	தேசிய வெளிக்கள நிலையம் தொண்டைமானாறு இரண்டாம் தவணைப் பரீட்சை - 2023 National Field Work Centre, Thondaimanaru. 2 th Term Examination - 2023					
بھ ا(வல் தொடர்பாடல் தொழினுட்பவியல் Γ Gr -12 (2024) 20 E I					
	tructions: Part I Answer all questions Write down your index number on the space provided. In each of the questions 1 to 30, pick one of the alternatives (1),(2),(3),(4),(5) which is correct or most appropriate. Mark a cross (X) on the number corresponding to your choice in the answer sheet provided. No use of calculators.					
01)	Who developed the first "Automatic Sequence Controlled Calculator"? (1) Gottfried Wilhelm Von (2) Blaise Pascal (3) Charles Babbage (4) Ada Augusta Lovelace (5) Howard Aiken					
02)	 Which of the following correctly lists the given computer storage components in the ascending order of access speed? (1) register, magnetic disk, main memory, cache memory (2) register, cache memory, main memory, magnetic disk (3) cache memory, register, main memory, magnetic disk (4) magnetic disk, main memory, cache memory, register (5) cache memory, magnetic disk, main memory, register (6) cache memory (7) cache memory (8) cache memory (9) cache memory (1) A E and E only (2) A E and E only 					
04)	(1) A, C and D only(2) A, D and E only(3) A, E and F only(4) B, E and F only(5) C, E and F onlyWhich of the following components is located outside the microprocessor?(1) Arithmetic Logic Unit (ALU)(2) RAM(2) R = 100 M k in					
	(3) Control Unit (4) Register(5) Level 1 cache memory					

05)	5. The componen (1) Primary Men (4) ALU	nt that decode nory	es the instru (2) Registe (5) Progran	ictions fet r Unit n Counter	ched i	nto the CPU (3) Contr	s calleo ol Unit	d the.
06)	What is the corre (1) 00100111	ect 2's comple (2) 001111	ement binar 11 (3)	y represe 1011111	ntatio 1	n of decimal (4) 1010112	47 ₁₀ us l 1	ing 8-bits? (5) 00101111
07)	What is the co 100010002 and ((1) 11110111	rrect result 010100012 ? (2) 110110	of bit-wise 01 (3)	OR oper 1100111	ration 1	between th	e two	binary numbers (5) 10101010
08)	What is the corre (1) 96.25 $_{10}$	ect decimal equ (2) 96.125 $_1$	uivalent of o	ctal 143.2; 99.25 ₁₀	3 ?	(4) 99.125 ₁₀	1	(5) 69.2510
09)	What is the bina (1) 00110000.10 (4) 01100111.02	ry equivalent)1 11	to decimal (2) 010100 (5) 010001	71.325 ₁₀ ? 000.101 11.111		(3) 0100	0111.0	11
10)	$543_8 + 1011101_2$ (1) 448_{10}	2= (2) 447 ₈	(3)	678 ₁₀		(4) 500 ₈		(5) 3C0 ₁₆
11)	Which of the foll (1) $\overline{ABC} + A\overline{BC} +$ (2) $A\overline{BC} + \overline{ABC} +$ (3) $\overline{ABC} + A\overline{BC} +$ (4) $A\overline{BC} + \overline{ABC} +$ (5) $A\overline{B} + \overline{AB} + A\overline{C}$ Which of the foll	owing is the e AB \overline{C} \overline{ABC} - AB \overline{C} + ABC + \overline{ABC} + ABC \overline{C} + \overline{AB} + \overline{ABC} + lowing is equ	equivalent B $\overline{B}C$ ivalent to f_0	oolean ex $A_{A,B,C)} = \overline{AB}$	pressi	ion to $A \oplus B \in \overline{C}$ + $\overline{A}B \cdot \overline{A}$	⊖C. + <u>B</u> +	$\overline{\overline{\mathbf{C}}}$ after simplifying
	following Boolea (1) \overline{A} + C	an statement l (2) A + C	by using De (3)	Morgan's Ā+B	theor	em. (4) A + Ē		(5) B + C
13)	The logic expres	ssion relevant	to the outp	ut of the g	given t	ruth table is.		
	(1) A + B (2) A . B (3) $\overline{A + B}$ (4) $A \oplus B$ (5) $\overline{A \oplus B}$			A 0 0 1 1 1	B 0 1 0 1	Output 1 0 1 0 1		
14)	Consider the foll Which of the equivalent to the given above? (1) OR (4) NOT	owing logic ci following ne output Q c (2) AND (5) XOR	ircuit diagra Boolean lo of the logic (3]	ım. ogic is circuit) NOR	A -		یکر م	

