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Preface

This work is an abridged and corrected version of my PhD the-
sis "Analyse Harmonique Quaternionique et Fonctions Spéciales Clas-
siques" (Université de Reims Champagne-Ardenne, 2017). The parts
that I have taken out of the original version are just those parts that
were written in French so as to comply with regulations in French uni-
versities (translated introduction, summaries of all chapters and con-
clusion). Many corrections have been made, but they are all minor
corrections and they have no effect on results.

I am deeply endebted to my PhD supervisor Pr. Michael Pevzner
(Reims) for his guidance, kindness and enthusiasm. One of the many
good memories I’ll keep of my PhD years is the time we spent in Moscow
at the Interdisciplinary Scientific Center J.-V. Poncelet to discuss fu-
ture works whilst I was still finishing my dissertation.

As a PhD student, I had the opportunity to travel and meet people
who, each in their own way, would give me some insight on Lie theory.
In particular, I met Pr. Toshiyuki Kobayashi (University of Tokyo)
and Pr. Pierre Clare (College of William & Mary) on several occasions
and I am extremely grateful to them for many enlightening and helpful
discussions.

Finally, a more "straight to the point" presentation of this work can
be found in [44].

Grégory Mendousse, Reims, January 2023
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Notation

The choices made here apply to all integers n > 1.

The standard Euclidean inner product of R™ is denoted by a simple
dot and defined for z = (z1,...,2,) € R" and y = (y1,...,yn) € R"”
by the usual sum:

n
Toy=Y Ty
=1

Given any two vectors z = (21,...,2,) and w = (wy, ..., w,) of C", we
set:

n
(z,w) = Z ZjWw; .
i=1

We point out that this does not correspond to the standard Hermitian
inner product of C".

We identify real, complex and quaternionic coordinates (in Chapter 2,
we explain all we need to know about quaternions and quaternionic
linear algebra). The identifications work as follows:

o a vector (z,y) € R® x R" ~ R?" will correspond to the vector
z=x+1y e C

o a vector (z,w) € C" x C" ~ C*" will correspond to the vector
h=z+jwe H".

Denote by K the field R, C or H and consider any integers r > 1 and
s > 1. Then:
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o We write K* =K\ {0}.

o M, ;(K) denotes the K-vector space of r x s matrices (meaning
matrices with 7 rows and s columns) whose coefficients all belong
to K.

« Given g € M, 4(K), 'g € M, ,(K) denotes the transpose of g.

o M(n,K) denotes the K-vector space of n x n matrices whose coef-
ficients all belong to K.

o GL(n,K) denotes the group of invertible elements of M(n, K).

We always identify matrices with the linear maps they correspond to
with respect to the canonical basis of the underlying vector space.

All zero matrices are simply denoted by 0. The n X n identity matrix
is denoted by I,.

Whatever kind of matrices we are working with, E, s refers to the ma-
trix whose terms are all 0 except for one term which is equal to 1 and
sits in Row 7 and Column s; such matrices are called elementary ma-
trices.

We denote by do the standard Fuclidean measure on the unit sphere
Sl

Because R ~ C?" ~ H", the unit sphere S*~1 of R*" will also be
denoted by S**~! when it is seen as a subset of C?" or H".

Given a measurable space X and a measure p on X:

o LY(X,u) (or just L'(X) if u is understood) denotes the complex
Banach space of equivalence classes of integrable complex-valued
functions on X with respect to pu.

o L?(X,u) (or just L?(X) if u is understood) denotes the complex
Hilbert space of equivalence classes of square-integrable complex-
valued functions on X with respect to p.

xii



Given a topological space X, C°(X) denotes the complex vector space
of continuous complex-valued functions on X.

We now fix once and for all an integer n > 2 and we set:

m=n—1; N =2n.

As for the bibliography, the references in no way mean to cover the
huge literature connected with this work; they only appear if explicitly
mentioned at some point.

xiii
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Chapter 1

Introduction

In broad terms, the point of representation theory is to give tangible
pictures of abstract groups by identifying their elements with operators
that one can visualise. This procedure helps understand the structure
of the given groups, but, more importantly perhaps, uses the knowledge
we have about these groups to solve important and difficult problems.
For instance, one might look for solutions of a certain differential equa-
tion; these solutions might form a vector space on which some relevant
group acts by linear operators, thereby defining a representation; one
might then try to break the vector space into explicit irreducible in-
variant subspaces in order to write down the desired solutions as com-
binations of elements of these subspaces.

These ideas appear in Fourier’s works. In his famous book [14], Fourier
studies the heat equation and decomposes its solutions into sums of
trigonometric functions. Of course, to refer to a single person when
discussing pioneering work is unfair, in the sense that ideas always de-
pend on existing knowledge (for example, Euler had already worked
on trigonometric series). To summarise two centuries of mathemati-
cal research in a few pages is obviously impossible, so many important
names and contributions will unjustly be left out of this introduction.
But our intention here is merely to outline a few important stages that
have led to representation theory as we know it today, in order to see
how our own work fits in the global picture of this theory. Though



we have had to choose which facts and people we mention as part of
this exciting mathematical story, we have nonetheless tried to be as
accurate as possible. The first pages of this introduction are based on
Mackey’s historical survey [41] and also on [24].

The ideas of Fourier were developed by Cauchy, Poisson, Dirichlet, Rie-
mann, Cayley and others, leading for instance to spherical harmonics
in arbitrary dimensions and more applications to physics. In the late
19th century, group theory, which had appeared in the works of Galois
and Abel, was placed at the heart of analysis and geometry. Klein
exposed this point of view in a famous lecture given at the University
of Erlangen (see [26]). Lie studied the actions of continuous groups.
Frobenius decided to concentrate on representations of finite groups,
showing that they are unitarisable and completely reducible, studying
the connections between characters and functions on the group, looking
at the regular representation and so forth. Weyl studied representa-
tions of compact groups, obtaining similar results to those of Frobenius,
but using more sophisticated notions, in particular the theory of inte-
gration made available by Borel, Lebesgue and Haar. With his student
Peter, he proved in [48] the famous Peter-Weyl theorem, which is a
generalisation of the Plancherel formula for Fourier series.

The next step involved Lie algebras. Lie had studied continuous trans-
formation groups from an infinitesimal point of view. Infinitesimal ge-
nerators of one-parameter subgroups gave rise to what would be called
the Lie algebra of the given group. Lie algebras were then studied in
their own right by Killing and E. Cartan, whose works led to the com-
plete classification of finite-dimensional simple Lie algebras. E. Cartan
studied representations of Lie algebras and classified the irreducible
finite-dimensional ones in terms of highest weights. This gave new
tools to Weyl to study representations of compact groups in further
detail, obtaining for instance the formulas known as the Weyl charac-
ter formula and the Weyl dimension formula.

Many scientists contributed to quantum physics in the early 20th cen-
tury (Schrodinger, Planck, Heisenberg, Von Neumann and so on). Their



works built up the setting we know today: a physical system cor-
responds to a certain Hilbert space, whose one-dimensional subspaces
define the (pure) states of the system; observables correspond to self-
adjoint operators, which define probability distributions. The role of
Hilbert spaces here justified the general interest in unitary represen-
tations: Weyl used the exponential map to assign to a self-adjoint
operator a family of unitary operators, thereby defining a unitary re-
presentation of the additive group of the real line; diagonalising the
self-adjoint operator meant decomposing the unitary representation.

The study of unitary representations of arbitrary groups (including
non-abelian and non-compact groups) began in the forties, with the
works of Gel’fand, amongst others. The general idea arose that there
existed a correspondance between groups and the set of their unitary
representations (see for instance [16]) and that one could study ac-
tions of groups on topological spaces X in terms of representations
of these groups on spaces of functions on X. Chevalley published an
account of Lie theory (see [7]), extending the theory and introducing
new ideas (for instance the notion of analytic subgroup). In the fifties,
Harish-Chandra set to study the irreducible representations of general
semisimple Lie groups on Banach spaces, while Mackey developed the
theory of induced representations (see [38], [39] and [40]). From the
contributions over the years of numerous mathematicians and physi-
cists, two guidelines emerged:

o the orbit method of A. A. Kirillov (see [25]), which associates
unitary irreducible representations of a large class of groups with
orbits of their co-adjoint actions;

e the Langlands classification theorem, which says that, given a
minimal parabolic subgroup of a linear connected reductive group
G, there is a bijection between equivalence classes of irreducible
admissible representations of G and certain triples; those triples
are called the Langlands parameters (see [27], Section 15 of Chap-
ter VIII); our work comes under this approach.

A great many general results are well known, such as:



Irreducible unitary representations of compact topological groups
are finite-dimensional; this result is part of the Peter-Weyl theo-
rem (see [27], Chapter I).

Given a compact linear connected reductive group, the equiva-
lence classes of its irreducible representations are parametrised,
as Cartan showed, by specific linear forms (the highest weights;
see [27], Chapter IV).

Non-trivial irreducible unitary representations of non-compact
linear semisimple groups are infinite-dimensional (see [23], Sec-
tion 11.1).

An irreducible unitary representation of a linear connected reduc-
tive group, when restricted to a maximal compact subgroup, de-
composes into a Hilbert sum of subrepresentations, each of which
consists of a finite direct sum of equivalent irreducible representa-
tions which are finite-dimensional (this result is due to the Peter-
Weyl theorem and to the works of Harish-Chandra - see [27],
Section 2 of Chapter VIII); in other words, irreducibility plus
unitarity imply admissibility.

Harish-Chandra introduced the notion of (g, K')-module (see [53],
Chapter 2) and obtained a remarkable theorem, of which we
give a stronger version (the subrepresentation theorem) proved
by Casselman and Mili¢i¢ in [5] (Theorem 8.21): consider the Lie
algebra g of a connected semisimple Lie group whose center is fi-
nite (the class of groups this theorem applies to is in fact larger);
consider a maximal compact subgroup K and a minimal parabolic
subgroup P; then an irreducible admissible (g, K)-module is al-
ways embedded in a representation which is induced from some
irreducible finite-dimensional representation of P.

In fact, so much is known that one could almost feel that representation
theory is near to complete. Which of course is not true. For one
thing, understanding an object requires assumptions; changing these
assumptions changes the theory; one could decide to work with other
spaces than Hilbert spaces, with fields of positive characteristic and
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so forth (we will not go in these directions). For another thing, there
are many aspects of representations one can wish to investigate. For
instance:

e Give tangible examples of representations: the Stone von Neu-
mann theorem (in the thirties) classifies unitary representations
of the Heisenberg group, those of SL(2,R) were studied by Gel’-
fand, Naimark and Bargmann in the forties (see [1] an [15]), ac-
tions of symplectic groups were studied in the sixties and led to
the metaplectic representation (one can find an account of this in
[13], along with representations of the Heisenberg group); more
examples will be discussed further on. The point of examples
is of course to justify one’s interest in a theory but also to give
some insight on various areas it is connected to; it so happens
that representation theory is connected to many.

e Study the way representations break into irreducibles and what
representations become when restricted to various subgroups.
Along those lines, one has Kostant’s general branching theorem,
Howe’s study of certain representations of O(p,q), U(p,q) and
Sp(p, q), works of T. Kobayashi and Pevzner in terms of differen-
tial operators (see [36]) and so forth.

o Amongst the representations given by the Langlands classifica-
tion, determine the ones that are unitary; many people have
worked in this direction (Zuckermann, Adams, Vogan...).

e Study connections that exist between representations and other
objects. The present work investigates the appearance of special
functions in representation theory. The fact that such functions
do appear is hardly a discovery. They can emerge from the com-
putation of matrix coefficients: for example, the role of Bessel
functions is shown in Chapter 4 of [51] (Section 4.1) for some ac-
tion of ISO(2) on smooth functions on the circle. They can appear
as spherical functions of Riemannian symmetric spaces. Also, on
an infinitesimal level, enveloping algebras correspond to differen-
tial operators that lead to differential equations which sometimes
characterise well known special functions: for instance, we use



K-types and the Casimir operator to obtain a hypergeometric
equation. Special functions also play a key role in the construc-
tion of symmetry breaking operators (see [29] and [36]).

The interesting thing about special functions is that they are solutions
of particular differential equations, that they can be expressed in va-
rious ways (as series, integrals and through recursive methods) and that
they sometimes define orthonormal bases of functional Hilbert spaces.

Bearing in mind the role of special functions in representation theory,
here are a number of considerations that guided us towards the setting
we have chosen for our work.

First, the subrepresentation theorem justified, to us, the choice of in-
duced representations.

Then, to study the appearance of explicit objects, it seems appropriate
to select concrete groups: the notion of reductive group is a gener-
alisation of a number of matrix groups that are preserved by some
involution; why not choose straight away one of those groups expli-
citly? Which brings us now to the actual choice of a matrix group.

