SMART 5

특허 평가보고서

등록번호 : KR-10-1059525

발명의 명칭 : 스마트 전압 안정화 장치 및 이를 이용한 전기 분배전반

평가일 2025년 10월 25일 KIPA Zez yez yez

특허분석평가시스템(SMART5) 소개

- ※ 특허분석평가시스템(SMART5)은 특허의 우수성을 특허명세서·서지정보·행정정보로부터 추출된 특허정보를 활용하여 객관적으로 평가합니다.
- ※ SMART5 평가등급은 특허정보의 중요도에 대한 전문가 설문 기반의 구조방정식 모델 및 다중회귀 모델을 통해 평가가 이루어지며 평가결과는 WIPO 기술분류에 따라 스테나인의 9개 등급으로 제공됩니다.

평가보고서 구성

※ SMART5 평가보고서는 다음과 같은 목차로 구성되어 있습니다.

● 특허 요약 및 평가 결과

평가대상 특허의 서지정보 및 초록을 제공하며, 평가등급과 그에 따른 백분율 제공

2 권리성 평가분석

권리성 평가지표 등급과 평가요소 정보를 제공하며 상위(하위)등급과의 평균비교 결과도 함께 제공

③ 기술성 평가분석

기술성 평가지표 등급과 평가요소 정보를 제공하며 상위(하위)등급과의 평균비교 결과도 함께 제공

4 활용성 평가분석

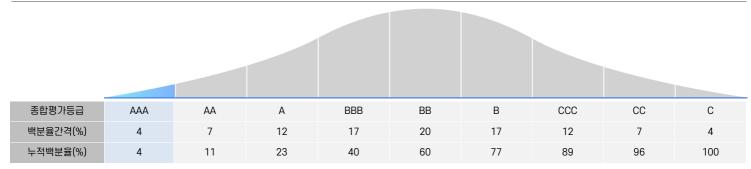
활용성 평가지표 등급과 평가요소 정보를 제공하며 상위(하위)등급과의 평균비교 결과도 함께 제공

5 APPENDIX

IPC별 백분위 비율, 평가모델 설명 등을 제공- 대표 청구항, 대표 도면, 피인용/인용 정보, 실시권 정보 등을 제공

[주의사항]

- * 본 보고서의 평가등급은 지식재산처 등 특허정보 공급기관으로부터 제공받은 객관적인 정보를 근거로 국내외 특허전문가들의 반복 검증을 통해 확정된 평가요소를 바탕으로 구조방정식이나 다중회귀분석 평가모델에 의해 산출된 것입니다.
- * 본 보고서는 효율적인 특허관리를 위한 참고용으로 활용할 수 있으나, 실제 시장가치, 로열티, 무효 및 침해여부 등에 대한 공식적인 입증자료로 사용되는 것에 대해 한국발명진흥회는 일체의 보증이나 책임을 지지 않습니다.
- * 본 보고서는 한국발명진흥회의 저작물로서 모든 저작권은 한국발명진흥회에 있으며, 한국발명진흥회의 동의 없이 본 보고서를 무단으로 배포, 복제, 인용, 변형, 전재 등을 할 수 없습니다.


KR-10-1059525 Page 1 of 6

[총평]

특허 제 10-1059525호, "스마트 전압 안정화 장치 및 이를 이용한 전기 분배전반"는(은) "전기/전자/IT" 기술분야 특허 중 종합 평가등급이 AAA등급(상위 3.3% 수준)으로 평가되었습니다. 권리성 지표의 경우 해당 기술분야의 제3자와의 특허분쟁에서 독점 배타적 지위를 유지할 수 있는 능력이 가장 높을 수 있습니다. 기술성 지표의 경우 해당 기술분야의 기술동향과 부합하면서 선도하는 정도가 평균적인 수준일 수 있습니다. 활용성 지표의 경우 베즈니스에 활용되는 정도가 평균적 수준일 수 있습니다.

[등급분포]

※ 현재 등록된 동일 기술 분야 전체 특허에 대하여, 위의 표에 제시된 백분율에 따라 평가등급이 부여됩니다.

