data
to create your final train and validation DataFrames. To ensure that your code matches the
solution, use the first 80% as the training set and the last 20% as the validation set. Remember,
the values you use to partition data must be integers!

The provided tests check that you not only answered correctly but ended up with the same
train/validation split as our reference implementation. Testing later on is easier this way.

# This makes the train-validation split in this section reproducible across,
~different runs

# of the notebook. You do mot mneed this line to run train_val_split in general.

# DO NOT CHANGE THIS LINE
np.random. seed (1337)
# DO NOT CHANGE THIS LINE

def train_val_split(data):

nmnn


https://numpy.org/doc/stable/reference/random/generated/numpy.random.permutation.html
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Takes in a DataFrame “data” and randomly splits <t into two smaller,
~DataFrames
named “train” and “validation  with 807 and 207 of the data, respectively.

nimnn

data_len = data.shape[0]
shuffled_indices = np.random.permutation(data_len)

train_indices = shuffled_indices[:int(data_len * 0.8)]
validation_indices = shuffled indices[int(data_len * 0.8):]

train = data.iloc[train_indices]
validation = data.iloc[validation_indices]

return train, validation
train, validation = train_val_split(training val_data)

1.5 Question 3: Fitting a Simple Model

Let’s fit our linear regression model using the ordinary least squares estimator! We will start with
something simple by using only two features: the number of bedrooms in the household and the
log-transformed total area covered by the building (in square feet).

Consider the following expression for our first linear model that contains one of the features:

Log Sale Price = 6, + 6, - (Bedrooms)

In parallel, we will also consider a second model that contains both features:

Log Sale Price = 0, + 6, - (Bedrooms) + 6, - (Log Building Square Feet)

1.6 Question 3a

Without running any calculation or code, assign q3a to be the comparator (‘>=", ‘=", ‘<=’)
that fills the blank in the following statement:

We quantify the loss on our linear models using MSE (Mean Squared Error). Consider the training
loss of the first model and the training loss of the second model. We are guaranteed that:

Training Loss of the 2nd Model Training Loss of the 1st Model

q3a = ng=n
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1.6.1 Pipeline Function

In Project Al, you wrote a few functions that added features to the dataset. Instead of calling
them manually one by one each time, it is best practice to encapsulate all of this feature engineering
into one “pipeline” function. Defining and using a pipeline reduces all the feature engineering to
just one function call and ensures that the same transformations are applied to all data. Below,
we combined some functions into a single helper function that outputs X and Y for the first model
above. Try to understand what this function does!

Note 1: We have automatically imported staff implementations of the functions you
wrote in Project Al. These functions are remove_outliers, add_total_bedrooms,
find_expensive_neighborhoods, add_in_expensive_neighborhood, and ohe_roof_material.
You are welcome to copy over your own implementations if you would like.

Note 2: The staff implementation provided for remove_outliers is slightly different from what
you did in Project Al. Here remove_outliers is exclusive for the bounds whereas in Project Al,
it was inclusive for the bounds. remove_outliers will only output values strictly greater than
the lower bound and strictly smaller than the upper bound. Feel free to still use your original
implementation of the function; it shouldn’t affect your score if it was done correctly but may
slightly change your approach to g5f.

from feature_func import * # Import functions from Project Al
###### Copy any function you would like to below ######

b

def feature_engine_simple(data):
# Remove outliers
data = remove_outliers(data, 'Sale Price', lower=499)
# Create Log Sale Price column
data = log_transform(data, 'Sale Price')
# Create Bedroom column
data = add_total_bedrooms(data)
# Select X and Y from the full data
X = datal[['Bedrooms']]
Y = datal['Log Sale Price']
return X, Y

# Reload the data
full_data = pd.read_csv("cook_county_train.csv")

# Process the data using the pipeline for the first model.
np.random. seed (1337)

train_ml, valid_ml = train_val_split(full_data)

X_train ml_simple, Y_train ml_simple = feature_engine_simple(train_ml)
X_valid_ml_simple, Y_valid_ml_simple = feature_engine_simple(valid_ml)
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# Take a look at the result
display(X_train_ml_simple.head())
display(Y_train_ml_simple.head())

Bedrooms
130829 4
193890 2
30507 2
91308 2
131132 3

130829 12.994530
193890 11.848683
30507 11.813030
91308 13.060488
131132 12.516861
Name: Log Sale Price, dtype: float64

1.6.2 .pipe

Alternatively, we can build the pipeline using pd.DataFrame.pipe (documentation). Take a look
at our use of pd.DataFrame.pipe below

The following function feature_engine_pipe takes in a DataFrame data, a list
pipeline_functions containing 3-element tuples (function, arguments, keyword_arguments)
that will be called on data in the pipeline, and the label prediction_col that represents the
column of our target variable (Sale Price in this case). You can use this function with each of
the tuples passed in through pipeline_functions.

# Run this cell to define feature_engine_pipe; no further action <s needed.
def feature_engine_pipe(data, pipeline_functions, prediction_col):
"""Process the data for a guided model."""
for function, arguments, keyword_arguments in pipeline_functions:
if keyword_arguments and (not arguments):
data = data.pipe(function, **keyword_arguments)
elif (not keyword_arguments) and (arguments):
data = data.pipe(function, *arguments)
else:
data = data.pipe(function)
X = data.drop(columns=[prediction_col])
Y = data.loc[:, prediction_coll
return X, Y

1.7 Question 3b

It is time to prepare the training and validation data for the two models we proposed above. Use
the following two cells to reload a fresh dataset from scratch and run them through the following


https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pipe.html

[11]:

preprocessing steps using feature_engine_pipe for each model:

e Perform a train_val_split on the original dataset, loaded as the DataFrame full_data.
Let 80% of the set be training data, and 20% of the set be validation data.
e For both the training and validation set,

1. Remove outliers in Sale Price so that we consider households with a price that is
greater than 499 dollars (or equivalently, a price that is 500 dollars or greater).