The unitary duals of GL(n,R) and GL(n, C) have been studied in great
detail. For instance, it is shown in [50] how to use unitary characters of
R* (resp. C*) and, in the real case, certain irreducible representations
of GL(2,R), to construct all irreducible unitarisable representations of
GL(n,R) (resp. GL(n,C)) via tensor products and parabolic induction.
Looking at subgroups of GL(n,R) and GL(n,C), the classical ones are
defined with respect to various non-degenerate bilinear or sesquilinear
forms they preserve. Representations of O(n), U(n) and Sp(n) are tho-
roughly understood, in terms of highest weights, because these groups
are compact (see for instance [54] and more specifically [45] for Sp(n));
we shall come back to them in a moment. Representations of O(p,q)
and U(p, ¢) have been studied extensively. Submodules of some repre-
sentations of these groups on spaces of homogeneous functions are de-
scribed in [22]. In a series of papers ([32], [33] and [34]), Kobayashi and
Orsted study the minimal unitary representation of O(p, q), describing



the minimal K-types in terms of special functions. One can also look
towards symplectic groups, which preserve alternating non-degenerate
bilinear forms — see for example [22], [35] and [8]. These works are
based on the K-type structure, which comes from the admissibility
assumption of the given representations. Therefore, not only are the
irreducible representations of O(n), U(n) and Sp(n) well understood,
they are essential ingredients in the general study of representations
of reductive groups. Added to which it is well known that they are
related to special functions via spherical harmonics.

All these considerations have drawn us to study K-types of irreducible
unitary parabolically-induced representations of classical linear groups.
But why focus on Sp(n,C) ?

In [35] and [8], the authors study degenerate principal series of Sp(n, R)
and Sp(n,C) that are geometrically realised on spaces of functions de-
fined on R?"\{0} and C?"\{0}. Restricting those functions to the unit
sphere connects them to spherical harmonics. The cases of Sp(n,R) and
Sp(n,C) are different but share a same feature: scalar multiplication
by numbers of modulus 1 guides us to irreducibles. To be more specific,
any invariant subspace under the action of a subgroup that contains K
(K denotes a maximal compact subgroup) is a step forward towards
a K-type decomposition. The direct sums below illustrate this. In
these sums, the parameters correspond to the characters of O(1) (resp.
U(1)) and the summands are invariant subspaces under the left action
of O(4n) (resp. U(2n)):

° LQ(S4n_1) = Lgven(84n_1) D Lgdd(S4n_1);

o L3S = @ L3(S*1), where each space L2(S*1) is the
0EZ
Hilbert sum of all subspaces Y*? of spherical harmonics of ho-
mogeneous degrees («, 3) such that § = 5 — a.

So two actions seem to rule the decomposition of L?(S*"~1) we are
looking for: left action of matrices and scalar multiplication by numbers

7



of modulus 1. This diagram captures the situation:

O(4n) ~ L2(S* 1) ~ 0(1)
U N
U(2n) ~ L2(S* 1) ~ UQ).

One instinctively wants to add a line with:

o the group of linear isometries of H", which is isomorphic to Sp(n)
and thus embedded in U(2n);

e the group of unit quaternions, which is isomorphic to the group
Sp(1) and contains an embedding of U(1).

In other words, the line would be:
Sp(n) ~ L2(S%=1) ~ Sp(1).

This suggests an interesting interaction between the left action of Sp(n)
and a scalar kind of action of Sp(1). It must be pointed out that this
scalar action is not as simple as one might expect: non-commutativity
of the field of quaternions requires a choice of sides for scalar multi-
plication: we choose right multiplication. This multiplication in the
quaternionic setting must then be translated back into the complex
setting. We call this scalar action the right action of Sp(1).

Putting all these considerations together, the central question of this
work is:

Via the left action of Sp(n) and the right action of Sp(1), how do
special functions connect to K-types of degenerate principal series

of Sp(n,C)?

Remark: what we are trying to do is generalise spherical harmonics by
changing fields, choosing the non-commutative field H instead of R or

C.



Let us point out that principal series of classical groups over the field
of quaternions are discussed in [9], [18] and [47].

Generally speaking, works such as [20], [21], [30], [31] and [35] serve
as guidelines to obtain special functions: we make use of differential
operators and Fourier transforms.

Throughout this work, we consider an integer n > 2: the minimal
value 2 comes from the fact that we wish to work with a non-minimal
parabolic subgroup.

Chapter 2 introduces the background of this work: standard definitions
and properties of Lie groups, Lie algebras and their representations,
quaternions, quaternionic linear algebra and various computations that
are required further on.

Chapter 3 introduces the actual degenerate principal series we are in-
terested in. This series is obtained by parabolic induction which we
make explicit: choice of parabolic subgroup (its nilradical is isomorphic
to the complex Heisenberg group), choice of character and geometric
realisations. We obtain a two parameter family of representations of
G = Sp(n,C), denoted by m;ys with (A,0) € RxZ and defined as
follows (denoting by V;) 5 the carrying space of m;) 5):

o Consider the space V;(f\ 5 of all functions f € CO(CY \{0}) that are
covariant, by which we mean that for all ¢ € C* and z € CV \{0}:

flew) = (H>5 e~ f(2).

This equality will be refered to as the covariance property. Con-
sider the left action of GG on this space, defined by

mixe(9)f () = fg~"x)
for all (g, f,x) € G x Vz‘())\,é x (CNV\{0}).

9



o Vins and m;) s are then obtained by completion of V9 %) with re-
spect to the norm || - || defined by:

19 = [, @) o)

Representations ;) s are unitary. They are also irreducible if and only

if (\,8) # (0,0).

The above description of ;) 5 is called the induced picture. By chang-
ing the carrying space in a suitable way, one obtains other descriptions.
In particular, the covariance property enables one to change the carry-
ing space V;y 5 into some subspace of L2(S4"~1); this gives the so-called
compact picture of m; 5 (see Chapter 3) and leads us to study the whole
space L2(S471).

In Chapter 4, we make the structure of L?(S%"~1) explicit with respect
to both the left action of Sp(n) and the right action of Sp(1). Although
this double K-type structure appears in [22], the credit one can give to
the present work is to offer a personal treatment of the subject, totally
explicit and self-contained. Moreover, we highlight polynomials which
are invariant under both actions and we show how to compute them.
They are the ingredient that takes us to hypergeometric equations. The
main results of Chapter 4 are gathered in Theorems A and B.

Theorem A.

o With respect to the left action of Sp(n), the space L?(S*"~1) de-
composes into the following Hilbert sum:

min(a,B)

B =@ @ @ e

keN (a,B) e NxN
a+pB=k

In this sum, V3* B is the irreducible invariant subspace generated
by the left tmnslates of the restriction to S of the polynomial
PA‘/’"B which is defined by:

PP (z,w) = w7 T (woz — wiE)".

10



Here, (z,w) denote the coordinates on C" x C" ~ C?", taking
z2=(21,...,2n) and w = (W1, ..., wy).

o With respect to the right action of Sp(1), the space L?(S*"~1)
decomposes into the Hilbert sum

where E (g) denotes the integer part of % In this sum, Wﬁ
s a finite-dimensional irreducible invariant subspace which con-
tains the restriction P’§7777|S4n*1 as a highest weight vector; df“y
is a positive integer and there are dﬁ invaritant subspaces that are
equivalent to W,f

Theorem B. Consider an even integer k € N and set o = % Denote
by HF (]R4") the space of harmonic polynomials of 4n real variables with
complex coefficients and which are homogeneous of degree k. Denote
by 1 x Sp(n — 1) the group of matrices of Sp(n) that can be written, in
21 with A € Sp(n—1). Then there
exists a unique (up to a constant) element of H*(R*™) (we see this
element as a polynomial of 2n complex variables and their conjugates)
which is invariant under the left action of 1 x Sp(n—1) and also under
the right action of Sp(1); such a polynomial is said to be bi-invariant
(and we show how to compute it). The restriction of this polynomial
to S4=L (also said to be bi-invariant) belongs to V..

the quaternionic setting, as

As mentioned earlier on, our interest lies in the link one can estab-
lish between representations and special functions. What makes the
choice of unitary groups all the more appropriate for us is that it is
well known how to associate special functions to irreducible spaces
of spherical harmonics by adding an additional invariance constraint
(defining zonal functions) and using the Laplace operator (see Chap-
ter 9 of [12]). To use similar methods with symplectic groups requires
a slight adjustment of the additional constraint; this is precisely the
point of the right action of Sp(1). The special functions we end up

11



with, as for the orthogonal groups, are solutions of a hypergeometric
equation, but this only works for specific K-types. These methods are
developed in Chapter 5; here is a partial statement of the main result:

Theorem C (Compact picture and hypergeometric equation). Con-
sider any integer o« € N. Then the unique (up to a constant) bi-
invariant function of VO (given by Theorem B) can, after a suitable
reduction of variables, be written as a solution of the following hyper-
geometric equation:

u(l —u)p” +2(1 — nu)¢’ + (a* + (2n — 1)a)p = 0.

Another common description of parabolically induced representations
is the so-called non-compact picture (see Chapter 3). A way to ob-
tain special functions can then be to apply Fourier transforms to this
picture (this leads to the so-called non-standard picture), simply be-
cause special functions can be expressed in many ways, some of which
involve integrals. In [35], the authors consider the group Sp(n,R) and
an analogue of our degenerate principal series ;) 5; a specific partial
Fourier transform enables them to use Bessel functions to write down
interesting formulas for elements of minimal K-types (when the pa-
rameter A is equal to 0).

In Chapter 6, we generalise this, not only by adapting it to a complex
setting, but also by finding explicit formulas of highest weight vectors
in terms of modified Bessel functions for all pairs (A, ) and for a much
wider set of K-types. Before we actually give the formulas, let us define
on L?(C?*™*1) the partial Fourier transform F on which is based the
non-standard picture. It is defined for f € L'(C*™*1) N L2(C?*™F1) by

F(f)(s,u,0) = / f(r,u, &) e 2T grag,
cCxcm

where (s,u,v) denote the coordinates of C x C™ x C™ ~ C*"*1, We
can now state our main theorem, namely Theorem 6.11, but in a slightly
different and lighter way:

Theorem D (Non-standard picture and Bessel functions). Let n € N
be such thatn > 2 ; set N = 2n and m = n — 1. Let k € N and

12



(o, B) € N? be such that a+3 =k ; set 6 = B—a. For A € R, consider
the representation m; 5 of Sp(n,C) and the function
[ € xC"A\{(0,0)} — C

Atk
(z,w) — (2 + lwl?) ™ " wiE?,

where z1 (resp. wi) denotes the first coordinate of z (resp. w). Then f
generates a finite-dimensional subspace under the action of ﬂ-i’\v(s|Sp(n) ;
f is a highest weight vector of this subspace and the non-standard form
of f, meaning the function .7-"((7, u, &) — f(1,u, 27,5)), assigns to all
triples (s,u,v) € Cx C™ x C™ such that v # 0 and s # 0 the value

) 2 2 2
Ris,u,0) Kogs (w1 Jully/ I + 4l

where we set

A+

(i) ( ww+qu> :
™

2% HIP(Ak 1) \ /T [Juf]?

Chapter 6 ends with two interesting observations:

R(s,u,v) =

e there exists a simple differential operator that connects the non-
standard forms of certain highest weight vectors to one another
(Theorem 6.12);

o the formula given in Theorem D is linked to differential equations
known as Emden-Fowler equations (Section 6.7.2).
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Chapter 2

Preliminaries: Lie theory
and quaternions

2.1 Basic definitions and fundamental proper-
ties

Given a set X, denote by Bij(X) the set of bijections from X onto X;
it is a group with respect to composition. An action of a group G on
X is a group homomorphism from G into Bij(X).

Given a vector space V, a representation of a group G on V is an ac-
tion 7 of G on V such that all maps 7(g) are linear isomorphisms of V;
one also says that (m,V) is a representation of G. The space V is the
carrying space of 7; the dimension of 7 is the dimension of V' (possibly
infinite). A subspace W of V' is invariant (or stable) under the action
of m if w(g)W C W for all g € G; in this case, the restriction 7|y is a
subrepresentation of m. The representation w is algebraically irreducible
(or irreducible, for short) if it has no invariant subspaces other than {0}
and V itself.

Take K to be the field R, C or H and denote by V the vector space
K™. Consider a subgroup G of GL(n,K). The natural action of G on
V' is simply defined by standard matrix multiplication: a matrix g € G
assigns to an element x € V the element gr € V. Now consider a

15



subset S of V' which is stable under the natural action of G and then
consider the complex vector space F(S,C) = {f : S — C}. Because
S is stable under the natural action of G, given f € F(S,C) and g € G
one can define a new element of F(S,C):

Lig)f: S — C
r — f(g7tz).

By varying f, we define a bijection:

L(g): F(S,C) — F(5,C)
[ — Lg)f

This induces another map:

L: G — Bij(F(s,C))
g L(g).

This map L is a representation of G on F(S,C); we will simply call it
the left action of G on F(S,C). We say that an element f of F(S,C)
is left-invariant if f is invariant under the left action of (G, meaning

that L(g)f = f for all g € G.

Given a subspace F' of F (S, C) which is stable under the left action of
G, the map

G — Bij(F)

g — L(9)|5
is of course also a representation; it will be referred to as the left action
of G on F' and, for simplicity, also denoted by L.

According to the kind of spaces one is interested in, some additional
structure is necessary to be technically able to study group represen-
tations on those spaces. Our setting will be that of Lie groups acting
on complex Hilbert spaces.