/_	ГН
- 7 1	

등록번호 출원번호	10-1059525 10-2010-0082432
기술분야	전기/전자/IT
발명의 명칭	스마트 전압 안정화 장치 및 이를 이용한 전기 분배전반
권리자 출원인	(주)제라 나영재, 이선은, 장미숙
출원일 등록일 만료예정일	2010-08-25 2011-08-19 2030-08-25

[초록]

본 발명은 스마트 전압 안정화 장치 및 이를 이용한 전기 분배전반에 관한 것으로, 한전 측으로부터 공급되는 교류전압을 멀티탭 트랜스포머와 다접점 스위치 및 소정 제어수단을 통해 안정적으로 조절하여 부하 측으로 공급할 수 있도록 한 스마트 전압 안정화 장치 및 이를 이용한 전기 분배전반을 제공함에 목적이 있다.이를 위해, 본 발명에 따른 스마트 전압 안정화 장치는, 한전 측으로부터 공급되는 교류전압을 안정적으로 제어하여 분기스위치 측으로 출력시키기 위한 전압 안정화 장치에 있어서, 한전 측으로부터의 전력이 인입되는 주차단기에 연결되며, 입력되는 전압 범위에 따라 권선된 1차측 코일부와, 설정된 기준 전압과 비교한 후 그 차이만큼 승압 또는 감압할 수 있도록 권선된 다수 개의 탭으로 이루어진 2차측 코일부를 포함하는 토로이달형의 멀티탭 트랜스포머와; 상기 멀티탭 트랜스포머의 각 탭이 각각 연결되도록 다수 개의 접점이 구비된 상태에서, 외부 제어신호에 따라 그 중 한 개의 접점이 선택적으로 부스바와 연결되면서 자동으로 조절된 전압을 분기스위치 측으로 공급하도록 이루어진 다접점 스위치 및; 공급되는 전압의 평균 값 및 이에 따라 분석된 변압 값이 설정 저장된 상태에서, 상기 주차단기를 통해 입력되는 전압 값의 범위에 ...

평가지표별 등급 검정 방법

[평가요소 평균비교에 대한 통계적 검정]

- *SMART5 등급은 다양한 특허데이터에서 추출된 평가요소에 기반하여 산출되며, 산출된 등급에 대한 근거로서 평가요소 평균비교에 대한 통계적 검정 결과를 제시합니다.
- * 평균비교를 통한 통계적 검정은 평가대상특허와 상위(A등급 구간의 경우 하위)구간 특허 간의 평가요소 값의 차이가 의미있는 차이인지를 확인하는 객관적인 방법입니다.
- * 차이의 정도를 나타내는 값을 T통계량이라고 하며, T통계량을 확률로서 표현한 것을 p.value라고 합니다. T통계량이 클수록 큰 차이를 의미하며 P-value가 5%(0.05) 보다 작은 확률을 가질 경우 평가요소 간의 유의미한 차이가 존재합니다.
- ※ 종합평가등급은 각 세부평가지표의 등급이 합산된 값이 아니며 각 세부지표의 절대적 값은 차이가 존재합니다.

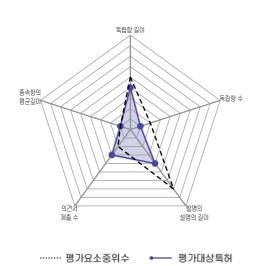
[평가요소 평균비교 대상 정의]

평가대상특허등급	평균비교 구간
A등급 구간(AAA~A)	B등급 구간(BBB~B)
B등급 구간(BBB~B)	A등급 구간(AAA~A)
C등급 구간(CCC~C)	B등급 구간(BBB~B)

[가설 설정]

* 평균비교에 대한 귀무가설(H0)과 대립가설(H1)은 다음과 같습니다. H0: 상위(하위) 특허군의 평가요소 평균은 평가대상 특허의 평가요소 값과 같다. H1: 상위(하위) 특허군의 평가요소 평균은 평가대상 특허의 평가요소 값보다 크다(작다) * p.value <0.05 이면, 상위(하위) 특허군의 평가요소 평균이 평가대상 특허의 평가요소 값보다 유의미한 차이(크다/작다)가 존재합니다

KR-10-1059525 Page 2 of 6


권리성 평가 분석 특히 평가보고서

평가대상 특허가 제3자와의 특허분쟁에서 독점배단적 지위를 유지할 수 있는 정도

평가대상 특허는 권리성이 B등급 구간(BBB~B)에 속하는 특허들과 평균비교(T검정)를 실시하였으며, 그 결과 95% 신뢰수준에서 유의미한 차이를 보였습니다. 이러한 차이에 기반하여 권리성 평가등급은 AAA(상위 0.8%) 이하로 산출되었으며,해당 기술분야의 제3자와의 특허분쟁에서 독점배 단적 지위를 유지할 수 있는 정도가 가장 높은 수준일 수 있습니다. 독립항 길이는 242자로 작성되었습니다. 독립항 수는 1개로 작성되었습니다. 분할출원 우선권 주장수는 0건 입니다. 의견서 제출 수는 2건 입니다. 종속항의 평균 깊이는 2단계 입니다.