2. Apply log transformations to the Sale Price and the Building Square Feet columns
to create two new columns, Log Sale Price and Log Building Square Feet.

3. Extract the total number of bedrooms into a new column Bedrooms from the
Description column.

4. Select the columns Log Sale Price and Bedrooms (and Log Building Square Feet if
this is the second model). We have implemented the helper function select_columns
for you.

5. Return the design matrix X and the observed vector Y. Note that Y refers to the
transformed Log Sale Price, not the original Sale Price. Your design matrix and
observed vector should be NumPy arrays or pandas DataFrames.

Assign the final training data and validation data for both models to the following set of variables:

e First Model: X_train_ml, Y_train_ml, X_valid_ml, Y_valid_ml. This is already imple-
mented for you.

e Second Model: X_train_m2, Y_train_m2, X_valid_m2, Y_valid_m2. Please implement this
in the second cell below. You may use the first model as an example.

For an example of how to work with pipelines, we have processed model 1 for you using
ml_pipelines by passing in the corresponding pipeline functions as a list of tuples in the be-
low cell. Your task is to do the same for model 2 in the cell after that is, save your pipeline
functions as a list of tuples and assign it to m2_pipelines for model 2.

As a refresher, the equations model 1 and model 2, respectively, are:

Log Sale Price = 6, + 6, - (Bedrooms)

Log Sale Price = 0, + 6, - (Bedrooms) + 6, - (Log Building Square Feet)

Note: Do not change the line np.random.seed(1337) as it ensures we are partitioning the dataset
the same way for both models (otherwise, their performance isn’t directly comparable).

# Reload the data
full data = pd.read_csv("cook_county_train.csv")

# Apply feature engineering to the data using the pipeline for the first model
np.random. seed (1337)
train_ml, valid_ml = train_val_split(full_data)

# Helper function

def select_columns(data, *columns):
""Select only columns passed as arguments."""
return data.loc[:, columns]
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# Pipelines, a list of tuples
ml_pipelines = [
(remove_outliers, None, {

'variable': 'Sale Price',
'lower': 499,
b,
(log_transform, None, {'col': 'Sale Price'}),
(add_total_bedrooms, None, None),
(select_columns, ['Log Sale Price', 'Bedrooms'], None)
]
X_train ml, Y_train ml = feature_engine_pipe(train_ml, ml_pipelines, 'Log Sale,
~Price')
X_valid_ml, Y_valid_ml = feature_engine_pipe(valid_ml, ml_pipelines, 'Log Sale
Price')

# Take a look at the result

# It should be the same above as the result returned by feature_engine_simple
display(X_train_ml.head())

display(Y_train_ml.head())

Bedrooms
130829 4
193890 2
30507 2
91308 2
131132 3

130829 12.994530
193890 11.848683
30507 11.813030
91308 13.060488
131132 12.516861
Name: Log Sale Price, dtype: float64

# DO NOT CHANGE THIS LINE
np.random. seed (1337)
# DO NOT CHANGE THIS LINE

# Process the data using the pipeline for the second model
train_m2, valid_m2 = train_val_split(full_data)

m2_pipelines = [
(remove_outliers, None, {
'variable': 'Sale Price',
'lower': 499,

10



B,

(log_transform, None, {'col': 'Sale Price'}),
(log_transform, None, {'col': 'Building Square Feet'l}),
(add_total bedrooms, None, None),

(select_columns, ['Log Sale Price', 'Bedrooms', 'Log Building Square
~Feet'], None)
]
X_train_m2, Y_train_m2 = feature_engine_pipe(train_m2, m2_pipelines, 'Log Sale
~Price')
X_valid_m2, Y_valid_m2 = feature_engine_pipe(valid_m2, m2_pipelines, 'Log Sale,
~Price')

# Take a look at the result
display(X_train_m2.head())
display(Y_train_m2.head())

Bedrooms Log Building Square Feet

130829 4 7.870166
193890 2 7.002156
30507 2 6.851185
91308 2 7.228388
131132 3 7.990915

130829 12.994530
193890 11.848683
30507 11.813030
91308 13.060488
131132 12.516861
Name: Log Sale Price, dtype: float64

1.8 Question 3c

Finally, let’s do some regression!

We first initialize a sklearn.linear_model.LinearRegression object (documentation) for both
of our models. We set the fit_intercept = True to ensure that the linear model has a non-zero
intercept (i.e., a bias term).

[13]: linear_model_ml = 1lm.LinearRegression(fit_intercept=True)
linear_model _m2

1m.LinearRegression(fit_intercept=True)
Now it’s time to fit our linear regression model. Use the cell below to fit both models and then use

it to compute the fitted values of Log Sale Price over the training data and the predicted values
of Log Sale Price for the validation data.

11


https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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Assign the predicted values from both of your models on the training and validation set to the
following variables:

e First Model: predicted values on training set: Y_fitted_m1, predicted values on validation
set: Y_predicted_ml

e Second Model: predicted values on training set: Y_fitted_m2, predicted values on valida-
tion set: Y_predicted_m2

Note: To make sure you understand how to find the predicted value for both the training and
validation data set, there won’t be any hidden tests for this part.

# Fit the 1st model

linear model ml.fit(X_train ml, Y train ml)

# Compute the fitted and predicted wvalues of Log Sale Price for 1st model
Y_fitted_ml = linear_model_ml.predict(X_train_ml)

Y _predicted_ml = linear_model_ml.predict(X_valid_m1)

# Fit the 2nd model

linear_model m2.fit(X_train m2, Y_train_m2)

# Compute the fitted and predicted wvalues of Log Sale Price for 2nd model
Y fitted_m2 = linear_model_m2.predict(X_train_m2)

Y_predicted_m2 = linear_model _m2.predict(X_valid_m2)

1.9 Question 4: Evaluate Our Simple Model

Let’s now move into the analysis of our two models!

def rmse(predicted, actual):
Calculates RMSE from actual and predicted wvalues.
Input:
predicted (1D array): Vector of predicted/fitted values
actual (1D array): Vector of actual walues
Output:
A float, the RMSE wvalue.

nimnn

return np.sqrt(np.mean((actual - predicted)**2))

1.10 Question 4a

One way of understanding a model’s performance (and appropriateness) is through a plot of the
residuals versus the observations.