22)	Which of the following is a possible IP address in a network with IP address 192.168.50.87 and				
	Subnet mask 255.255.255.240?				
	(1) 192.168.50.0	(2) 192.168.50.1	6 (3) 192.168.50.48		
	(4) 192.168.50.80	(5) 192.168.50.9	6		
23)	What is the main function of	a Proxy Server in	Internet communication?		
	(1) Allocate and release IP ac	ldress			
	(2) Translate domain names	to IP address			
	(3) Protect a network from v	iruses			
	(4) Provide printing services	to users			
	(5) Share an Internet connec	tion among severa	l computers		
24)	"DHCP" stands for				
	(1) Dynamic Hypertext Confi	guration Protocol	1		
	(2) Dynamic Host Connect Pr	rotocol			
	(3) Digital Host Connect Prot	cocol			
	(4) Dynamic Host Configurat	ion Protocol			
	(5) Digital Host Configuration	n Protocol			
25)	Which of the following opera	ting system is suit	able for a Aircraft Defense System.		
	(1) Single User – Single Task	ing	(2) Single User-Multi Tasking		
	(3) Multi User-Multi Tasking		(4) Multi-Threading		
	(5) Real Time		\mathcal{O}		
26)	Which of the following is an o	open-source softw	are?		
	(1) MS Word	(2) Windows	(3) Mozilla Firefox		
	(4) Photoshop	(5) Auto CAD			
27)	Which of the following cor	wert digital signa	l to analog data to transmit over an analog		
	telephone network?	\mathbf{i}			
	(1) Network Interface Card (NIC)	(2) MODEM		
	(3) Multiplexer		(4) Bluetooth adaptor		
	(5) Wi-Fi card				
28)	A computer in a network is	s configured with	the IP address 192.168.30.150 and the subnet		
	mask 255.255.255.192. White	ch of the following	IP address cannot be assigned to a computer in		
	the same network?				
	(1) 192.168.30.135	(2) 192.168.30.1	53 (3) 192.168.30.205		
	(4) 192.168.30.180	(5) 192.168.30.1	44		
29)	Two computers with the IP	addresses 192.168	3.70.173 and 192.168.70.185 are connected to a		
	Local Area Network (LAN). V	Vhich of the follow	ings is a suitable subnet mask for this network?		
	(1) 255.255.128.0	(2) 255.255.255.	248 (3) 255.255.255.240		
	(4) 255.255.255.224	(5) 255.255.224.	0		
30)	Which of the following is a va	alid Subnet Mask?			
	(1) 255.255.255.248	(2) 255.0.255.12	8 (3) 255.255.250		
	(4) 255.255.255.110	(5) 255.255.256.	0		

1

(ii) Show the Full Adder equations obtained in question (i) above using the	Do not write in this column
rules of Boolean algebra as follows.	
f -Sum = A \oplus B \oplus C	
f -Carry = C.(A \oplus B) + AB	
(III) Draw the logic circuit for the short circuit obtained in question (ii) above in a	
single logic circuit using only AND, OR, XOR logic Gates.	
~	
\sim	
2	
(i) Write down the two's complement representation of 23 to using 8 bits	
(i) White down the two s complement representation of 2510 using 0 bits.	

(ii)	Write down the two's complement representation of -9_{10} using 8 bits.	Do not write in this column
 (iii)	Compute $23_{10} + (-9_{10})$ using the above representations (i) and (ii)	
(iv)	Express the two's complement result obtained in (iii) above in ordinary decimal	
	form.	
	\sim	
(v)	Convert this 32- bit floating – point number in IEEE 754 single precision number to its equivalent decimal value.	
1 0	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0	
	2	
	V	