[권리성 평가요소 요약 통계]

평가	평가	-					평균비교		
요소	대상 특허	평균	최소값	하위 25%	50%	상위 25%	최대값	T통계량 ¹⁾	P.Value ²⁾
독립항 길이	242	334.69	9	160	259	409	34003	137.02	0.00***
독립항 수	1	2.41	1	1	2	3	33	501.48	0.00***
발명의 설명의 길이	1804	4517.92	52	2370	3589	5505	366629	342.50	0.00***
의견서 제출 수	2	1.12	0	1	1	1	8	735.97	0.00***
종속항의 평균깊이	2	2.37	0	2	2.3	2.6	16	266.68	0.00***

A등급 구간(AAA~A) 요약통계

2

1951

상위 25%

2

3

3032

76

88

7002

211

평균비교

P.Value

0.00***

0.00***

0.00***

0.00***

0.00***

T통계량

196.07

341.39

107.28

56 57

81.87

- ▷ 권리성은 위 5개의 평가요소 외에 다른 평가요소도 영향을 미치고 있습니다.
- > *P.Value<0.05, ** P.Value<0.01, ***P.Value<0.001

기술성 평가 분석

BB

평가대상 특허가 기술동향과 부합하거나 선도하는 정도

평가

요소

IPC 수

선행문헌 중

논문/외국 특허 수

총 피인용 수

출원일과 피인용일

THOL

평가대상 특허는 기술성이 A등급 구간(AAA~A)에 속하는 특허들과 평균비교(T검정)를 실시하였으며, 그 결과 95% 신뢰수준에서 유의미한 차이를 보였습니다. 이러한 차이에 기반하여 기술성 평가등급은 BB(상위 48.5%) 이하로 산출되었으며, 해당 기술분야의 기술동향과 부합하면서 선도하는 정도가 평균적일 수 있습니다. IPC 수는 2개 입니다. 선행문허 중 논문/외국특허 수는 0건 입니다. 총 피인용 수는 1건 입니다. 출원일과 피인용일 차이는 1983일 입니다. 피인용 특허의 인용문헌 중 논문/외국 특허 수는 1건 입니다.

1.53

2.08

1.95

2248 93

0

0

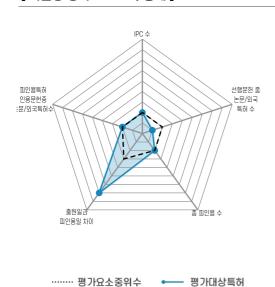
0

1253

평가

대상

특허


2

0

1983

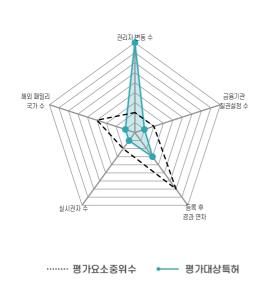
> *P.Value<0.05, ** P.Value<0.01, ***P.Value<0.001

[기술성 평가요소 요약 통계]

피인용특허 인용문헌중 논문/외국특허수	1	2.43	0	0	1	3
▷ 기숙성으 의 5개이 평가요.	수 이에 디	로 평가요?	사도 영히	:≘ ∏†I	고 있습니	ΙΓĿ

- 1) T 통계량은 평가대상 특허와 상위구간(하위구간) 특허들의 평균과 통계적인 비교를 한 결과로 산출되는 값입니다.
- 2) P.Value는 상위구간(하위구간)과의 차이의 정도를 측정하는 확률을 의미하며 큰 차이를 보일수록 작은 확률이 산출됩니다. 특히, P.Value<0.05이면 평가대상 특허와 상위구간(하위구간) 특허들의 평균이 유의미한 차이가 존재함을 의미합니다.