In the cell below, use plt.scatter (documentation) to plot the residuals from predicting Log Sale
Price using only the second model against the original Log Sale Price for the validation
data. With such a large dataset, it is difficult to avoid overplotting entirely. You should also

12


https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html

ensure that the dot size and opacity in the scatter plot are set appropriately to reduce
the impact of overplotting as much as possible.

[16]: e_m2 = Y_valid_m2 - Y_predicted_m2
plt.scatter(Y_valid_m2, e_m2, s=8, alpha=0.4)
plt.title("Residuals vs Obervations (Log Sale Price)")

plt.xlabel("Obervations (Log Sale Price)")
plt.ylabel("Residuals from Predicting")

plt.show()
Residuals vs Obervations (Log Sale Price)
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1.11 Question 4b

Based on the structure you see in your plot, does this model seem like it will correspond to regressive,
fair, or progressive taxation?

Assign “regressive”, “fair” or “progressive” to q4b in the cell below accordingly.
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q4b = 'regressive"

While our simple model explains some of the variability in price, there is certainly still a lot of
room for improvement one reason is we have been only utilizing 1 or 2 features (out of a total
of 70+) so far! Can you engineer and incorporate more features to improve the model’s fairness
and accuracy? We won’t be asking you to provide your answers here, but this will be important
going into the next part of this project.

2 Question 5

It is time to build your own model!

You will conduct feature engineering on your training data using the feature_engine_final
function (you will define this in g5d), fit the model with this training data, and compute
the training Root Mean Squared Error (RMSE). Then, we will process our test data with
feature_engine_final, use the model to predict Log Sale Price for the test data, transform
the predicted and original log values back into their original forms (by using delog), and compute
the test RMSE.

Your goal in Question 5 is to:

o Define a function to perform feature engineering and produce a design matrix for modeling.

o Apply this feature engineering function to the training data and use it to train a model that
can predict the Log Sale Price of houses.

o Use this trained model to predict the Log Sale Prices of the test set. Remember that our
test set does not contain the true Sale Price of each house — your model is trying to guess
them!

e Submit your predicted Log Sale Prices on the test set to Gradescope.

Right under the grading scheme, we will outline some important Datahub logistics. Please make
sure you read this carefully to avoid running into memory issues later!

e In Question ba, you can explore possible features for your model. This portion is not graded.

e In Question 5b, you can perform EDA on the dataset. This portion is not graded.

e In Question 5c, you can define feature engineering helper functions. This portion is not
graded.

e In Question 5d, you will create your design matrix and train a model. This portion is is
graded.

e In Question be, you can fit and evaluate your model. This portion is not graded.

e In Question 5f, you will generate the predictions for the test set. This portion is is graded.

2.0.1 Grading Scheme

Your grade for Question 5 will be based on your model’s RMSE when making predictions on the
training set, as well as your model’s RMSE when making predictions on the test set. The tables
below provide scoring guidelines. If your RMSE lies in a particular range, you will receive the
number of points associated with that range.

Important: while your training RMSE can be checked at any time in this notebook, your test
RMSE can only be checked by submitting your model’s predictions to Gradescope. You will only
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be able to submit your test set predictions to Gradescope up to 4 times per day.
Attempts will not carry over across days, so we recommend planning ahead to make sure you have
enough time to finetune your model!

The thresholds are as follows:

Points 3 2 1 0
Training RMSE ~ Less than 200k [200k, 240k) [240k, 280k) More than 280k
Points 3 2 1 0
Test RMSE Less than 240k [240k, 280k) [280k, 300k) More than 300k

2.1 Some notes before you start

e If you are running into memory issues, restart the kernel and only run the

cells you need to. The cell below (question cell) contains most to all of the imports
necessary to successfully complete this portion of the project, so it can be completed in-
dependently code-wise from the remainder of the project, and you do not need to rerun
the cell at the top of this notebook. The autograder will have more than 4GB of mem-
ory, so you will not lose credit as long as your solution to Question 5 is within the total
memory (4GB) limits of Datahub. By default, we reset the memory and clear all variables
using Jreset -f. If you want to delete specific variables, you may also use del in place
of %reset -f’%. For example, the following code will free up memory from data used for
older models: del training val_data, test_data, train, validation, X_train_mi,
X_valid_ml, X_train_m2, X_valid_ml. Our staff solution can be run independently from
all other questions, so we encourage you to do the same to make debugging easier.

If you need the data again after deleting the variables or resetting, you must
reload them again from earlier in the notebook.

You will be predicting Log Sale Price on the data stored in
cook_county_contest_test.csv. We will delog/exponentiate your prediction on Grade-
scope to compute RMSE and use this to score your model. Before submitting to Gradescope,
make sure that your predicted values can all be delogged (i.e., if one of your Log Sale Price
predictions is 60, it is too large; €% is too big!)

You MUST remove any additional new cells you add before submitting to Gradescope to
avoid any autograder errors.

You can only submit your test set prediction CSV file to Gradescope up to 4
times per day. Start early! In the case that you are approved for an extension, you will
be granted 4 more submissions for each day the deadline has been extended.

PLEASE READ THE ABOVE MESSAGE CAREFULLY!

# The 3 lines below to clean up memory from previous questions and reinitialize,

~0Otter!

# If you want to refer to any functions or wvariables you defined at any point,
~earlier in the project,
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# Place them in the cell under Question 5c so that you can access them after,
~the memory 1s reset.