A Lie group G is a group that has the structure of a smooth mani-
fold such that multiplication and inversion are smooth. For instance,

the group GL(n,K) and all its closed subgroups are Lie groups (see
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[28], Theorem 0.15); they are in fact called linear Lie groups; when
connected and stable under conjugate transpose, taking K to be R or
C, they are called linear connected reductive groups and if their cen-
ter is also finite they are linear connected semisimple groups. Being a
manifold, G has tangent spaces at all of its elements. In particular,
denote by g, or Lie(G), the tangent space at the identity element. It
can be shown that g is a Lie algebra with respect to a bilinear skew-
symmetric product, called the Lie bracket, which involves left-invariant
vector fields and relates to GG via the so-called exponential map. We
do not give the details here, because all we need to know in this work
is that when G is a linear Lie group:

e The Lie bracket of its Lie algebra g is just the usual commutator
[,] of matrices, defined by [X,Y] = XY — Y X; this in fact
defines the adjoint representation ad of g: ad(X)Y = [X,Y].

e The exponential map exp : g — G just assigns to each X € g
2 3 4
the usualmatrixepr:I+X+X7+)§—!—|—§—!+... .

The choice of Hilbert spaces is not a random choice: the scalar product
enables one to use orthogonality to study invariant subspaces, from
the corresponding norm arise continuity and differentiability, unitar-
ity of operators has led to extensive results, quantum theory is based
on Hilbert spaces, finite-dimensional spaces can always be turned into
Hilbert spaces and so on.

Consider a Lie group GG. From now on, when considering a representa-
tion 7 of G on a Hilbert space H, we automatically assume that x is
continuous, by which we mean that 7 satisfies the following continuity
property: the map

GxH — H

(9,2) — w(g)z
is continuous. In particular, this implies that each linear isomorphism
m(g) is continuous; the bounded inverse theorem (which is a conse-
quence of the open mapping theorem) then implies that the inverse
map (77(9))_1 = 7(g~!) is also continuous.

17



Consider a Hilbert space H. Let us slightly adjust the notion of re-
ducibility: 7 is said to be irreducible if there is no closed invariant
subspace of H other than {0} and H. Also, 7 is said to be unitary if
all operators m(g) are unitary operators of H. If one considers another
representation 7’ of G, on a Hilbert space H', then 7w and 7’ are equiv-
alent if there exists a bounded linear isomorphism f : H — H’ such
that for all g € G the following diagram commutes:

H 7(g) H

b
H —— H'.
™ (9)

The set of equivalence classes of all irreducible unitary representations
of G is called the unitary dual of G and denoted by G. We identify G
with any set of representatives of its equivalence classes: an equivalence
class denoted by 7 € G implicitely means that 7 is a representation of
G that belongs to this equivalence class; conversely, to say that a rep-
resentation 7 of G is irreducible and unitary we just write 7 € é,
denoting its equivalence class also by 7.

One says that a vector v € H is a smooth vector (or a C'*°-vector) of
a representation 7 if the map ¢ — 7w(g)v is C* on G. We denote
by C*°(m) the set of such vectors. It can be shown that it is a dense
subspace of H (see [27], Theorem 3.15). One can define on this subspace
C*°(r) the differential dm of 7 at the identity element by

d

dr(X)v = —
T(X)o = -

. (w(exp tX)v)

for all (X,v) € g x C*°(w). Elements X are thereby seen as first or-
der differential operators. In our work, we will in fact not need to
worry about C'*-vectors, because calculations will always be done for
restrictions of representations to invariant subspaces which are finite-
dimensional and whose elements are therefore all C*°-vectors (this fol-
lows from Theorem 3.15 of [27]).
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We finish this section with perhaps the most important example, then a
historical and founding theorem and finally a major consequence; they
all revolve around compactness.

This proposition follows [27] (Chapter I, Section 3, fourth example):

Proposition 2.1 (Important example). Consider a compact Lie group
K, a left-invariant measure pu of K, the Hilbert space L?(K, 1) and the
left action of K on L?*(K,u), defined (as we saw earlier on) by

L(k)f(x) = f(k™"2)

for all (k, f,r) € K x L*(K,u) x K. Then L is a continuous unitary
representation of K on L?(K, i), called the left regular representation
of K.

Then comes a theorem that is also proved in [27] (Theorem 1.12):

Theorem 2.2 (Peter-Weyl Theorem). Let K be a compact Lie group
and w a unitary representation of K on a Hilbert space H. Then:

1. For each T € f(\, let H; denote the sum of all invariant subspaces
of H that define irreducible subrepresentations that are equivalent
to T (if there are none, just set Hy = {0}). There exists a count-
able number of such subspaces that add up to H,; we will denote
by nr € NU{oo} the lowest of such numbers (if H- = {0}, one
Just sets nr =0).

2. All representations T € K are finite-dimensional.

3. Given T € f(\, we denote by E. the orthogonal projection on H;;
elements h € H can be written h = Z E-(h). If two represen-

TEI?
tations T and 7' of K are inequivalent, then:

E.E.,=E. E; =0.
Another way to state Theorem 2.2 is to say that m decomposes into a
sum over 7 € K of subrepresentations 7|y such that each 7|y, decom-

poses into n, finite-dimensional irreducible unitary subrepresentations
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that are equivalent to 7. This kind of decomposition is written:
®
T Z N T.

Theorem 2.2 can also be used to study representations of groups that
are not compact, simply by restricting to compact subgroups. Under
certain assumptions, multiplicities are finite:

Theorem 2.3. Suppose G is a linear connected reductive group and
let K be a mazimal compact subgroup of G. Consider an element m of
G. Apply Theorem 2.2 to the restriction of w to the subgroup K:

| = ZEB n,T.

TEI?
Then each n; is finite. More accurately:
n, < dimr < oo.

The sum in Theorem 2.3 is called the isotypic decomposition of m. An
element 7 of K for which n, # 0 is called a K-type of m; the number
n, is its multiplicity.

Remarks:

e This theorem is part of Harish-Chandra’s work. For a proof, one
can read Section 2 of Chapter VIII in [27] (Theorem 8.1).

e We point out that all maximal compact subgroups of GG are con-
jugate (see for instance [4], Chapter VII, Theorem 1.2).
2.2 Symplectic groups

First of all, it will be convenient to split matrices into blocks. A 2n x2n
complex matrix g, that is, an element of M(2n,C), will be split into
four n x n complex matrices A, B,C, D:

(5 5)
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In particular, we shall be interested in the matrix:

0 -1,
(2 )
We denote by w the standard symplectic form on C*"*, defined by:
wX, X)) ="XJX" = (y,2") — (z,v),

where X = (z,y) and X’ = (2/,y') belong to C" x C".

A 2n x 2n complex matrix ¢ is said to be symplectic if
tgJg =J.
This is equivalent to saying that g preserves w, meaning:
YV(X,X") e C"" xC*: w(gX,gX') =w(X,X').

The group of such matrices is the complex symplectic group (or just
symplectic group)
G = Sp(n,C).

It is straightforward to check that a 2n x 2n complex matrix < g IO) )

is symplectic if and only if:
'AB="'BA,'CD ="'DC and "AD — 'BC = I. (2.1)

The group G is a closed subgroup of GL(n,C) and is therefore a Lie
group. It is in fact a linear connected semisimple group. Its Lie algebra
is the complex symplectic algebra (or just symplectic algebra) sp(n,C),
that is, the complex vector space

g =sp(n,C) = {X € M(2n,C) / 'XJ + JX = 0}

or, expressed otherwise:

g= {X = ( g _?A ) € M(2n,C) / B and C are symmetric}.
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Define the compact group K = Sp(n) = Sp(n,C) N U(2n) (as usual,
U(2n) denotes the group of unitary complex 2n x 2n matrices). Unitar-
ity and preservation of the standard symplectic form imply immediately
that K consists of all matrices of U(2n) that can be written

(47)

where of course M denotes the (complex) conjugate of a given matrix
M. Tt is well known (see for instance Theorem 6.5.2 in [42]) that K
is simply connected (and therefore connected). It can be shown that
K is a maximal compact subgroup of G, via what is called the Cartan
decomposition of g (which we say nothing of, just referring the reader
to [27], Section 1 of Chapter I). Being a closed subgroup of GL(n,C),
K is itself a Lie group; denote by £ = sp(n) its Lie algebra (it is a Lie
subalgebra of g). This Lie algebra is the real vector space that consists
of all skew-hermitian (skew, for short) elements of g:

t= {X = ( é _ZB ) € M(2n,C) / A is skew and B is symmetric} .

Because K is connected, exp £ generates K (see [28], Corollary 0.20).

2.3 Lie theory applied to Sp(n) and sp(n)

Let us point out that the complexification of £ is g and that g is a
complex semisimple Lie algebra (for a definition of semisimplicity, we
refer the reader to [49], Sections 1.6 and 1.10).

In Sections 2.3.1 and 2.3.2 we summarise some well known facts, ap-
plying the general theory of complex semisimple Lie algebras to the
particular case of g. We follow [27] (Chapter IV) and [49] (Chapter 2),
using the explicit setting of £ = sp(n) and g = sp(n, C).

2.3.1 Roots

Let b be the usual Cartan subalgebra of g consisting of diagonal ele-
ments of g. If r belongs to {1,...,n}, denote by L, the linear form that
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assigns to an element of b its 7" diagonal term. Denote by A the
set of roots of g with respect to b; if v is a root, the corresponding root
space is (by definition of a root, this space is not reduced to {0}):

g, ={Xecg/VHeh: ad(H)(X) =v(H)X}.

The set Ag consists of the following linear forms, where r and s denote
integers that belong to {1,...,n}:

e L,— L, withr <s;
e — L.+ L; with r <s;
e L.+ L, withr <s;
o —L,— Ls; with r < s;
o 2L,.;

o —2L,.

Because g is semisimple, the root spaces are complex one-dimensional
subspaces. One can check that the root spaces of the above roots are
respectively generated by the following root elements:

. Uﬁ,—s = ET75 — n+s n-+r (Wlth r < 8);
o UTTS = Es’/r — n+rn+s (Wlth r < 3)7

° ‘/r-,i:e = Er,n+s + Es,nJrr (With r < 5);
o Vo= Entsy + Enyrs (with 7 < s);

° Dj:Er,n—l-r;
e D = n+r,r.

T

As settled in the notation section, each FE, ; refers to an elementary
matrix. We will write

H, = rr T EnJrr,nJrr
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for each integer r € {1,...,n}. Let us point out that

{Hr}re{l,...,n}
is a C-basis of h and that

{Hr’v D,—f, Dr_}re{l,...,n} U {U+ Ur s Vi Vr:s}r,se{l,...,n},r<s (2'2>

r,s) 2 r.s Vrsy

is a C-basis of g.

Denote by br the real form of h that consists of real matrices of b.
Denote by by the space of real-valued linear forms defined on hr. Any
element o of hi can be written o = "', I, L,, where each [, is a real
number; we then identify o with its coordinates (I1,l2, - ,l;). The
space by is endowed with a natural Euclidean product < -,- > defined
by:

n
<o,0' >=> "1
r=1
Remark: the inner product used in [27] (Chapter IV, Section 2) corre-
sponds to % < +,+ >. The fact that we have omitted the coefficient %
has no consequence in what we discuss further on: for instance, in the
Weyl dimension formula (see Section 2.3.2), all the coefficients 1 just
cancel out.

The restrictions of the various roots to hg are real-valued and therefore
belong to hg; they also completely determine the corresponding roots.
This is why we shall think of roots as elements of h. If r belongs to
{1,...,n}, we denote the restriction L’"’bm again by L, for simplicity.

Consider the lexicographical order on hp (with respect to the coor-
dinates introduced above). Then the positive roots are the following
linear forms:

e L,.— L, withr <s;
e L.+ Ls withr <s;

o 2L,.
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Denote by A}g the set of positive roots and by pg their half sum. It is
straightforward to check the formula

pr =nly + (n — 1)L2 + oo+ Ly,
which, in coordinates, reads:
pr = (n,m—1,...,1). (2.3)

2.3.2 Highest weights

Consider a representation m of K on a finite-dimensional complex vector
space V. One can study its infinitesimal action, that is, the R-linear
representation dm of €. It can always be thought of as a C-linear re-
presentation w of g = €@ i€ on V by extending it to g in the following
natural way:

w(X +1iY) :=dnr(X)+idn(Y)

for all X,Y € ¢. One refers to w as the complezification of dm and says
that dr has been complexified (one often simply writes dm instead of
w). The correspondance between the initial representation dn and its
complexification w is clearly one-to-one.

One defines weights similarly to roots: weights are linear forms on b
that give the corresponding eigenvalues of joint eigenvectors of all linear
maps w(H ), where H runs through b; if o is a weight, the corresponding
weight space is (one also adds in the definition of a weight that this
space must not be reduced to {0}):

Vo={veV/VH €b: w(H)(v)=0c(H)v}.

The restrictions of the various weights to hr are real-valued. This is
why we can think of weights as elements of bp.

Consider a highest weight vector v of (highest) weight o, that is, a

vector v that belongs to V, and that is cancelled by the action under
w of all elements of

l’l+ = VeCt(C{U::sa ‘/'r‘j;}lgr<s§n %) VeCt(C{D;J_}ISTSTL
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(see Section 2.3.1 for notation). Applying w to v for all X € g then
generates an irreducible invariant subspace V. (v) of V; the linear form
o is called a highest weight because basic Lie theory shows that if a
certain weight vector belongs to Vj,..(v), its weight cannot be larger
than o. Basic Lie theory also assures us that applying 7(k) to v for
all £ € K generates the same subspace Vj,.(v). Though it is in fact
defined with respect to w, we shall say that the linear form o (resp.
the vector v) is a highest weight (resp. highest weight vector) of .