KR-10-1059525 Page 3 of 6


활용성 평가 분석 특히 평가보고서

평가대상특허가 비즈니스에서 활용되는 정도 및 활용 가능성

평가대상 특허는 활용성이 B등급 구간(BBB~B)에 속하는 특허들과 평균비교(T검정)를 실시하였으며, 그 결과 95% 신뢰수준에서 유의미한 차이를 보였습니다. 이러한 차이에 기반하여 활용성 평가등급은AAA(상위 0.1%) 이하로 산출되었으며,비즈니스에 활용되는 정도가 가장 높은 수준일 수 있습니다. 권리자 변동 수는 11건 입니다. 금융기관 질권설정 수는 0건 입니다. 등록 후 경과 연차는 15년 입니다. 실시권자 수는 0명 입니다. 해외패밀리 국가 수는 0개 입니다.

[활용성 평가요소 요약 통계]

평가	평가 대상							평균비교	
요소	특허	평균	최소값	하위 25%	50%	상위 25%	최대값	T통계량	P.Value
권리자 변동 수	11	0.19	0	0	0	0	6	12044.37	0.00***
금융기관 질권설정 수	0	0.02	0	0	0	0	6	70.50	0.00***
등록 후 경과 연차	15	6.38	1	3	5	9	20	1000.75	0.00***
실시권자 수	0	0.01	0	0	0	0	79	24.36	0.00***
해외 패밀리 국가 수	0	1.17	0	0	1	2	4	451.19	0.00***

29.9 %

0.1 %

> *P.Value<0.05, ** P.Value<0.01, ***P.Value<0.001

WIPO 기술문류별 백문위 비율 문식						
평가지표	대분류(전기/전자/IT) [480,993]	중분류(전기기계/에너지) [115,721]				
종합평가	3.3 %	1.8 %				
권리성	0.8 %	0.3 %				

48.5 %

0.1 %

기술성

활용성

KR-10-1059525 Page 4 of 6

[▷] 활용성은 위 5개의 평가요소 외에 다른 평가요소도 영향을 미치고 있습니다.

^{*} 종합평가의 전기/전자/IT의 비율은 상위 3.3%에 위치하고 있음을 의미합니다

APPENDIX I 특허 평가보고서

[IPC별 백분위 비율 분석]

H 전	I	323,354 건	
H02 전	격의 발전, 변환, 배전	35,596 건	
H02J 전	격의 발전, 변환, 배전	8,480 건	
평가지표	Н	H02	H02J
종합평가	2.1 %	0.7 %	1.8 %
권리성	1.0 %	0.2 %	0.5 %

27.0 %

0.0 %

- * 종합평가의 '전기/전자/IT'의 비율은 상위 2.1%에 위치하고 있음을 의미함
- * WIPO 기술분류에 해당하는 모델의 평가 결과를 기반으로 IPC별 상위 비율을 분석한 결과임

APPENDIX II

기술성

활용성

[특허평가 대상 국가]

45.5 %

0.1 %

한국특허 미국특허 유럽특허 중국특허 일본특허

[특허정보 공급기관과 평가주기]

45.6 %

0.0 %

특허정보 공급기관	평가주기
한국지식재산처(MOIP)	
미국특허청(USPTO)	* 특허 최초 평가월 : 특허 공고월+2개월 후
유럽특허청(EPO)	
중국지식재산출판사(IPPH)	
일본특허청(JP0)	* 평가 주기 : 매월
표준특허센터	

평가일	매월 평가 결과	매월 평가 결과가 갱신되는 날짜			
보고서 평가일	고객이 원하는	특허의 평가보고서를 생성한 날짜			
	한국	특허정보 중요도에 대한 전문가 설문조사 결과 기반의 구조방정식 모델로 구축			
평가모델	중국	구조방정식 모델(Structural Equation Model)은 확인적 요인분석과 경로분석이 결합된 모델로 다수의 독립변수와 다수의 종속변수 간의 인과관계를 분석			
0/175	미국	평가지표별 핵심 평가요소를 종속변수로 활용한 다중회귀분석모델로 구축			
	유럽 일본	다중회귀분석(Multiple Regression Analysis)은 종속변수와 2개 이상의 독립변수간의 상호 연관성 정도를 분석하는 방법			
WIPO 기술분류	WIPO는 기술분류를 전기/전자/IT, 기계, 기구, 화학으로 분류하고, 해당 기술 분류와 IPC 코드를 매핑한 Table 제공				
스테나인 비율	스테나인(Stani	스테나인(Stanine : Standard + nine)은 정규화 척도 점수의 일종으로 정해진 비율에 따라 9 등급으로 부여하는 방식			

[주의사항]