# If you think you will not run into any memory issues, you are free to comment,
wout the next 3 lines as well.

hreset -f
import otter
grader = otter.Notebook("projA2.ipynb")

# Imports all the necessary libraries again

import numpy as np
import pandas as pd
from pandas.api.types import CategoricalDtype

Jmatplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import linear_model as 1m

import warnings
warnings.filterwarnings("ignore")

import zipfile
import os

from ds100_utils import *
from feature_func import *

from sklearn.preprocessing import OneHotEncoder

2.2 Question 5a: Finding Potential Features

This question is not graded — it is intended to give helpful guidance on how to get started with
feature engineering in g5d. You may write as little or as much as you would like here; it will not
factor into your grade. Read the documentation about the dataset in codebook.txt, located in
this directory. Is there any data you think may be related to housing prices? Include them below
for future reference.

2.3 Question 5b: More EDA

This question is not graded — it is intended to give helpful guidance on how to get started
with feature engineering. You may write as little or as much as you would like here; it will not
factor into your grade. Use the scratch space below to conduct any additional EDA you would
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like to see. You may use this space to make additional plots to help you visualize the relationship
between any variables or compute any relevant statistics. You are free to add any number of cells
as needed below and before the next question. You may find it helpful to review Project Al and
the techniques we explore there.

[Click to Expand]| Some potential ideas.

e Plot the distribution of a variable. Is this variable heavily skewed? Are there any outliers?
This can inform how you engineer your features later on.

o Make a scatter plot between a continuous feature and the outcome. Is there a relationship?
Is there a transformation that may linearize the relationship?

o Make a plot of a categorical/discrete feature and the outcome. Is there a relationship? How
can we transform this categorical data into numerical features that can be useful for OLS?

e Find the correlation coefficient between features and the outcome. Is there a strong relation-
ship between the two? Can you find the correlation coefficient between different transforma-
tions of the feature and the outcome?

# Add any EDA code below

2.4 Question 5c: Defining Helper Function or Helper Variables

This question is not graded, but we suggest that you put all your helper functions
below for readability and ease of testing. Use this space below to define any additional
helper functions you may use in your final model. These can be transformation functions you
identified in the optional question above.

# Define any additional helper functions or wvariables you need here
def feature_engine_pipe(data, pipeline_functions, prediction_col):
"""Process the data for a guided model."""
for function, arguments, keyword_arguments in pipeline_functions:
if keyword_arguments and (not arguments):
data = data.pipe(function, **keyword_arguments)
elif (not keyword_arguments) and (arguments):
data = data.pipe(function, *arguments)
else:
data = data.pipe(function)
if prediction_col in data.columns:
X = data.drop(columns=[prediction_col])
Y = data.loc[:, prediction_col]
return X, Y
else:
# For test set where “prediction_col s not present
X = data
return X, None

def find_expensive_neighborhoods(data, n=3, metric=np.median):
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neighborhoods = data.groupby("Neighborhood Code") ['Sale Price'].agg(metric).
wsort_values(ascending=False) .head(n) .index

# This makes sure the final list contains the generic int type used iny
<Python3, not specific ones used in NumPy.
return [int(code) for code in neighborhoods]

def ohe(data, columns):

nimnn

One-hot-encodes roof matertal. New columns are of the form "Roof,
wMaterial MATERIAL".

nmnn

new_data = data.copy()

encoder = OneHotEncoder(dtype=int)

RM_data = encoder.fit_transform(new_datal[[columns]]).toarray()
RM_df = pd.DataFrame(data=RM_data, columns=encoder.
wget_feature_names_out([columns]), index=new_data.index)

return new_data.join(RM_df)

2.5 Question 5d: Defining The Pipeline Function

Just as in the guided model from the previous question, you should encapsulate as much of your
workflow into functions as possible. Your job is to select better features and define your own feature
engineering pipeline inside the function feature_engine_final in the following cell. Use of .pipe
is not required, but you are welcome to incorporate it! You must not change the parameters
inside feature_engine_final. Do not edit the two lines at the end of the question
cell below. They are helper functions that define a linear model, fit your data, and
compute RMSE. If you do, you will receive no credit for this question.

o Any feature engineering techniques that involve referencing Sale Price (for example, re-
moving outlying Sale Price values from the training data) should be performed under the
condition if not is_test_set:.

o All other feature engineering techniques should be applied to both the training and test sets.
This means that you should perform them under the condition else:.

e When is_test_set is True, your function should return only the design matrix, X.

e When is_test_set is False, your function should return both the design matrix and the
response variable Y (the Log Sale Price column).

Hints: - Some features may have missing values in the test set but not in the training/validation
set. Make sure feature_engine_final handles missing values appropriately for each feature. - We
have imported all feature engineering functions from Project Al for you. You do not have access
to the feature_func.py file with the function body and definitions, but they work as defined in
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Project Al. Feel free to use them as you see fit! - You may wish to consider removing outlying
datapoints from the training set before fitting your model. You may not, however, remove any
datapoints from the test set (after all, the CCAO could not simply “refuse” to make predictions
for a particular house!) - As you finetune your model, you may unintentionally consume too much
Datahub memory, causing your kernel to crash. See g5a for guidance on how to resolve this!!

Note: If you run into any errors, the Proj. A2 Common Mistakes section of the Data 100 Debugging
Guide may be a helpful resource.