The highest weight theorem (see [27], Theorem 4.28) applied to K
sets a correspondence between irreducible representations of K and
their highest weights; these are the forms o = Y, [, L, such that
(l1,...sln) € N" and [y > lp > ... > l,; as mentioned previously, we
identify o with (11, ...,1,).

If o is the highest weight of an irreducible representation of K, then
the dimension d, of this representation is given by Weyl’s dimension
formula (see Theorem 4.48 of [27]):

HaeA; <0+ pr,a >

dy =
Hoenr <pr o>

(2.4)

2.3.3 Casimir operator

As we have seen, the Lie subalgebra ¢ consists of complex N x N

matrices o
A —-B
B A

such that A is a skew-Hermitian n x n matrix and B a symmetric n x n
matrix.

Define (r and s denote integers that belong to {1,...,n}):
e A= iEr,r - Z'EnJrr,nJrr;
° Br,s = Er,s - Es,r + En-l—r,n—l—s - En-l—s,n-i—r (When r 7é S);

e Urs = iEr,s + iEs,r - Zl?nJrr,nJrs - iEn+s,n+r (When r# 5);
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* Dr = Enyrp — Erpgrs

o B, =iE, v+ 1By

e Frs=FEnyrs+ Enrsy — Ernts — Esnir (When 7 # 5);

o Grs=1iEpirs +iEbpisr + 1B pis + 1Es iy (When r # s).
One easily sees that:

e If n > 2 then

{Ar7 D’V‘) Er}re{l,.,.,n} U {Br,57 Cr,s: FT,S? Gr7s}r,s€{1,...,n},r<s
is a basis of € over R.
o If n =1 then {Ay, D1, E1} is a basis of £ over R.

Elements of ¢ correspond to elements of K via the exponential map.
One easily obtains the following table for n,r, s € {1,...,n}:

| Matrix M || M* | M3 |

A,y -1, —A,
D, -1, —D,
E, -1, -E,
Br,s _Kr,s _Br,s
Cr,s _Kr,s _Cr,s
Fr,s _Kr,s _Fr,s
Gr,s *Kr,s *Gr,s

where we denote by I,, the matrix E, , + Fp4y ntr and by K, s the ma-
trix Erm + Es,s + En—H“,n—i—r + En—i—s,n—i—s-

From this table we obtain the following exponentials for ¢ € R:
Lemma 2.4.
o Forre{l,2,...n} and M € {A,,D,,E,}:

exp(—tM) =1 — (sint)M + (cost — 1)I,.
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o Forr,s e {l,..,n} such as r < s (here, we assume that n > 2)
and for M € {By5,Cy s, Fr 5, Grs}:

exp(—tM) =1 — (sint)M + (cost — 1)K, 5.
Define on ¢ the bilinear form 3 by setting
BIX.Y) = 3 TH(XY)
for all (X,Y) € ¢ x ¢, with Tr denoting the matrix trace form. One
easily checks:

Lemma 2.5.

1. The basis
Br,s Crs Fr

G
Bg = AraDmEr r ) U{ ? 5 78’ T78}
{ breftn} V2 V2 V2T V2 ) et nyes

of ¢ is orthonormal with respect to 3.

2. The symmetric bilinear form (3 is real-valued and positive-definite;
in other words it is an inner-product on €.

3. B is ad-invariant, meaning invariant under the adjoint action:

VX, Y, Z €g: ﬁ([X’Y]’Z):_B(K[sz])'

Let us consider a finite-dimensional representation o of K. Because 3
is a nondegenerate ad-invariant bilinear form on ¢ and because B is
an orthonormal basis of ¢, we can define (as in [12], see Section 7 of
Chapter VI) the Casimir operator of o:

dim ()
Q= Y (do(X,)?, (25)
r=1
where, for the time being, we denote by X, the elements of By. Thinking
of this operator as an element of the enveloping algebra of ¢ makes (2.5)

somewhat lighter:
dim(

£)
Q= > X7 (2.6)
r=1
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As we explained in Section 2.3.2, we can always extend do to obtain, in
a one-to-one fashion, a C-linear representation of g. This enables us to
write down elements of By as combinations of elements of the basis (2.2)
of g and consider the action on these combinations of the complexifi-
cation of do, which, in turn, enables us to use information we have on
weights, in particular highest weights. The formulas for the Casimir
operator become quite simple when applied to a highest weight vector.
If the representation o is irreducible, then Schur’s lemma, combined
with the well known fact (see for instance [12], Proposition 6.7.1) that
), commutes with do, implies that €2, is a scalar multiple of the iden-
tity map. This scalar is easy to determine when considering a highest
weight vector; the aim of this section is precisely to compute it.

One easily checks that for all integers r and s in {1,...,n} (Uf&,7 Vﬁ;
and D denote the root elements defined in Section 2.3.1):

e A, =1iH,;

o Bos=Ut, U (r<s);
o Cprs=iUt, +iU (r < s);
e D.=D; —D;

e« E, =iD- +iD};

o Fry=Vin— Vi (r < 9);
o Grs=iV,+iV, (r<s).

Proposition 2.6. If o is a finite-dimensional irreducible representa-
tion of K on a complex vector space and if \ is its highest weight,
then:

n n—1
Qp = — (Z ()\Q(Hr) + 2>\(Hr)> +Y 2(n— T))\(Hr)) Id,
r=1

r=1

where Id denotes the identity map.

Proof:
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By definition:

n
Q= (A2 + D} + B?
r=1

> (Bl A+ CL A+ FL+GL). (27)

1<r<s<n

N | =

+

Using the formulas given just before this proposition, multiplying the
brackets out (one must be careful: the operators do not commute) and
cancelling out various terms, we get:

0, = — zn: (HZ +2D; D} + 2D} ;)
r=1
. (U+ U~ + U U+ ViV +V*V+). (2.8)

rsYrs s rs rsVr,s rsVr,s
1<r<s<n

Apply €, to a highest weight vector v. Then, by definition of a highest
weight vector, all terms such as D (v), U, (v) and V,f(v) are equal to
0. So (2.8) applied to v becomes:

0,(0) =~ (H2(0) + 207 D; ()

r=1

- Y (URUL @+ VL) (29)

1<r<s<n

One can check the following commutation rules:

(D}, Dy =H, ; [Uv:t_s’Uv:s]:Hr_Hs ; Vi Vi) = He + H.

r,s) Yr,s
Using these rules in (2.9) we get

n

o(v) = = 3 (HF(0) + 2H,(v))

r=1

- Z (Hy(v) — Hs(v) + Hy(v) + Hs(v)),

1<r<s<n
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which can be written:

n

n—1
Q(v) = = (HA(v) + 2H,(v)) = 3" 2(n = 1) Hy(v).  (2.10)
r=1

r=1

Because ) is a weight and v a corresponding weight vector, (2.10) finally
gives:

n n—1
Q(v) = — (Z (N2 (Hy) + 20(H,)) + 3 2(n — r)A(H») (v).
r=1 r=1

One concludes with Schur’s lemma.

End of proof.

2.4 Quaternions

2.4.1 One way to define quaternions

For the time being, we regard the set of quaternions H as the set C2. We
write (1,0) = 1g and (0,1) = jg. We endow C? with the usual complex
vector space structure, denoting scalar multiplication simply by a dot.
A pair (u,v) € C? corresponds to the element u - 1y + v - jg. The
following rules define a multiplication ® on H (we call it quaternionic
multiplication):

o (i) Y(u,v) €C%: (u-1g) ® (v-1g) = (uwv) - 1g.
o (ii) Y(u,v) €C?: (u-1g) ® (v-ju) = (w) - ju.

o (iil) Y(u,v) € C*: (u-ju) ® (v-1g) = (uD) - jg. In particular,
this implies the fundamental formula for all v € C:

Ju® (v-1g) =7 ju.
o (iv) V(u,v) € C?: (u-ju) ® (v-ju) = (—uD) - 1. In particular,
this implies that jg © jm = —1 - 1y, which we of course just write

i& = —1g.
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o (v)V(h,h 0"y € H:

—hoMW+n)y=Mhoh)+ (hoh").
_ (h+ hl) @ hl/ — (h@ h/l) + (h/ @ h,/).

These rules clearly imply that 1y is the left and right identity element
for quaternionic multiplication. Let us also point out that quaternionic
multiplication is not commutative, precisely because of rule (iii), but
is associative:

V(h, W' W) e H?: (hoR)O R =ho (W oR").
Moreover, we obviously have:
V(u,h) e CxH: u-h=(u-1g) ® h.

In this sense, if we identify complex numbers u with quaternions u - 1y,
we can say that quaternionic multiplication has absorbed complex
scalar multiplication, which is therefore no longer needed: all the struc-
ture of H lies in addition and quaternionic multiplication. For simpli-
city, we now:

e just write u instead of u - 1p, given u € C;
e just write j instead of jy;
e omit all multiplication symbols.

Rule (iii) implies that any quaternion h can be written in two ways for
suitable (u,v) € C?: either u 4 jv or u + wj (with w = T). In other
words, we could choose to write the second coefficients of quaternions
either on the right or on the left of j. We choose the first possibi-
lity because we find it more convenient for quaternionic linear algebra.
Finally, as we shall soon see, every non-zero quaternion has a unique
inverse, which is both a left and right one. Now let us summarise the
facts and definitions we have seen so far:

o The set of quaternions is H = {u +jv / (u,v) € CQ}.

o His a skew (non-commutative) field, with respect to addition and
quaternionic multiplication.
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e« YveC: jv=1j.
o j2=—1.

Given a quaternion h = u + jv, one defines its quaternionic conjugate
h* (or conjugate for short):

h* =u— ju.
Lemma 2.7. Given any quaternions h, hy and hs:
1. hh* = h*h;
2. (h1 + h2)* = h} + hi;
3. (hi1ha)* = h3h}.

The modulus of a quaternion h is then defined by:

|h| = Vhh* = \/|u|? + |v]?.

This definition shows that every non-zero quaternion h, as announced
previously, has a unique left inverse, a unique right inverse, and that
both of these inverses coincide:

B
= ThE"
Also, one obviously has:
Lemma 2.8. Given any quaternions hy and ho:
1. hh =0« || =0;
2. |h1 + ha| < [ha] + |hel;
3. |h1hg| = |h1||he].

A quaternion h will be called a unit quaternion if |h| = 1. We point out
that the set of unit quaternions is a group with respect to quaternionic
multiplication; we shall denote it by Uy; it is clearly diffeomorphic to
the three-dimensionnal sphere.
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Remark: this complex version of quaternions corresponds exactly to
the traditional and historical real version (used by W. R. Hamilton
himself - see [19]). In the real version, quaternions are usually written

h=a+bi+cj+dk,
with k = ij and (a,b,c,d) € R%, their conjugates becoming
a—bi—cj—dk

and their moduli

Vlal? + (b2 + |ef? + |d2.

The correspondance between the real and complex versions works via
the identifications u = a + ib and v = ¢ — id.

2.4.2 Quaternionic linear algebra

Given a positive integer p, we endow HP with the usual addition and
scalar multiplication (by quaternions). Multiplication can apply either
on the left or on the right of coordinates; the only difference, compared
to R? or CP, is that left and right multiplication usually give different
results (H is non-commutative). Considering left multiplication, we see
that all axioms of a vector space are satisfied, so we say that HP is a
left quaternionic vector space; similarly, one can focus on right mul-
tiplication and say that H? is a right quaternionic vector space. In a
way, which point of view one chooses has no importance, as long as
one’s choice is clear. However, linearity of functions must be specified
accordingly: left linearity does not coincide with right linearity, again,
because H is not commutative. We shall always work with right li-
nearity: for us, a linear map from some quaternionic vector space to
another will always mean a right-linear map; the reason for this choice
lies in matrix multiplication.

Given positive integers r and s, we endow M, ((H) with the usual ma-
trix addition. Scalar multiplication (by quaternions) can be defined on
the left or on the right, so M, ¢(H) is both a left and a right quater-
nionic vector space. Multiplying matrices by matrices of suitable sizes
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is defined as usual, but one must respect the order in which the coeffi-
cients come.

Coming back to a positive integer p, a matrix A € M(p, H) is invertible
if for some matrix B € M(p, H) one has AB = BA = I,,, in which case
B is the inverse of A and is denoted by A~!. The set of invertible p x p
matrices is of course a group with respect to matrix multiplication and
is denoted by GL(p, H).