	even Layers Model in	order.	Do n in this
03	SI MODEL		$\left \right $
1			
2			
3			
4			
5			
6			ľ
7		K K	
Parity Check is a Assume the se check can be pe	a simple technique to even bits 1101011ne erformed to detect an	o detect errors in data communication. eed to be transmitted. Explain how the even parity ny error in its transmission.	
	· · · · · · · · · · · · · · · · · · ·		
Match and of	the given data an	monumization muchanala laballad tuama A ta E ta tha	
Match each of	the given data con	nmunication protocols labelled from A to E to the	
Match each of rresponding des	the given data con scription labelled from	nmunication protocols labelled from A to E to the m 1 to 5 .	
Match each of rresponding des	the given data con scription labelled from	mmunication protocols labelled from A to E to the m 1 to 5 .	
Match each of rresponding des Protoc	the given data con scription labelled from	mmunication protocols labelled from A to E to the m 1 to 5 .	
Match each of rresponding des Protoc A – Hyper Tex	the given data conscription labelled from col	Description 1-provides directory lookup service for given	
Match each of prresponding des Protoc A – Hyper Tex (HTTP) B – Transmiss	the given data con scription labelled from col at Transfer Protocol	Description 1-provides directory lookup service for given web addresses and URLs. 2-provides a very reliable data transfer service.	
Match each of prresponding des Protoc A – Hyper Tex (HTTP) B – Transmiss Protocol (TCP	the given data con scription labelled from col tt Transfer Protocol sion Control	Description 1-provides directory lookup service for given web addresses and URLs. 2-provides a very reliable data transfer service.	
Match each of prresponding des Protoc A – Hyper Tex (HTTP) B – Transmiss Protocol (TCP C – Domain Na	the given data conscription labelled from col and Control ') ame System (DNS)	nmunication protocols labelled from A to E to the m 1 to 5. Description 1-provides directory lookup service for given web addresses and URLs. 2-provides a very reliable data transfer service. 3-used in the world wide web.	
Match each of rresponding des Protoc A – Hyper Tex (HTTP) B – Transmiss Protocol (TCP C – Domain Na D – Internet P	the given data conscription labelled from col at Transfer Protocol sion Control) ame System (DNS) Protocol (IP)	Description 1-provides directory lookup service for given web addresses and URLs. 2-provides a very reliable data transfer service. 3-used in the world wide web. 4-provides a connection-less transport service.	

(b) T	he block size of a disk is 4KB. A portion of its File Allocation Table (FAT) at a particular	Do not write in this column
ti	me is shown below. The portion shown indicates the blocks of the <i>myfirst.py</i> file as well.	
FA	Т	
30	0 302	
30	1 300	
30	2 -1	
30		
30	4 305	
Notes	: I. The last block of a file is indicated by -1	
	II. The <i>directory entry</i> of a file contains the block number of the first block of the file.	
(i)	What is the <i>directory entry</i> for the <i>myfirst.py</i> file?	
(ii)	What is the disk space allocated for the <i>myfirst.py</i> file?	
	.1	
 (a) (.	onsider the process transition diagram in the figure.	
(c) C	the transitions about one of follows	
If	the transitions shown are as follows:	
1.	- Process blocks for input/output	
2.	- Scheduler picks another process	
3.	- Scheduler picks this process	
4.	- Input/output is completed	
1	mput) output is completed	
Т	hen what are the states indicated by the labels A, B, and C from the list below.	
Li	ist :- (Blocked, New, Ready, Running)	
Α		
В	$\sim \gamma$	
ca) c		
<i>(a)</i> G	ive two reasons as to why a page of a process may not be in physical memory.	

		\square

2. Consider the following scenario:

Suppose that the **PQR** Company has received the **192.168.30.128/25** IP address block to be distributed among its four departments.

It is required to subnet the above IP address block to satisfy the following requirements. Assume that each department is located in a separate building.

Subnet	Department	Number of	Printer Type
Number	Name	Computers	
S001	Finance	50	01-Network Printer
S002	HR	15	01-Printer
S003	IT Unit	06	01-Network Printer
S004	Marketing	05	01-Network Printer

The company proposes the following:

- A Local Area Network (LAN) for each Department and the IT unit in order to share specific software and resources
- LANs in each department to be interconnected via IT unit
- All computers to be given efficient Internet connectivity with the help of a DNS (Domain Name System) and Proxy Servers
- An Internet Service Provider (ISP) to supply the Internet connectivity to the IT unit
- The entire network to be protected through a Firewall
- (i) Which network topology is the most suitable to satisfy all above mentioned requirements? Give **one** reason to justify your answer.

(ii) Write the first address and the last address in the given address block.

- (iii) Write the subnet mask of the given address block in dotted decimal notation.
- (iv) Once subnetting is done, fill the following table.

Subnet Number	Network Address	Subnet Mask	Usable IP Address Range	Broadcast Address
S001	\sim			
S002				
S003				
S004				

- (v) Showing clearly the connection topology and the devices, draw the logical arrangement for the company network that the network administrator can implement to fulfill the company's requirements.
- **(vi)** Network administrator decides to dynamically manage the IP address of the entire network. Write down the mechanism that needs to be implemented to achieve this task.