# Please include all of your feature engineering processes inside this function.
# Do not modify the parameters of this function.
def feature_engine_final(data, is_test_set=False):
# Whenever you access 'Log Sale Price' or 'Sale Price', make sure to use the
# condition ts_test_set like this:
if not is_test_set:
# Processing for the training set (i.e. not the test set)
# CAN involve references to sale price!
# CAN involve filtering certain Tows or removing outliers
m3_pipelines = [
(remove_outliers, None, {
'variable': 'Sale Price',
'lower': 499,
'upper': 2350000,
1,
(log_transform, None, {'col': 'Sale Price'}),
(log_transform, Nome, {'col': 'Building Square Feet'}),
(log_transform, None, {'col': 'Age Decade'}),
(add_total bedrooms, None, None),
(substitute_roof _material, None, None),
(ohe, ['Roof Material'], Nomne),
(ohe, ['Wall Material'l], Nomne),
(ohe, ['Property Class'], Nome),
(ohe, ['Town and Neighborhood'], None),
(select_columns, ['Log Sale Price', 'Bedrooms', 'Log Building Square
~Feet', 'Lot Size', 'Log Age Decade',
'Garage 1 Size', 'Garage 2 Size', 'Basement Finish',
~'Land Square Feet', 'Roof Material_Other',
'Roof Material_Shake', 'Roof Material_Shingle/
~Asphalt', 'Roof Material_Slate', 'Roof Material_Tile', 'Wall Material_1.0',
'Wall Material 2.0', 'Wall Material_3.0', 'Wall,
~Material_4.0', 'Property Class_202', 'Property Class_203', 'Property,
~Class_204"',
'Property Class_205', 'Property Class_206', 'Propertyy,
~Class_207', 'Property Class_208', 'Property Class_209', 'Property Class_278',
'Other Improvements', 'Town and Neighborhood_77104',
~'Town and Neighborhood_77115', 'Town and Neighborhood_77120', 'Town and
-Neighborhood_77131",
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'Town and Neighborhood_77132', 'Town and
~Neighborhood_77141', 'Town and Neighborhood_77150', 'Town and,
Neighborhood_77151', 'Town and Neighborhood_77152',

'Town and Neighborhood_77170', 'Town and
»Neighborhood_1011"', 'Town and Neighborhood_1012', 'Town and
~Neighborhood_1014', 'Town and Neighborhood_1021"',

'Town and Neighborhood_1022', 'Town and,
~Neighborhood_1023', 'Town and Neighborhood_1024', 'Town and
Neighborhood_1025"', 'Town and Neighborhood_1030',

'"Town and Neighborhood_1031', 'Town and,
»Neighborhood_2010', 'Town and Neighborhood_2011', 'Town and
~Neighborhood_2020', 'Town and Neighborhood_2030',

'Town and Neighborhood_2040', 'Town and
~Neighborhood_2050', ], None)
]

else:
# Processing for the test set
# CANNOT involve references to sale price!
# CANNOT <involve removing any Tows
m3_pipelines = [
(log_transform, None, {'col': 'Building Square Feet'}),
(log_transform, None, {'col': 'Age Decade'}),
(add_total_bedrooms, None, None),
(substitute_roof material, None, None),
(ohe, ['Roof Material'], Nomne),
(ohe, ['Wall Material'], Nome),
(ohe, ['Property Class'], Nome),
(ohe, ['Town and Neighborhood'], None),
(select_columns, ['Bedrooms', 'Log Building Square Feet', 'Lot Size',
~'Log Age Decade',
'Garage 1 Size', 'Garage 2 Size', 'Basement Finish',
~'Land Square Feet', 'Roof Material_QOther',
'Roof Material_Shake', 'Roof Material_Shingle/
~Asphalt', 'Roof Material_Slate', 'Roof Material_Tile', 'Wall Material_ 1.0',
'Wall Material 2.0', 'Wall Material_3.0', 'Wall,
~Material_4.0', 'Property Class_202', 'Property Class_203', 'Property,
~Class_204"',
'Property Class_205', 'Property Class_206', 'Propertyy
~Class_207', 'Property Class_208', 'Property Class_209', 'Property Class_278',
'Other Improvements', 'Town and Neighborhood_77104',
~'Town and Neighborhood_77115', 'Town and Neighborhood_77120', 'Town and
~Neighborhood_77131"',
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'Town and Neighborhood_77132', 'Town and
~Neighborhood_77141', 'Town and Neighborhood_77150', 'Town and
~Neighborhood_77151', 'Town and Neighborhood_77152',

'Town and Neighborhood_77170', 'Town and
»Neighborhood_1011"', 'Town and Neighborhood_1012', 'Town and
~Neighborhood_1014', 'Town and Neighborhood_1021"',

'Town and Neighborhood_1022', 'Town and,
~Neighborhood_1023', 'Town and Neighborhood_1024', 'Town and
Neighborhood_1025"', 'Town and Neighborhood_1030',

'"Town and Neighborhood_1031', 'Town and,
»Neighborhood_2010', 'Town and Neighborhood_2011', 'Town and
<Neighborhood_2020', 'Town and Neighborhood_2030',

'Town and Neighborhood_2040', 'Town and,
~Neighborhood_2050', ], None)
]

# Processing for both test and training set
# CANNOT involve references to sale price!
# CANNOT involve removing any Tows

# Return predictors (X) and response (Y) wariables separately
if is_test_set:
# Predictors

X, _ = feature_engine_pipe(data, m3_pipelines, 'Log Sale Price')
return X
else:
# Predictors. Your X should not include Log Sale Price!
X, _ = feature_engine_pipe(data, m3_pipelines, 'Log Sale Price')

# Response wvariable
_, Y = feature_engine_pipe(data, m3_pipelines, 'Log Sale Price')

return X, Y

# DO NOT EDIT THESE TWO LINES'!

check_rmse_threshold = run_linear_regression_test_optim(lm.
oLinearRegression(fit_intercept=True), feature_engine_final,
o'cook_county_train.csv', None, False)

print ("Current training RMSE:", check_rmse_threshold.loss)

print("You can check your grade for your prediction as per the grading scheme,
woutlined at the start of Question 5")

Current training RMSE: 199061.64677832078

You can check your grade for your prediction as per the grading scheme outlined
at the start of Question 5
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2.6 Question 5e: Fit and Evaluate your Model

This question is not graded. Use this space below to evaluate your models. Some ideas are
listed below.