2.4.3 Complex and quaternionic coordinates: identifica-
tions

Again, consider any positive integer p. As we have seen, C? identifies
with HP: (u,v) € CP x CP identifies with u+jv € HP. Given an element
x of HP, we shall write:

o x=(21,...,xp) € HP;
o T, =u, + ju, forall r € {1,--- ,p}, with (u,,v,) € C%
o u=(up, - ,up) € CPand v = (v, - ,v,) € CP;
o T =1u+jv.
We define for all vectors z and y in HP:
o (2,y)m = X0z € H
o Izl = (o, 2)y = S0y wery = 0 ||
Lemma 2.9. Given any vectors x,y € HP and any quaternion h:
o z=0<=|z| =0;
o |lhz| = llzhll = [Alllz];
o Nz +yll < llzll +[lyll-

Therefore || - || is @ norm on HP. It corresponds to the standard norm
of R* ~ HP, turning HP into a real Banach space as well as a complex
Banach space.
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A matrix M € M(p,H) will be decomposed as M = A + jB, with A
and B two complex p X p matrices; M can then be identified with the
following element of M(2p, C):

, (A -B
M_<B | )

We denote by Mp(2p, C) the vector space that consists of all elements
of M(2p, C) that can be written like M’. This procedure defines a map:

ES : M(p,H) — Mpg(2p,C)
M — M.

This map is bijective and respects matrix multiplication, meaning that,
given any two elements M; and My of M(p, H):

Egg (M M) = Eg(My)Eg (My).

This implies that if My is a right inverse of My, then M} = ES(Ms) is
a right inverse of M| = ES(M;). The same goes for left inverses and,
because left and right inverses coincide in GL(2p, C):

Lemma 2.10. If a matriz M of M(p,H) has a right (resp. left) inverse
M', then M’ is also a left (resp. right) inverse of M.

This is why we grouped both kinds of inverses in a single definition when
we introduced invertible matrices earlier on. We denote by GLy(2p, C)
the image of GL(p, H) under the map Eﬁcﬂ; it is obviously a subgroup
of GL(2p,C) and the restriction of Eﬁ to GL(p, H) is an isomorphism
onto GLyg(2p, C).

Applying a matrix M € M(p,H) to a vector u 4 jv € HP corresponds
to applying ES(M) = M’ to the vector (u,v) € C?.

If one looks back at the expression of elements of the compact group K
given in section 2.2, one cannot miss the similarity with matrices such
as the matrix M’ above. This tells us that, via the map Eﬁ%, the group
Sp(p) corresponds to the group of elements of GL(p, H) that preserve
the norms of vectors of HP, that is, the group of linear isometries of
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HP. We again denote this group by Sp(p). In particular: Sp(1) ~ Ugy.

Left and right multiplication by quaternions in HP can also be read in
C?P, but not as simple scalar multiplications: they combine the complex
coordinates in a more subtle way. Indeed, multiplying a quaternion
h = u 4+ jv € H by another quaternion ¢ = a + jb € H on the right
gives:

hq = (ua — vb) + j(va + ub).

This formula also shows how left multiplication operates: h and g play
symmetric roles. Let us summarise how the actions of quaternionic
matrices and quaternionic scalars read in the complex setting:

Lemma 2.11. Given a vector x = u+jv € HP, a scalar ¢ = a+jb € H
and a matric M = A+ jB € M(p,H):

n A —P u 2 .
1. Mx € H" corresponds to ( 5 1 ) (v ) e C*P;

2. xq € H? corresponds to

(ura —v1b, ..., upa — Vb, v1a +urh, ..., vpa +TUyb) € Cc? .

Consider a quaternionic matrix M € M(p,H) and denote by m,. its
coefficients. Write m,s = u,s + jv,s and define:

HMHOP = max{|urs|, |Urs|}1§r,s§n~

Obviously, || M ||op is equal to the standard norm of ES(M) in M(2p, C)
which hands out the highest modulus of the coefficients of ES(M).

Lemma 2.12. Given any matrices M, M’ € M(p,H) and any quater-
nion h:

[M|lop = 0;
o M =0<=||Mlop =0;

[hM lop = [|Mhljop = [R[[| M ||op;

M+ M'llop < [[M]lop + [[M"lop-
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In other words, || - ||op is a norm on M(p,H). It turns M(p, H) into a
Banach space and the map EﬁC{ into a homeomorphism, allowing one to
define the exponential map exp on M(p, H) by the usual formula:

exp(M) = M

r=0

rl

One easily checks that the maps Eﬁ and exp commute; in other words,
we have the following commutative diagram:

C
GL(p, H) T, GLg(2p, C)

exp T T exp

H

2.4.4 Symplectic matrices seen as quaternionic matrices

Elements of Sp(n) (see Section 2.4.3) can be seen, via the embedding
map Eﬁcﬂ, as quaternionic matrices; in this process of identification, for
simplicity, we will not change notation, writing in particular:

o Ay =iE,;

e B,s=FE.;— Es; (when n > 2 and r # s);

o Crs=1E, s+ iE,, (when n > 2 and r # s);

o Dy =jEr;

o Er=jiE,;

o Fro=jE s+ jEs, (when n>2and r # s);

o Gps=jiE, s+ jiE,, (when n > 2 and r # s).

Then {Ara Dy, Er}re{l,...,n} U {Br,sa CT,S) Fr,sa Gr,s}r,se{l,...,n},r<s is a ba-
sis over R of ¢ (seen as a subspace of M(n,H)). Applying the exponen-
tial map and Lemma 2.4, given ¢t € R, we have:

Lemma 2.13.
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o Forre{l,2,...,n} and M € {A,,D,,E,}:
exp(—tM) =1 — (sint)M + (cost — 1)E,.,.
o Forr,se{l,...,n} such asr < s (here it is assumed that n > 2)
and for any M € {B;5,Cr s, Frs,Grs}:
exp(—tM) =1 — (sint)M + (cost — 1)(Ey, + Es.s).

One can transport the inner product S defined in section 2.3.3 to ma-
trices of ¢ seen as quaternionic matrices: for such matrices X and Y,

one sets B(X,Y) =0 (Eﬁ(X), E%(Y)). Again:
e [ is an inner product on ¢ (seen as a subspace of M(n, H)).

e The set
Br,s C’r‘,s FT,S GT,S}
V2 V2T V2T V2 s my s

is an orthonormal basis of ¢ (seen as a subspace of M(n, H)) with
respect to 3.

By = {A;,D,, ET}re{l,...,n}U{

The following proposition will come out useful when studying stabilisers
of actions of K:

Proposition 2.14.

h L
0 T
L € Myp—1(H) and T € M(n — 1,H). Then M belongs to K if
and only if L =0, h € Sp(1) and T € Sp(n — 1).

1. Consider a quaternionic matric M = , with h € H,

h 0
cC T
CeM,_11(H) and T € M(n — 1,H). Then M belongs to K if
and only if C =0, h € Sp(1) and T € Sp(n — 1).

2. Consider a quaternionic matric M = , with h € H,

Proof:
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Both items work similarly, so we just prove Item 1 (in fact, each item
implies the other via matrix transpose).

Suppose M belongs to K. One can decompose M into M = U + jV,

with
N S
U(O T1>€Mn((C)

and

hi L1 —hy —Lo
0 T 0

he Ly hi Ly
0 Ty 0 T

Eg(M) =

The matrix M belongs to K, so ES(M) is unitary:

"B (M)Eg(M) = Eg(M)'E§ (M) = Izn.

By looking at the top-left coefficients of these products, one finds (here,
the symbol |- || denotes the norm of C"~! and we identify row matrices
with vectors):

[hal? + [ILa|* + |hof® + || Loff* = 1

and
]hl|2 + |h2]2 =1.

This implies:
L1 + | L2|* = ©.

Consequently, L = 0. From this it follows that A and T" must belong
respectively to Sp(1) and Sp(n — 1).

This proves one implication; the converse is straightforward.

End of proof.
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Chapter 3

Degenerate principal series

of Sp(n,C)

The heart of our work is the study of certain induced representations of
G = Sp(n,C). Why it is interesting to concentrate on such representa-
tions was discussed in the introduction. They are based on the choice
of a parabolic subgroup. The theory (usually refered to as structure
theory of reductive Lie groups) that defines such subgroups would take
too long to introduce here, so we will just make the specific parabolic
subgroup we work with explicit, along with the corresponding induced
representations, referring the reader to [27] (Sections 2 and 5 of Chapter
V and Section 1 of Chapter VII) for a thorough lecture on the theory
that underlies Section 3.2.1.

3.1 A specific parabolic subgroup

We write 2n x 2n matrices in the following way:

o ox I ox
* % % %
I ox Q) %

* X X X

where F, F, G, H are m x m matrices and where the stars denote sui-
table numbers, row matrices or column matrices. We list below the
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subgroups of G that we need to define our induced representations.

e We denote by M the subgroup of G consisting of all matrices of
the following type:

e 0l 0 0

e |0 Al 0 C
o ofe® 0o |’

0 B| 0 D

with 6 € R and ( g g ) € Sp(m, C). We then write § = 6(m).

e We denote by A the subgroup of GG consisting of all matrices of
the following type:

a 0] 0 o0
P I 3
10 oot 0 |

0 0| 0 Iy

with a €]0, 00[. We then write o = a(a).

e We denote by N the subgroup of G consisting of all matrices of
the following type:

1 w25 W
_— 0 I,| v 0

0 0 1 0 ’

0 0 |—-u I,

with (s,u,v) € Cx C"™ x C™. The coefficient 2 in front of s is not
really necessary in the definition, but we keep it, as customary,
to signify the isomorphism between N and the so-called complex
Heisenberg group H?™*!: matrices n as above correspond to
elements (s, u,v) of H*™*!, Though we will say nothing more of
it, this isomorphism underlies the non-compact picture to come.

o We define the parabolic subgroup @) as the group of elements g
of G that can be written as ¢ = man for some triple (m,a,n)
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of M x A x N. We write Q = M AN, calling this equality the
Langlands decomposition of @) (it defines a diffeomorphism of @
onto M x A x N).

« We denote by N the subgroup of G that consists of all matrices
th for n € N.

Remark: we are aware that symbols m, n and N also refer to dimen-
sions, but with context there can be no confusion. We also point out
that N and N are swapped in [35]; we have not followed the choice of
the authors of [35] in order to stay close to Chapter VII of [27].

When defining induced representations, one can wish to change the
carrying spaces. In order to do so, the following proposition will prove
useful:

Proposition 3.1. Q is the subgroup of G consisting of all matrices of
G in which the entries of the first column are all O except the one at
the top.
Proof:

If ¢ belongs to M AN then one can write:

a 0 0 0 1 W s W
o a 0o c 01 v 0
=10 0 o' o 00 1 0]

0B 0 D 00 —u I

A

where a € C\{0}, ¢ ) belongs to Sp(m, C) and where (s, u,v)

B D
belongs to C x C™ x C™. This gives the following form of g (we’ll say
that a matrix of this form is a Q-form matrix):

alu s alv
A Av—-Cu C
0 at 0
B Bv—Du D

xQ
Il
oo o9
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We see that the first column of ¢ satisfies the required condition.

Suppose now that the first column of a matrix ¢ of G has all its entries
equal to 0 except the one at the top; let us write:

a % t 4
_OAxC
=10 % b t |

0O By D

where A, B, C and D are m x m matrices, where « is non zero, (¢, k,1)
and (b, e, f) belong to C x C"™ x C™ and (x,y) to C"™ x C™. Working
with the properties of symplectic matrices given in formulas (2.1), one
can prove that:

] e:f‘:o7

. b:a_l;

A C
. ( B D > belongs to Sp(m, C).

Then, again using the conditions that a symplectic matrix must satisfy,
one shows that:

e (i) ka~! + Ay = 'Buz;
e (ii) la~! +Cy = Dx.

Comparing with the @-form matrix obtained in the first part of the
proof, we can identify s, u, v:

e 5= a_lt;
o u=oatk;
e

So that (i) and (ii) become:

()-(5 ) (5)
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Inverting this gives:

a alu as alv
0 A Av—-Cu C .
So we see that ¢ = 0 0 o-1 0 is indeed a @Q-form
0 B Bv—Du D
matrix, that we can write
a 0 0 0 1 w s W
10 A 0 C 0 I v 0
=10 0 o' o0 00 1 0
0O B 0 D 00 —u I

and that finally does belong to Q = M AN.

End of proof.

3.2 Specific induced representations

Throughout this section we consider any A € R and § € Z.

3.2.1 Usual definitions
Induced picture

Consider (A,d) € R x Z and the character y;xs of the parabolic sub-
group @ = M AN (introduced in section 3.1) defined by

Xixs(man) = £190(m) (Oz(a))i)‘JrN'

Consider the complex vector space VZ(/)\ 5 of all functions f € C°(G) such
that for all (g, m,a,n) € G x M x A x N:

f(gman) = x;}l5(man) f(g).
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The induced representation ;) 5 = Indg Xix,s is obtained by conside-
ring the left action of G on V3§ s and completing VA o (extending the
action of G accordingly) with respect to the norm || - || defined by

1712 = [ 170 ar,

where dk denotes the Haar measure (unique up to a constant) of K.
Functions of V. ixo are said to be (A, d)-covariant (or just covariant, for
short).

The representations m; s obtained by varying the parameters A and §
are continuous, unitary and form a family called the degenerate princi-
pal series of G (the word degenerate refers to the fact that the parabolic
subgroup we have chosen is not minimal). They were studied in [18],
where it is proved that ;) s is irreducible if and only if (X, d) # (0,0).

One can change the carrying space and define representations that are
equivalent to ;) 5. To specify which one of them is considered, one uses
the word picture, by which we mean the description of the action and
the carrying space. The above description is called the induced picture.
The equivalences between different pictures are due to structure theory,
which, as mentioned previously, we have chosen not to discuss.