- * 본 보고서의 평가등급은 지식재산처 등 특허정보 공급기관으로부터 제공받은 객관적인 정보를 근거로 국내외 특허전문가들의 반복 검증을 통해 확정된 평가요소를 바탕으로 구조방정식이나 다중회귀분석 평가모델에 의해 산출된 것입니다.
- * 본 보고서는 효율적인 특허관리를 위한 참고용으로 활용할 수 있으나, 실제 시장가치, 로열티, 무효 및 침해여부 등에 대한 공식적인 입증자료로 사용되는 것에 대해 한국발명진흥회는 일체의 보증이나 책임을 지지 않습니다.
- * 본 보고서는 한국발명진흥회의 저작물로서 모든 저작권은 한국발명진흥회에 있으며, 한국발명진흥회의 동의 없이 본보고서를 무단으로 배포, 복제, 인용, 변형, 전재 등을 할 수 없습니다.

KR-10-1059525 Page 5 of 6

[대표 청구]

한전 측으로부터 공급되는 교류전압을 안정적으로 제어하여 분기스위치 측으로 출력시키기 위하여, 한전 측으로부터의 전력이 인입되는 주차단기에 연결되며, 입력되는 전압 범위에 따라 권선된 1차측 코일부와. 설정된 기준 전압과 비교한 후 그 차이만큼 승압 또는 감압할 수 있도록 권선된 다수 개의 탭으로 이루어진 2차측 코일부를 포함하는 토로이달형의 멀티탭 트랜스포머와; 상기 멀티탭 트랜스포머의 각 탭이 각각 연 결되도록 다수 개의 접점이 구비된 상태에서, 외부 제어신호에 따라 그 중 한 개의 접점이 선택적으로 부스 바와 연결되면서 자동으로 조절된 전압을 분기스위치 측으로 공급하도록 이루어진 다접점 스위치 및; 공급 되는 전압의 분포도로 얻어진 평균 값 및 이를 기초로 설정된 변압 값이 저장된 상태에서, 상기 주차단기를 통해 입력되는 전압 값의 범위에 기초하여 상기 다접점 스위치가 동작되면서 정격전압을 출력시키도록 소 정 제어신호를 인가하는 제어수단;을 포함하여 구성된 전압 안정화 장치에 있어서, 상기 다접점 스위치 는,MCCB로부터 전원이 공급되며 바이패스 모드 및 전압조절 모드로 선택적으로 절환되는 연동스위치와, 상기 멀티탭 트랜스포머의 2차측 코일부에 구비된 다수 개의 탭이 각각 대응되게 연결된 상태로 나란히 배 열되어 구성되는 다수 개의 접점과,상기 연동스위치 또는 임의의 접점을 통해 공급되는 전력을 부하 측으로 전달하도록 상기 다수 개의 접점과 일정 간격 이격된 상태로 평행하게 설치되는 부스바와,상기 부스바 및 나란히 배열된 다수 개의 접점 사이의 공간부에 설치되는 사각타입의 나사피치를 갖는 샤프트와,상기 샤프 트의 일측에 설치되어 상기 제어수단으로부터의 제어신호에 의해 구동되면서 상기 샤프트가 회전 동작되도 록 하는 엔코더를 장착한 구동모터로 이루어진 드라이버 및,샤프트에 설치된 상태에서 상기 드라이버의 구 동에 따른 샤프트의 회전에 의해 이동되면서 임의의 접점과 부스바를 상호 연결시켜 해당 접점의 전력이 부 스바 측으로 공급되도록 하는 스위치헤드를 포함하여 구성된 것;을 특징으로 하는 스마트 전압 안정화 장 ţ١.

[대표 도면]

[피인용 정보]

번호	출원번호	발명의 명칭	IPC	출원일	출원인	권리자
1	1020160011722	부하측정장치	G01R 31/40	2016.01.29	주식회사 케이지에스	주식회사 케이지에스

[피인용의 선행문헌 중 논문/외국특허 정보]

번호	피인용의 특허 출원번호	선행문헌[논문/외국특허] 정보
1	1020160011722	US20140091762 A1

[선행문헌 중 논문/외국특허 정보]

번호	선행문헌[논문/외국특허] 번호

[심판정보]

번호	심판 번호	사건의 표시	청구/취하일	심판확정상태	확정결과	청구인

[실시권 정보]

번호	시작기간	종료기간	실시지역	실시내용

KR-10-1059525 Page 6 of 6