Note: While we have a grader function that checks RMSE for you, it is best to define and cre-
ate your own model object and fit on your data. This way, you have access to the model di-
rectly to help you evaluate/debug if needed. For this project, you should use a sklearn default
LinearRegression() model with intercept term for grading purposes. Do not modify any hyper-
parameter in LinearRegression(), and focus on feature selection or hyperparameters of your own
feature engineering function.

It may also be helpful to calculate the RMSE directly as follows:

RMSE — Y houses in the ot (actual price for house — predicted price for house)?
number of houses

A function that computes the RMSE is provided below. Feel free to use it if you would like calculate
the RMSE for your training set.

def rmse(predicted, actual):
Calculates RMSE from actual and predicted wvalues.
Input:
predicted (1D array): Vector of predicted/fitted values
actual (1D array): Vector of actual wvalues
Output:
A float, the RMSE wvalue.

nmnn

return np.sqrt(np.mean((actual - predicted)**2))

[Click to Expand]| Hints:
Train set:

e Check your RMSE. Is this a reasonable number? You may use our grading scheme as a
reference. Keep in mind that training error is generally less than testing error.

Test set: * Find the original data shape at the beginning of the notebook (in the provided assert
statement). What should the output shape be?

 Since test and training/validation sets come from the same population (recall that test and
training/validation sets are a random split from larger data), we expect our test prediction
to have a similar range as the validation data. Plot the observed training (Log) Sale Price
and the predicted (Log) Sale Price. Are the ranges similar? Do you have any unreasonable
extreme prediction that cannot be exponentiated?

e We cannot compute test RMSE directly since we do not have the observed values. Perform
cross-validation to estimate your test error. Recall that we are treating the validation set as
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unseen data.

# Use this space to ewvaluate your model
# 1f you reset your memory, you need to define the functions again

2.7 Question 5f Submission

Recall that the test set given to you in this assignment does not contain values for the true
Sale Price of each house. You will be predicting Log Sale Price on the data stored in
cook_county_contest_test.csv. To determine your model’s RMSE on the test set, you will sub-
mit the predictions made by your model to Gradescope. There, we will run checks to see what your
test RMSE is by considering (hidden) true values for the Sale Price. We will delog/exponentiate
your prediction on Gradescope to compute RMSE and use this to score your model. Before sub-
mitting to Gradescope, make sure that your predicted values can all be delogged (i.e., if one of your
Log Sale Price predictions is 60, it is too large; €Y is too big!)

Your score on this section will be determined by the grading scheme outlined at the start of
Question 5. Remember that you can only submit your test set predictions to Gradescope
up to 4 times per day. Plan your time to ensure that you can adjust your model
as necessary, and please test your model’s performance using cross-validation before
making any submissions. For more on cross-validation, check Lecture 16. In particular, the
Lecture 16 notebook may be helpful here. Furthermore, feel free to use the cross validation
implementation done in Lab 8 to test your model. You can also reference what you did in
previous questions when creating training and validation sets and seeing how your model performs.

To determine the error on the test set, please submit your predictions on the test set to the
Gradescope assignment Project A2 Test Set Predictions. The CSV file to submit is generated
below, and you should not modify the cell below. Simply download the CSV file, and submit it to
the appropriate Gradescope assignment.

You will not receive credit for the test set predictions (i.e., up to 3 points) unless you
submit to this assignment!!

Note: If you run into any errors, the Proj. A2 Common Mistakes section of the Data 100 Debugging
Guide may be a helpful resource.

from datetime import datetime
from IPython.display import display, HTML

Y_test_pred = run_linear_regression_test(1lm.
HLinearRegression(fit_intercept=True), feature_engine_final, Nome,,
~'cook_county_train.csv', 'cook_county_contest_test.csv',

is_test = True, is_ranking = False,
~return_predictions = True

# Construct and save the submission:
submission_df = pd.DataFrame ({
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"Id": pd.read_csv('cook_county_contest_test.csv')['Unnamed: 0'],
"Value": Y_test_pred,
}, columns=['Id', 'Value'l)
timestamp = datetime.now() .strftime ("%Ym%d_%HLM%AS")
filename = "submission_{}.csv".format(timestamp)
submission_df.to_csv(filename, index=False)

#print ('Created a CSV file: {F.'.format("submisston_{}.csv".format (timestamp)))

display(HTML("Download your test prediction <a href='" + filename + "'
owdownload>here</a>."))

print('You may now upload this CSV file to Gradescope for scoring.')#

<IPython.core.display.HTML object>

You may now upload this CSV file to Gradescope for scoring.

[25]: | # Scratch space to check if your prediction is reasonable. See 5e for hints.
# We will not reset the submission count for mis-submission issues.
submission_df["Value"] .describe()

[25]: count 55311.000000

mean 12.173659
std 0.609936
min 10.385290
25% 11.754816
50% 12.031337
75% 12.499953
max 15.824084

Name: Value, dtype: float64

Congratulations on finishing your prediction model for home sale prices in Cook County! In the
following section, we’ll delve deeper into the implications of predictive modeling within the CCAO
case study, especially because statistical modeling is how the CCAQO valuates properties.

2.8 Question 6: Exploring RMSE

Let’s delve a bit deeper into what RMSE means in the context of predicting house prices. We will
go through different ways of visualizing the performance of the model you created and see how that
ties into questions about property taxes. To this end, we’ll create the preds_df DataFrame below
that will prove useful for the later questions.