Compact picture

The compact picture is obtained by restricting functions of V3 iAo to K.
One thus considers the complex vector space

{feC(K)/Vke K, ¥meM NK: f(km)=e " f(k)},

denoting it again by V s and completing it with respect to the norm

|| - || defined by
1712 = [ 1£GR) a.
K

Identification of the carrying spaces of the induced and compact pic-
tures is based on a specific decomposition of elements of G: structure
theory shows that G = KM AN and restriction to K then defines a
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one-to-one correspondance between functions of Vi())\’(; seen in the in-
duced picture and functions of V&é seen in the compact picture. The
action of G in the compact picture is not as simple as one might think,
because multiplying elements of K by elements of G can lead to ele-
ments that do not belong to K anymore. However, the restriction of
the action to K is just the left action of K.

Non-compact picture

One can show that restricting functions of V.3 s (in the induced picture)

to N gives continuous elements of L?(N,dn), where dn denotes the
Haar measure (unique up to a constant) of N. So, in the non-compact
picture, one chooses as carrying space the whole of L?(N). Here as
well, the action of G is not as simple as one might think, because
multiplying elements of N by elements of G can lead to elements that
do not belong to N anymore; but the restriction of the action to N
is just the left action of N. Identification of the carrying spaces of
the induced and non-compact pictures is slightly more subtle than for
the compact picture, because based on a decomposition of G that only

works for almost all g € G: NMAN is dense in G.

3.2.2 Changing the carrying spaces

Another way to change the carrying spaces is to make use of the natural
action of the group G on CV. Each of the three pictures described
previously then leads to another picture; in the process, for simplicity,
we do not rename the pictures and we keep on writing ;) s for the
induced representations.

Another induced picture

Definition 3.2 (Induced picture of 7;) 5). 1t is obtained by considering
the left action of G on the complex vector space

V8= {f e O (CV\{0}) Ve e T+ fle) = (H>5 Ic‘“‘Nf(-)}
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and completing this space (extending the action of G accordingly) with
respect to the norm || - || defined by

1712 = [, 1f@ dota).

The completion of VB\ 5 is denoted by V;y 5. Functions of VS\ 5 are also
said to be (A, d)-covariant (or just covariant, for short). Let us point
out that covariance makes || - || a proper norm, in the sense that the
norm of f € Vg\ 5 is equal to 0 if and only if f vanishes everywhere.

Naturally, we have the same properties as in the initial induced picture:

e ;)6 is continuous and unitary;

o ;s is irreducible if and only if (X, d) # (0,0).

It is explained in [8], amongst many other things, how 7 ¢ decomposes
into the direct sum of two irreducible invariant subspaces.

It is both interesting and important to understand how the correspon-
dence works between both versions of the induced picture.

Though we said we would not change notation, it will be helpful for our
explanations (till the end of the present subsection) to write ‘73 5 (resp.
Tias and [-]) instead of V&(S (resp. mixs and || - ||) when considering
the initial induced picture.

Consider the vector e; = (1,0,...,0) of CV. Consider the natural
action of G on vectors of CV \{0} (matrices times column vectors).
This action is transitive and the stabiliser S of e; is the subgroup of
matrices of G such that the coefficients of the first column are all zero
except the one at the top that has to be 1. Looking back at the proof of
Proposition 3.1, we see that this stabiliser is a subgroup of the parabolic
subgroup Q = M AN; more accurately, elements of S can be written

s = man with:
with < g IC) ) € Sp(m, C);
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[ ] a:INv

1 tul|2s t
"= 50T 1T o with (s,u,v) € Cx C™ x C™.
0 0 |—-u I,

Consider a function f that belongs to the space ‘73\ 5

Elements man of S satisty eif(m) — a(a) = 1, so covariance of f implies
that f is constant when restricted to representatives of a same coset of
G /S and thus defines a function fg on G/S by:

fs(gS) = f(9)-

Since G/ S is homeomorphic to CY \ {0}, one can then define a (complex-
valued) function f on C™\{0} by

f) = fs(gS) = f(9),
where one chooses any element g that satisfies g(e;) = x.

Take ¢ € C\{0} and set

¢c 0] 0 0
0 IL,| 0 0
¢= 0 0 cT 0
0 0| 0 I,

g 0 0 0 el 0] 0 o

0 I,| 0 0 0 In| 0 0
m = —T , a= —

0 0 (W) 0 0 0[] o0

0o ol 0 I 0 0| 0 In




and n = Iy. Now if g € G is such that g(e;) = z, one can write

flex) = (09(61))
f(g(cer))

and consequently

fex) = (H>5 e~ £ (). (3.1)

Maps fg and f are continuous, so we have, so far, associated in a one-
to-one fashion covariant functions f on G to continuous functions f on
CN\{0} that satisfy (3.1) for all non-zero complex numbers c¢. This
correspondence makes representations and identifications compatible,
in the sense that we have a commutative diagram for each element g
of G: ~ 5

[ — Tas(g)f

l l

f —— mas(9)]-

Now, what is a relevant norm for Vlg 57
Because K is a subgroup of U(N), the sphere S2N=1 and its Euclidean
measure o are invariant under the natural action of K. The restriction
of the natural action of K to S?N~! is transitive and the stabiliser of
e1 is Sx = SN K. Thus the map (taking, as above, any k such that
key = x)

v g1 K/SK

X — kS K

is a homeomorphism between S*V~1 and the quotient K /Sk; let us
denote equivalence classes by [k] (k refering to any representative of
the coset kSk). Consider the function F = f o1 ~! on K/Sk. Then:

f(z) = F([K) = F(k),
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where k is any element of K such that z = ke;.
The natural action of K on S?V~! induces a natural action (simply
denoted here by a dot) on K/Sk defined on equivalence classes by
(taking k1 and kg in K)

ky - [ko] = [k1ka).

The Euclidean measure o can be transported to K/Sk so as to define
a K-invariant measure p (the image measure of o):

w(B) = o(¥~H(B)),

for all measurable subsets B of K/Sk. One has:
Lo @R do@) = [ PP aur). (32)
S2N-1 K/SK

Because Sk is a closed subgroup of K and because K is compact, the
homogeneous space K/Sk has a unique left invariant Borel measure [
(up to a constant). This follows from a standard integration theorem
that one can find for instance in [28] (Theorem 8.36 — this theorem is
in fact stated for real-valued functions, but it passes on to complex-
valued ones). So measures p and fi are proportional. Moreover, the
same theorem says that i can be normalised so that for all continuous
functions ¢ on K one has:

Jowa=[ (/, otkspas) diep,

where ds denotes the Haar measure of Sk (induced by the normalised

o2
left Haar measure of K). Applying this to ¢ = ‘ fl K‘ and denoting by

Vol(Sk) the volume of Sk with respect to the Haar measure dk, we
get:

J TR = Vol(Sk) [ PP (k). (33)
K K/Sk

Because p and fi are proportionnal, (3.2) and (3.3) imply that the
norms [-] and || - || are proportionnal. These norms therefore define the
same topology and unitarity in one picture corresponds to unitarity in

the other picture. These considerations justify our choice of norm | -||.

o1



Another compact picture

Definition 3.3 (Compact picture of m;y5). Here, the carrying space
is the Hilbert space

Vs = {f € LSV /WO ER ¢ () = f()

with respect to the norm || - || defined by:

1712 = [ 0 dk.

We say that elements of Vixs are §-covariant (or just covariant, for
short). Again, the action of G is not as simple as one might think, but
its restriction to K is just the left action of K.

The parameter A does not explicitly appear in the compact picture,
but is hidden in the following observation. Restriction of functions F
of VB\ s to SZV=1 (in the new induced picture) establishes a one-to-one
correspondence with continuous elements f of the space V;ys in the
new compact picture. This correspondence works as follows:

Fo) = ol F (7).

(el

for 2 € CV\ {0}.

Another non-compact picture

This picture is based on two observations:

« The image of e; = (1,0,...,0) € C under the natural action of
the subgroup N is the (affine) hyperplane

P={1} xC"xCxC™.

Indeed, given an element n € N written as in Section 3.1, the
element ‘n € N assigns to e; the point (1,u,2s,v) € P.

e The Haar measure of N is the Lebesgue measure ds du dv.
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Restricting functions of VB\ s to N, in the initial induced picture, cor-
responds to restricting functions of V&a to the hyperplane P, in the
new induced picture, thereby obtaining continuous functions of L?(P),
with respect to the Lebesgue measure ds du dv. These considerations
naturally lead us to the following choice:

Definition 3.4 (Non-compact picture of m; 5). The carrying space is
L?(P), with respect to the Lebesgue measure ds du dv, where (1,u, 2s,v)
denote the coordinates on P. Again, the action of G is not as simple
as one might think, but the action restricted to N is just the left action
of N.

One has to be careful with the way the induced picture and the non-
compact picture correspond to one another. As much as one can always
restrict functions of VZ())\ s» in the induced picture, to obtain continuous
elements of L%(P), the reverse procedure via covariance only gives func-
tions defined on C N(z; # 0). In more detail, a continuous function
f on P defines a continous function F' on S?V~=1 N (21 # 0):

—6
F(z,w) = (Zl) |21 | TN f (I,Z,...,Z",wl 7wn>

|21 21 2 21

The measure of S*¥ =11 (z; = 0) is 0 in S?V~1 so this procedure en-
ables one to obtain the whole of V; s in the new compact and induced
pictures.

Via the bijection

CxC"xC™ — {1} xC™"xCxC™
(s,u,v) — (1,u,2s,v)

we will identify the spaces L?(P) and L?(C?™"!) (again, with respect
to the Lebesgue measures ds du dv).

Remark: the parameters A and § do not actually appear in this picture;
they are hidden in the restriction/extension process.
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Chapter 4

Actions of Sp(n) and Sp(1)

In this section, we work with the compact picture of the induced repre-
sentations ;) 5. Because the restrictions ; >\75| ;¢ coincide with the left
action of K on V) s, we now simply write L instead of m; ,\’5| ) What-
ever the value of §. By changing the values of 4, one can reconstruct
the whole of V = L? (SgN_l), as we will see. We intend to study
how this Hilbert space decomposes into irreducible invariant subspaces
under two actions: the left action L of K = Sp(n) and the right action
of Sp(1) (which we shall define later on).

4.1 Left action of Sp(n)

4.1.1 Preliminaries

For the time being, denote the coordinates of R*Y by (x1,...zan).
Consider the Laplace operator Ar defined by:

2N
a2

Ap = —
5
= Ox;

For k € N, denote by H* the complex vector space of polynomial func-
tions f defined on R?V, with complex coefficients and such that:

1. f is homogeneous of degree k;
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2. f is harmonic, that is, Ar(f) = 0.

Denote by V¥ the complex vector space whose elements are the restric-
tions to S2N~1 of elements of H; these restrictions are called spherical
harmonics. It is well known that (see for example [12], Chapter 9):

1.2 (SQN—l) :@yk’ (4.1)

keN

where the various spaces yk are orthogonal to one another in LQ(SQN *1).
It is also well known that the subspaces V¥ are stable under the left
action of SO(2N) and that they define irreducible pairwise inequivalent
representations of SO(2N) (see Chapter 9 of [52]).

Because K can be seen as a subgroup of SU(N) which can itself be
seen as a subgroup of SO(2N), the sphere SV~ is stable under the
natural actions of K and SU(/N) and one can therefore consider the left
actions of K and SU(N) on Y*. It so happens that the right action
of Sp(1) that we will define later also preserves J*. So, to understand
how L?(S?N~1) decomposes under the left action of K and the right
action of Sp(1), one just needs to concentrate on each Y*.

Let us switch to complex coordinates. Put z = (z1,...,zx) € RY,
y = (xNH,...,_aczN) c RN_and z=x+iy = (21,...,25) € CV.
Because = = % and y = 5%, a function f of x and y can be written

as a function F' of the complex variable z and its conjugate Zz:

f(z,y) = F(2,2).

An element u of SU(N) can be viewed as a matrix 4 of SO(2N), through
the following embedding of the set of complex N x N matrices into the
set of real 2N x 2N matrices (the way we have identified R?" and CV
is precisely designed to match this embedding): one decomposes u into
two real matrices A and B, writing u = A + iB, then defines

~(42)
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and checks that @ belongs to SO(2N) and that the mapping u — @ is
an injective group morphism. The left action of @ on f then transfers
to F' in the obvious way:

L(u)P(z,2) = P(u'z, u=12) = P(u" 'z, tuz). (4.2)

The last equality holds because u is unitary and therefore u=! = tu.

In the coordinates (z,%), the Laplace operator becomes:

N 82
Ac = 4; 0207z

For a, 8 € N, consider the space H*? of polynomials P(z, z) (z € CV)
such that:

1. P is homogeneous of degree a in z and of degree 3 in Z;
2. Ac(P)=0.

Each H*” is invariant under the left action of unitary matrices; the
resulting representations of the unitary group SU(N) on H*? are irre-
ducible and pairwise inequivalent (again, see [52], chapter 11).

Proposition 4.1. The dimension of H*® is given by the following
formula:

(a+B+N—1)(a+N-2)(5+N-2)

dim H*# =
m (N — DI(N — 2)lalg!

Via coordinate identifications, one can consider spaces H*? as sub-
spaces of H*™#. Given k € N, this leads to the natural isomorphism
(see [52], Chapter 11):

"~ @ aH. (4.3)

(a,B)eN?
a+p=k

We denote by Y*# the space of restrictions of elements of H*” to the
unit sphere S*V~1. From (4.1) and (4.3) we deduce:

1.2 (SQN—1> _ @ B

(a,8)eN?
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Consequently, in the compact picture:
Vo= P y*~. (4.4)

(a,B)EN?

0=p—a
We now discuss a basic yet important point: we can work with ho-
mogeneous harmonic polynomials rather than spherical harmonics. In
order to explain why, let us fix any non-negative integers o and 8 and
denote by R the map that restricts polynomials of H*# to the unit
sphere S2V—1: the target space of R is precisely Y*#. Because of ho-
mogeneity, the map R is a bijection; it is in fact a linear isomorphism.
Let us:

e denote by 7 the representation of K that corresponds to the left
action on Y78,

 denote by 7’ the representation of K that corresponds to the left
action on H®?,

The restriction map R commutes with both left actions of K. Said
otherwise, the following diagram commutes (with k € K):

Havﬁ ﬂ Havﬁ

| =

yor —— yor.
(k)

Because the spaces H*? and yaﬁ are finite-dimensional, = and 7’ are
differentiable. The differentials (at the identity) dr and dn’ are also
related by a commuting diagram (with X € €):

HeB dﬂl(X); HeB

| |

Yo —— yor.
dn(X)

In other words, the linear isomorphism R intertwines dm and dn’. This
implies that weights of 7 coincide with weights of 7/, weight vectors of
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m correspond to weight vectors of 7’/ and highest weight vectors of 7
correspond to highest weight vectors of 7.

This is why we now identify 7 and 7/, going back to our notation L
and denoting by dL the differential of L (at the identity).

Remark: we will often identify, without mentioning it, polynomials of
H*? and the corresponding spherical harmonics of Y®7.

We now work with polynomials, looking for highest weight vectors and
the corresponding highest weights.

Given (o, 3) € N2, the space H* is stable under the action of K,
but not necessarily irreducible: it can break up into (obviously) finite-
dimensional irreducible invariant subspaces. Each of these subspaces is
generated by some highest weight vector under the action of K. Also,
because these subspaces are finite-dimensional, the restriction of L to
any one of them can be differentiated. Remembering (4.2), if X belongs
to the Lie algebra £ of K, if P belongs to the carrying space of L and
if z belongs to CV, then by definition:

d

AL(X)(P)(2,2) = &

i (P (exp(—tX)z, { exp(tX))g) )

The chain rule of differentiation applied to functions of real variables
and then rewritten in terms of complex variables gives

d exp(— z
dL(X)(P)(22) = ( 32(2,2) | %(2,2) ) Zt}to((t( pf)(ttXX)))))
at|,_, ex Z

and so we have
AL(X)(P)(z,2) = ( 22(22) | 3(=.2) ) < ol ) (4.5)

The infinitesimal action dL can be complexified, in other words ex-
tended in the natural way to the complexification g = sp(n,C) of
t = sp(n). This complexification of dL is also defined by Formula
(4.5), but this time with X € g.
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4.1.2 Highest weight vectors
We fix k € N and («, ) € N? such that a + 3 = k.

To make polynomial calculations clearer, we change our system of no-
tation for complex variables: we write (z,w) = (21, ..., Zp, W1, ..., Wy) in-
stead of our initial z = (21, ..., 2n), with of course z = (z1, ..., 2,) € C"
and w = (wy, ..., w,) € C". We now state and prove a theorem which
is the heart of this chapter:

Theorem 4.2. Denote by I*P the set of integers ~ such that
0 <~ < min(a, 5).
For v € I consider the polynomial Pﬁﬁ defined by:
Pﬁ”g(z, w,Z,w) = w57 (wes — w1 %)
1. Pj;‘ﬁ belongs to HP.

2. For any element H of the Cartan subalgebra b of g:
dL(H)P? = ((a+ B =)Ly + Lo ) (H) P2,
This means that pwa,ﬁ is a weight vector associated to the weight
o = (a+B-7,7,0,...,0) = (k—7,7,0,...,0).

3. If i and j denote positive integers, if X denotes L j — Enyjnii
or B nyj+FEjnp when1 <1< j<n, or B, ; whenl <i<mn,
then:

dL(X)P3F = 0.

This means that the highest weight condition is satisfied.

In other words, Pﬁﬁ is a highest weight vector of L. Under the action
of L, PWO‘”B generates an irreducible invariant subspace Vﬁfo"ﬂ of HB.
We will call Vva’ﬁ a component of L.

Proof:
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For simplicity, let us just write P instead of P,?’B.

1. Multiplying out the brackets of P gives a list of monomials that are
all homogeneous of degree v in both w and z. Combining this with the
powers of the terms w; and z; that sit before the brackets and the fact
that no variable appears at the same time as its conjugate, we see that
P belongs to H*#(CM).

2. and 3. We use Formula (4.5) for the specific elements of g we need
to consider:

« if H belongs to h and if Ay, ..., hy, —h1, ..., —h, denote the complex
diagonal terms of H:

dL(H)P(z,w,z,w)

S (-2 + 2 452 ,20)
‘\ 0z ow oz 'ow )

=1
So:
dL(H)P(z,w,z,w) = hyw (;‘)P + hows 3852
0 oP
hiz hoz 4.6
+ 1218_1 + 222852 (4.6)

e f X =Fj - Enjn (1<i<j<n):

oP oP oP oP
dL(X)P(2,w, 2, 0) = —2; — + Wi + % — — W —
]8,21- ij i J

So:

— for j > 3:

— for i =1 and j = 2 (only remaining case):

_ opP  _ 0P
dL(X)P(z,w,z,w) = w18—w2 + 216—52. (4.7)
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e f X =Fipij+ Ejnti (1<i<j<n):

So:

All that remains to be done is compute the partial derivatives in for-
mulas (4.6) and (4.7) to find:

e ()V Heb: dL(H)P = ((ac+ B — y)h1 + vha) P.

L4 (11) dL(ELQ - En+2’n+1)P = 0
To make computations easier we set B = wg2z] — w1 22.
To establish (i), let us compute dL(H)P(z,w, z,w):

hiw ((a — v)wﬁf'y*lilﬂ_'yB'y — 'yzfgw?f'yzflﬁ_737_l) +

hawa (75110(117751[3_737_1) +
hiz ((/3 — w57 B + ’Y’U)?wf_wz_l’BﬂB%l) +
ho 2o (—'ywlwla_vz_lﬁf'yB'yfl) . (4.8)

Then we can organise the terms of (4.8) to get

BY (ha(a = 7)wi ™ A5+ ha (8 -y A7) +
B'Yflhlfwa_wz_fgdy (wozy — w1 22) +

BV_1fL2'y11)f‘_7515_7 (waz1 —wiz2), (4.9)
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which can be rewritten
((a+ B —7)h1 + vho) w7578, (4.10)

We finally recognise the desired expression: ((a+ 8 — v)hy + vh2)P.

To establish (ii), let us compute dL(E1 2 — Epton+1)P(2,w, 2, w):

w)—— + zl_) (z,w,Z,w) =
wl’yz_lwtf_vz_lﬁ*VBV*l — z_lfywlw‘f‘_vz_lﬁvavfl,
which obviously equals 0.
End of proof.

Each component corresponds to a specific eigenvalue of the Casimir
operator €1y, of L. Proposition 2.6 and Theorem 4.2 imply:

Corollary 4.3. Consider the irreducible representation (L, Vva’ﬁ). We
remind the reader that its highest weight is («+ 8 —)L1+ L. Then
(denoting by Id the identity map):

QL:—((a+5—’>’)2+2n(0¢+5)+v2—27)Id.

4.1.3 Isotypic decomposition with respect to Sp(n)

Again we fix k € N and (o, 8) € N? such that o+ 3 = k. We now want
to establish that H*? is the direct sum of all subspaces V,Ya’ﬁ . We do
this by computing dimensions and showing that the dimensions of the
various VVO"B add up to the dimension of H*?. We point out that in
the formulas to come, we use the standard convention 0! = 1.

Proposition 4.4. The dimension of Vva’ﬂ is given by the following

formula:

(k=y+N-=-2)l(y+N-=3)!(k—2vy+1)(k+N —1)
(k—~v+ DIy (N =1)I(N - 3)!

dime”B =

We denote this dimension d§ (omitting the values of o and 3).
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Proof:

We apply Weyl’s dimension formula (2.4), choosing the highest weight
o= O',C;’B (given by Theorem 4.2), px = (n,n — 1,...,1) and using the
three types of positive roots L; — L;, L; + L; and 2L; introduced in
Section 2.3.1 of Chapter 2. With these choices, dimeﬁ is equal to:

H<O’—|—pK,L L>H<U+pK,LZ'+Lj>
<pK,Li—L;> < pr,L;+ L; >

1<j 1<J

ﬁ<0+pK,2Li>

4.11

=1

Looking into each product, we see that the terms for ¢ > 3 all cancel
out so that (4.11) can be rewritten as:

ﬁ<O'+pK,L1—Lj>ﬁ<O'+pK,L2—Lj>

=2 <,0K,L1—Lj> =3 <pK,L2—LJ’>
ﬁ<0+pK7L1+Lj> " <o+pr, Lo+ Lj >

<pK,L1+Lj> <pK,L2+Lj>

Jj=2 Jj=3
<o+ pr,2L1 >< o+ pg,2Ly >

4.12
< pr,2L1 > < pK,2Ly > ( )

With o+ px =(k—~v+n,y+n—1,n—-2,..,1), (4.12) becomes:

(k—=~v+n)—(v+n—-1) & k—v+n)—(n—j5+1)
n—(n-—1) H

k—=~v+n)+(H+n-1) L O+n—-1)—-n—-7+1)
n+(n—1) m—=1)—(n—-j5+1)

j=3
Hk—y+n)+(n—j+1) g y+n—1)+(n—j+1)
H n+n—j+1) };[3 n—1)+Mn—-7+1)
2k —y+n)2(y+n-1)
2n 2(n—1)

J=3

(4.13)
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Formula (4.13) can be rewritten as:

k—27—|—1ﬁk:—’y+j—1ﬁ7—l—j—2

1 i3 7—1 i3 j—2
k—l—N—lHk: v+ N — j—i—ll—[’y—i-N j
N-1 & N—-j+1
7j=3
k— 1
'H"’H" . (4.14)
n n—1
Formula (4.14) can be reorganised as:
ﬁk—’yﬂ"ﬁlvﬂ'
= 1 5=
ﬁk—’}/—i-N—i-l—]H’Y—l-N—j
ok N+1—j
k—Q 1)(k+N-1

N-1)

Writing products in terms of factorials we get the following expression:

(k—~v+n)! (v+n-1)!
(k—~+1)n! yl(n—1)!
(k—y+N+1-3)(N+1—-n—-1)(y+N-=3)(N—-n-1)!
(k—v+N+1-n-D(N+1-3)!(v+N—-n—-1)I(N -3)!
(k—2y+1)(k+N-1)

(N —1) '

(4.16)

Formula (4.16) becomes:

(k—~v+n)! (y+n—-1)!
(k—~+1)n! y!(n—-1)!
(k—v+N-=-2)In! (y+N—-3)!(n—1)!
(5=~ + (N —2)l (y - n— DIV —3)]
(k—2y+1)(k+N-1)
N-1)

One finishes the proof by noticing various cancellations.
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End of proof.

Proposition 4.5. The dimension of H*? can be written as the follow-
ng sum:
dim H? = Z divaa’B.
yelsh

Proof:

We start by supposing a < /3, so that v < a. Using Propositions 4.1
and 4.4 and several cancelations, we just need to prove this equality:

i (k=~v+N-=2)(y+N-=3)I(k—2vy+1)
= (k—~y+ 1)

(a+N—2)!(3+N —2)!
(N — 2)alp! ‘

(4.17)

If B < a, so that v < 8, we need to prove:

f: (k—v+N—=2)(y+ N —=3)l(k — 2y + 1)

= (k—~+ 1)y

(a+N—2)(B+N —2)!
(N — 2)alp! '

These two formulas are in fact equivalent, because of the symmetrical
roles of @ and (3. So one just has to prove Formula (4.17); in this
formula, let us set 4 =k + 1 and A = N — 3, which changes Formula
(4.17) into

S (At p = DA+ (e —29)
;0 (=)

(a+ A+ D (p—a+ A)l
(A+Dal(p—a—1)!

Forgetting about the exact expression of u, we shall prove Formula
(4.18) by induction on «, proving the following statement:

(4.18)

Va € N, Vi > 2a+1: Formula (4.18) is true. (4.19)
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One easily sees that Statement (4.19) is true for a = 0.