[26]: # Run the cell below; no further action %is needed
train_df = pd.read_csv('cook_county_train.csv')
X, Y_true = feature_engine_final(train_df)
model = 1lm.LinearRegression(fit_intercept=True)
model . fit (X, Y_true)
Y_pred = model.predict (X)
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[28]:

preds_df = pd.DataFrame({'True Log Sale Price' : Y_true, 'Predicted Log Sale
~Price' : Y_pred,
'True Sale Price' : np.e*x*xY_true, 'Predicted Sale
<Price' : np.e**Y_pred})
preds_df .head ()

True Log Sale Price Predicted Log Sale Price True Sale Price \

1 12.560244 11.759013 285000.0

2 9.998798 11.520066 22000.0

3 12.323856 11.789663 225000.0

4 10.025705 11.494287 22600.0

6 11.512925 12.144627 100000.0
Predicted Sale Price

1 127901.191297

2 100716.593283

3 131882.015104

4 98153.441188

6 188080.858120

2.8.1 Question 6a

Let’s examine how our model performs on two halves of our data: cheap_df which contains the
rows of preds_df with prices below or equal to the median sale price, and expensive_df which
has rows of preds_df with true sale prices above the median. Take a moment to understand what
is happening in the cell below, as it will also prove useful in g6b.

# Run the cell below to obtain the two subsets of data; mo further action s,
wneeded.

min_Y_true, max_Y_true = np.round(np.min(Y_true), 1) , np.round(np.max(Y_true),
1)

median_Y_true = np.round(np.median(Y_true), 1)

cheap_df = preds_df[(preds_df['True Log Sale Price']l >= min_Y_true) &,
< (preds_df['True Log Sale Price'] <= median_Y_true)]

expensive_df = preds_df [(preds_df['True Log Sale Price'] > median_Y_true) &,
< (preds_df['True Log Sale Price'] <= max_Y_true)]

print (f'\nThe lower interval contains houses with true sale price ${np.round(np.
wexxmin_Y_true)} to ${np.round(np.ex*median_Y_true)l}')

print(f'The higher interval contains houses with true sale price ${np.round(np.
~ex*median_Y_true)} to ${np.round(np.e**max_Y_true)}\n')

The lower interval contains houses with true sale price $493.0 to $219696.0
The higher interval contains houses with true sale price $219696.0 to $2421748.0
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Compute the RMSE of your model’s predictions of Sale Price on each subset sepa-
rately, and assign those values to rmse_cheap and rmse_expensive respectively.

Separately, we also want to understand whether the proportion of houses in each interval that the
model overestimates the value of the actual Sale Price. To that end, compute the proportion
of predictions strictly greater than the corresponding true price in each subset, and
assign it to prop_overest_cheap and prop_overest_expensive respectively. For example, if we
were working with a dataset of 3 houses where the actual Log Sale Prices were [10, 11, 12] and
the model predictions were [5, 15, 13], then the proportion of houses with overestimated values
would be 2/3.

Note: When calculating prop_overest_cheap and prop_overest_expensive, you could use ei-
ther Log Sale Price or Sale Price. Take a second to think through why this metric is unchanged
under a log transformation.

[29]: rmse_cheap = rmse(cheap_df['True Sale Price'], cheap_df['Predicted Sale Price'])
rmse_expensive = rmse(expensive_df['True Sale Price'], expensive_df['Predicted,,
~Sale Price'])

prop_overest_cheap = np.mean(cheap_df['Predicted Sale Price'] > cheap_df['True,
~Sale Price'])

prop_overest_expensive = np.mean(expensive_df['Predicted Sale Price'] >
~expensive_df ['True Sale Price'])

print (£"The RMSE for properties with log sale prices in the interval,,
~{(min_Y_true, median_Y_true)} is {np.round(rmse_cheap)}")

print (£"The RMSE for properties with log sale prices in the interval,,
~{(median_Y_true, max_Y_true)} is {np.round(rmse_expensive)}\n")

print (£"The percentage of overestimated values for properties with log sale
oprices in the interval {(min_Y_true, median_Y_true)} is {np.round(100 *
~prop_overest_cheap, 2)}%")

print(f"The percentage of overestimated values for properties with log sale
sprices in the interval {(median_Y_true, max_Y_true)} is {np.round(100 *
~prop_overest_expensive, 2)}%")

The RMSE for properties with log sale prices in the interval (6.2, 12.3) is
92797.0
The RMSE for properties with log sale prices in the interval (12.3, 14.7) is
268099.0

The percentage of overestimated values for properties with log sale prices in
the interval (6.2, 12.3) is 63.77%
The percentage of overestimated values for properties with log sale prices in
the interval (12.3, 14.7) is 17.51Y%
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2.8.2 Question 6b

The intervals we defined above were rather broad. Let’s try and take a more fine-grained approach
to understand how RMSE and proportion of houses overestimated vary across different intervals of
Log Sale Price. Complete the functions rmse_interval and prop_overest_interval to allow
us to compute the appropriate values for any given interval. Pay close attention to the function

description, and feel free to reuse and modify the code you wrote in the previous part as needed.

Note: The autograder tests provided for each of the functions are not comprehensive as the
outputs of the function are highly dependent on your model. Make sure that the values you obtain

are interpretable and that the plots that follow look right.

def rmse_interval(df, start, end):
Given a design matriz X and response vector Y, computes the RMSE for a
~subset of wvalues

wherein the corresponding Log Sale Price lies in the interval [start, end].

Input:
df : pandas DataFrame with columns 'True Log Sale Price’,
'Predicted Log Sale Price', 'True Sale Price', 'Predicted Sale Price’
start : A float spectifying the start of the interval (inclusive)
end : A float specifying the end of the interval (inclusive)

rr

subset_df = df[(df['True Log Sale Price'] >= start) & (df['True Log Sale
~Price'] <= end)]

rmse_subset = rmse(subset_df['Predicted Sale Price'], subset_df['True Sale,
<Price'])

return rmse_subset

def prop_overest_interval(df, start, end):
Given a DataFrame df, computes prop_overest for a subset of walues
wherein the corresponding Log Sale Price lies in the interval [start, end].

Input:
df : pandas DataFrame with columns 'True Log Sale Price’,
'Predicted Log Sale Price', 'True Sale Price', 'Predicted Sale Price’
start : A float specifying the start of the interval (inclusive)
end : A float specifying the end of the interval (inclusive)

rr

subset_df = df[(df['True Log Sale Price'] >= start) & (df['True Log Sale
wPrice'] <= end)]

# DO NOT MODIFY THESE TWO LINES
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if subset_df.shapel[0] == O:
return -1

prop_subset = np.mean(subset_df['Predicted Sale Price'] > subset_df['True
~Sale Price'l)

return prop_subset

2.8.3 Question 6¢

Now that you’ve defined these functions, let’s put them to use and generate some interesting
visualizations of how the RMSE and proportion of overestimated houses vary for different intervals.

# RMSE plot
plt.figure(figsize = (8,5))
plt.subplot(l, 2, 1)
rmses = []
for i in np.arange(8, 14, 0.5):
rmses.append (rmse_interval (preds_df, i, i + 0.5))
plt.bar(x = np.arange(8.25, 14.25, 0.5), height = rmses, edgecolor = 'black',
~width = 0.5)
plt.title('RMSE Over Different Intervals\n of Log Sale Price', fontsize = 10)
plt.xlabel('Log Sale Price')
plt.yticks(fontsize = 10)
plt.xticks(fontsize = 10)
plt.ylabel('RMSE')

# Overestimation plot

plt.subplot(l, 2, 2)

props = []

for i in np.arange(8, 14, 0.5):

props.append (prop_overest_interval(preds_df, i, i + 0.5) * 100)

plt.bar(x = np.arange(8.25, 14.25, 0.5), height = props, edgecolor = 'black',
~width = 0.5)

plt.title('Percentage of House Values Overestimated \nover different intervals
~of Log Sale Price', fontsize = 10)

plt.xlabel('Log Sale Price')

plt.yticks(fontsize = 10)

plt.xticks(fontsize = 10)

plt.ylabel('Percentage of House Values\n that were Overestimated (%)')

plt.tight_layout ()
plt.show()
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Explicitly referencing ONE of the plots above (using props and rmses), explain whether the
assessments your model predicts more closely aligns with scenario C or scenario D that we discussed
back in g1b. Which of the two plots would be more useful in ascertaining whether the assessments
tended to result in progressive or regressive taxation? Provide a brief explanation to support your
choice of plot. For your reference, the scenarios are also shown below:

C. An assessment process that systematically overvalues inexpensive properties and undervalues
D. An assessment process that systematically undervalues inexpensive properties and overvalues

According to the props plot, the pattern suggests that my model predicts aligns more closely with
senario C which overvalues inexpensive properties and undervalues expensice properties.

The props plot is more useful in ascertaining whether the assessments tened to result in progressive
or regressive taxation, since it can directly shows whether the predicted values are overestimated
over different intervals.

2.9 Question 7: Evaluating the Model in Context

2.10 Question 7a

When evaluating your model, we used RMSE. In the context of estimating the value of houses,
what does the residual mean for an individual homeowner? How does it affect them in terms of
property taxes? Discuss the cases where the residual is positive and negative separately.

Answer: The residual represents the difference between the model’s predicted house value and the
true market value of their property. When the residual is positive, the model has underestimated
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the property’s value, then the homeowner may pay less in property taxes than they should. When
the residual is negative, the model has overestimated the property’s value, then the homeowner
may pay more in property taxes than they should.

In the case of the Cook County Assessor’s Office, Chief Data Officer Rob Ross states that fair
property tax rates are contingent on whether property values are assessed accurately —— that
they're valued at what they’re worth, relative to properties with similar characteristics. This
implies that having a more accurate model results in fairer assessments. The goal of the property
assessment process for the CCAO, then, is to be as accurate as possible.

When the use of algorithms and statistical modeling has real-world consequences, we often refer to
the idea of fairness as a measurement of how socially responsible our work is. Fairness is incredibly
multifaceted: Is a fair model one that minimizes loss - one that generates accurate results? Is it
one that utilizes “unbiased” data? Or is fairness a broader goal that takes historical contexts into
account?

These approaches to fairness are not mutually exclusive. If we look beyond error functions and tech-
nical measures of accuracy, we’d not only consider individual cases of fairness but also what fairness
and justice means to marginalized communities on a broader scale. We’d ask: What
does it mean when homes in predominantly Black and Hispanic communities in Cook County are
consistently overvalued, resulting in proportionally higher property taxes? When the white neigh-
borhoods in Cook County are consistently undervalued, resulting in proportionally lower property
taxes?

Having “accurate” predictions doesn’t necessarily address larger historical trends and inequities, and
fairness in property assessments in taxes works beyond the CCAQ’s valuation model. Disassociating
accurate predictions from a fair system is vital to approaching justice at multiple levels. Take
Evanston, IL a suburb in Cook County —— as an example of housing equity beyond just
improving a property valuation model: their City Council members recently approved reparations
for African American residents.

2.11 Question 7b

Reflecting back on your exploration in Questions 6 and 7a, in your own words, what makes a
model’s predictions of property values for tax assessment purposes “fair”?

This question is open-ended and part of your answer may depend on your specific model; we are
looking for thoughtfulness and engagement with the material, not correctness.

Hint: Some guiding questions to reflect on as you answer the question above: What is the re-
lationship between RMSE, accuracy, and fairness as you have defined it? Is a model with a low
RMSE necessarily accurate? Is a model with a low RMSE necessarily “fair”? Is there any difference
between your answers to the previous two questions? And if so, why?

A “fair” model not only needs to aim for minimizing the residuals and RMSE, but also needs yo
recognize and account for systemic inequities. Even if we have an accurate model for property
assessments, rich people have more resources to appeal their property assessments, which can lead
to unfairness in the process. Therefore, when making a model, it is important to go beyond the
data and consider broader society and historical issues to ensure the fairness.
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https://www.usnews.com/news/health-news/articles/2021-03-23/chicago-suburb-approves-government-reparations-for-black-residents
https://www.usnews.com/news/health-news/articles/2021-03-23/chicago-suburb-approves-government-reparations-for-black-residents
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