Let us now suppose that it is true for given @ € N and consider o + 1
and some p > 2(a+ 1) + 1. Then

a+1 (A+M — fy)!(A-i-’}’)!(N - 27)
> (="

=0

separates into

S (At p = )A+ ) (e —27)
(Z (1 =) )+
A+p—a-DN(A+a+1)(p—2a—-2)
(p—a—1)(a+1)! '

Because g > 2(av+ 1) + 1 > 2a+ 1, we can apply the induction hy-
pothesis to the sum and obtain:

v=0

(a+A+ D (p—a+A)
(A+Dal(p—a—1)!
A+p—a-DIA+a+1)(p—2a—-2)
(b—a—1a+1)!
(a+A+D)(p—a+A-1) <u—0z—|—A =20 —
(b—a—1)la! A+1 a+1

2) . (4.20)

One can check that the brackets can be written as
(p—a—-1)(a+A+2)
(A+1D(a+1)

so that (4.20) becomes:

(a+A+D(p—a+A-D(p—a—-1)(a+A+2)
(b—a—1)! (A+1D(a+1)
(a+ A+ A+p—a-1)(p—a—-1)
(A+D(p—a—1)a+1)!
(a+1)+ A+ (p— (a+1)+ A)!
(A+1D)(a+ D (p—(a+1)—1)!

This finishes the induction step and thus the proof.
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End of proof.

The isotypic decomposition of the restriction of L to H*#? follows from:

Theorem 4.6. H*# = @ V,Ya’ﬁ.
~yelxB

Proof:

The Peter-Weyl theorem 2.2 implies that two inequivalent subrepre-
sentations of a unitary representation of a compact Lie group must act
on orthogonal subspaces. Therefore the spaces VVQ’B are pairwise or-
thogonal (the corresponding subrepresentations each have a different
highest weight, so they are pairwise inequivalent). Proposition 4.5 says
that the dimensions of all the VW"“B add up to the dimension of H*?;
Theorem 4.6 follows.

End of proof.

To summarise the whole of Section 4.1, putting it back into context
with regards to our induced representations ;) 5, we have proved:

Theorem 4.7 (Isotypic decomposition of m;y 5). Consider any A € R
and § € Z. Then:

~ 52
Tl = 2. Llyes.

(o,B)EN?
=p—«a
yeI®B

In this isotypic decomposition, the multiplicity of each K -type is 1 (one
says that the K-types are multiplicity free).

4.2 Right action of Sp(1)

4.2.1 Isotypic decomposition with respect to Sp(1)

Denote by

(z,w) = (21, -+ s Zn, W, .., W)
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the coordinates of C, by h = (hi,...,hy) the coordinates of H" and
use the identification h = (z 4 jw) € H" +— (z,w) € CV.

Right multiplication of a quaternionic vector h by a quaternion g con-
sists simply in multiplying all quaternionic coordinates by ¢ on the
right, obtaining the quaternionic vector hgq.

Consider any subset S of H" and assume that it is stable under right
multiplication by unit quaternions. Let F be any subset of the complex
vector space {f : S — C}. Then the right action R of Uy on F is
defined by:

R(q)f(z) = f(zq),
for all (¢, f,z) € Ug xF x S; we write R(q)f instead of (R(q))(f).

Consider a unit quaternion ¢ = a + jb € Upg. The rules of quaternionic
multiplication imply (as explained in Section 2.4.3):

Vh =z+ jw e H", hq = (az — bw) + j(aw + bZ). (4.21)

The subset S of H" identifies with a subset of CV, that we also denote
by S. As explained in Chapter 2 (section 2.4.3) the quaternion ¢ (seen
as a 1 x 1 matrix) identifies with the matrix

( Z _ab) € Sp(1)

that we also denote by ¢. These considerations explain our choice of
action of Sp(1) on functions of the complex variables (z, w):

Definition 4.8. The right action of Sp(1) on F, again denoted by R,
is defined for all ¢ € Sp(1) and (z,w) € S by:

R(q)f(z,w) = f (az — bw, aw + bZ) .

An element f of F is right-invariant if it is invariant under the right
action of Sp(1), meaning that for all ¢ € Sp(1): R(q)f = f.

Let us take S = S2V=! and come back to L2 (SQN_l). One can show:
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Proposition 4.9. The right action R of Sp(1) on L? (SQN—1> s a

continuous (it satisfies the continuity property stated in Section 2.1)
and unitary representation.

Let us fix k € N. Using the usual identification CV ~ R?" | denote by
F* the subspace of L? (S N *1) that consists of functions on S?V =1 (one
should really speak of their equivalence classes) that are restrictions of
homogeneous polynomial functions on R2Y of degree k; F* is stable
under the right action R of Sp(1). Because F* is finite-dimensional, all
its elements are smooth vectors of R. As we have done previously, ho-
mogeneity enables us to identify elements of ¥ with the homogeneous
polynomials they come from. The right action of Sp(1) is compatible
with these identifications. We also denote by R the right action of
Sp(1) on homogeneous polynomials of degree k; they are all smooth
vectors of R.

Ultimately, our aim is to focus on the subspace Y* of F¥ and the corre-
sponding space of harmonic polynomials H”: these spaces are invariant
under R, as we shall see.

As we have already mentioned, to study irreducible invariant subspaces

under the action of a compact group, one complexifies its Lie algebra.
The complexification of sp(1) = su(2) is:

su(2) @ isu(2) =sl(2,C).

A basis over the field R of su(2) is given by the three matrices :
1 0 0 ¢ 0 -1
A Dasis over the field C of s[(2,C) is given by the three matrices :
1 0 . .
e h= 0 —1 =0+1i(—A) € su(2) @ isu(2);

o 6= (8 é)z}c+z<_23) € su(2) @ isu(2);
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.f:(? 8) C+z< )Esu(2)€9i5u(2).

We have for ¢ € R the following exponentials:

e 0
. ewp(—tA):< 0 it );

(
. emp( tC) _( cos((Qt) sin (%)

These exponentials belong to Sp(1) and therefore correspond to specific
unit quaternions ¢ = a;+ jby, with (as, by) € C x C (see Lemma 2.11 to
recall how one identifies quaternionic matrices with complex matrices):

« exp(—tA) corresponds to ¢ = e~ + 05;

—tB

o exp (?) corresponds to ¢ = cos (&) — ji sin (%);

e exp ( tc) corresponds to ¢ = cos () — jsin (£).

Consider any homogeneous polynomial P of degree k. We know that
P is a smooth vector of R, so, by definition, we have for all X € sp(1)
and (z,w) € C" x C™:

dR(X)P(z,w) = T

. (R (exp(tX)) P(z,w)).

Extend dR to a complex representation dcR of s[(2,C) by defining for
all Z = X +1iY € 5l(2,C) (taking (X,Y) € sp(1) x sp(1)):

dcR(Z) = dR(X) + idR(Y).

We will write Z instead of dcR(Z) and Z - P instead of dcR(Z)P (in
other words, we see Z as a differential operator).

Using the formulas that link e, f,h to A, B,C, the exponentials of

—tA, _tB _éc and the definitions of dR and d¢c R, one can prove:

71



Proposition 4.10. Simply denote by e, f, g the respective differential
operators dcR(e), dcR(f), dcR(h). Then:

_ ol a9 \.
e €= Z?:l (wrafg - ZT*&TT)’

* f:Z (7 dw, _wrdz,«)

0 —_0
o h=31"_ 1(ZTazT_ZTazr+w7"aw w,nam).

Let us now look into the direct sum HF = @Hk %% We know that

s=0
min(k—s,s)

each H*~%% breaks into @ Vvk_s’s and that each VAY’“_S’S contains
v=0

a highest weight vector denoted by Pffs’s (see Theorem 4.2). Using

formulas of Proposition 4.10, one shows:

Theorem 4.11. Consider integers k, c, 3,7 such that 0 < v < min(a, 3)
and o+ 3 = k. Then:

o hoPPP = (a = PP
o Wheny<p:e- PO =(8—y)Pothi-1,

o Wheny<a: f- Pﬁﬁ =(a— V)P;l*lﬁ“.

4.2.2 K-type diagram

Figure 4.1 captures the contents of Theorems 4.2 and 4.11. In this di-
agram, the thick black dots represent the highest weight vectors PWO‘"B
(a+ B =k).

Let us take a closer look at Figure 4.1. For any fixed integer + such
that 0 <~y < E (%) (the function E assigns to a real number its integer

part):
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Hk—l,l

Hk—Z,Z

HZ,k—Z

Hl,k—l

Figure 4.1: combining the left action of Sp(n) and the right action of

—_—

y=0 y=1 y=2
. | l
£l
vt 710 .
V(:‘_ll ). Vf_“ f. ~~~~~
B\ B\ )F e
V(l)(—Z,Z \. vipz,z \.¢ Vzk—z,z El
2k-2 Y 2k-2 2k-2 Y
W M M e
E\ ] E\ yr :’)
\ ¥ \
1k-1 ® 1k-1 PY
Vo f \'A | Fl.—
E{ T
\ ______ 0
W el

Sp(1) within H¥, assuming here k > 5.

73




e The arrow beneath v points to a vertical set of components
whose direct sum defines an invariant subspace Vvk (obviously not
irreducible) under the left action of Sp(n):

k—~
k _ ak—a
V’Y - @ V’Y )
a=y

e The components in Vvk all correspond to the highest weight
(k—~,7,0,---,0) (given by Theorem 4.2) and are therefore equi-
valent; in particular they all have the same dimension d,'j.

o A vertical set of thick black dots defines a basis of an irre-
ducible invariant subspace W* under the right action of Sp(1) (of
dimension k — 2y + 1):

WF = Vectc{P{* Yoy, iy C Vi

The polynomial Pwk_“w is a highest weight vector of va and
corresponds to the highest weight k — 2.

o Because the left action of Sp(n) and the right action of Sp(1)
commute, applying L to Wff gives irreducible invariant subspaces
of R contained in Vvk; these subspaces define subrepresentations
of R which are equivalent to the restriction of R to Wf; therefore,
they all have the same dimension k — 2y + 1.

Because the left action L of Sp(n) is irreducible in each component, we
have proved:

Theorem 4.12. The isotypic of the right action R of Sp(1) on H¥ is
given by:
)

E(3
H" = @ dEwk.
v=0
In particular, the multiplicity of R]W$ is equal to d,’j.

Remark 4.13. The structure of H*, which we have studied with respect
to the left action of Sp(n) and the right action of Sp(1), appears in [22]
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(see Proposition 5.1), where it is expressed as follows in terms of tensor
products (using our system of notation):

. E(5) . .
H ‘Sp(n)xSp(l) = Z() V'Y e W'Y :
y=

The credit one can give to our work is to explain this structure in a
personal and self-contained way.

4.2.3 Bi-invariant polynomials

This result follows from Theorem 4.12:
Corollary 4.14.

1. Consider k € N and P € H*. If the subspace Vectc{P} is stable
under the right action R of Sp(1), then k is even and P belongs
to Vo, where we set o = %

2. Consider k € N, suppose k is even and set o = %

o The subspace Vectc{P$“} is stable under the right action
R of Sp(1); in fact, P$® is right-invariant.

o The component V&% decomposes into d¥ one-dimensional
irreducible subspaces, along which R is just the identity re-
presentation. This implies that all elements of V" are
right-invariant.

Another consequence of the previous section is:

Corollary 4.15. Consider an element f of L?(S* ~1). Then f is
right-invariant if and only if f belongs to the following Hilbert sum:

T
S

a€eN
Let us now consider the subgroup 1 x Sp(n —1) C Sp(n): it consists of
, where A € Sp(n —1).

)

1
block diagonal quaternionic matrices 0
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Definition 4.16. Consider k € N. A polynomial of H* and its cor-
responding spherical harmonic in Y* are said to be bi-invariant if:

o they are invariant under the left action of 1 x Sp(n — 1);

o they are also invariant under the right action of Sp(1).
Theorem 4.17.

1. Consider any (o, B) € N? and any v € N such that v < min(a, 3).
Denote by Invf‘y"ﬂ the complex wvector space that consists of all

polynomials of V,Ya’ﬂ which are invariant under the left action of
1 x Sp(n —1). Then:

dime(Inve?) = a4+ 8 — 2y + 1.

We point out that this dimension is higher than or equal to 1 and
that it equals 1 if and only if « = B = .

2. Consider k € N.

e If a polynomial P € H* is bi-invariant, then k is even and
k
P belongs to Vb, where we set o = 5.
o Assume that k is even and set a = % Then HF contains a
unique, up to a constant, bi-invariant polynomial (and this

polynomial belongs to Vo).
Proof:

Item 1: our proof relies on Zelobenko’s branching theorem with respect
to the pair (Sp(n), Sp(n — 1)), namely Theorem 4 of Chapter XVIII in
[54]. This theorem implies that the number of times an irreducible
representation of 1 x Sp(n — 1) ~ Sp(n — 1) with highest weight ¢ =
(c1, -+ ,cpn—1) occurs in an irreducible representation of Sp(n) with
highest weight a = (a1, -+ ,ay) is equal to the number of non-negative
integral n-tuples b = (b1,--- ,b,) such that the following two rows of
inequalities are satisfied:

ap > b1 > ax> by
b1> Cl> bQ

b3
b3

as Qnp

AVARLYS
VALY
AVARLYS
v

C2 Cn—1
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Remember that the highest weight of the left action of Sp(n) on Vvo‘ﬁ
is the n-tuple a = (a + 8 —,7,0,--- ,0).

Also, the highest weight theorem (see for instance [27], Section 7 of
Chapter IV) implies that a polynomial P € Vya’ﬁ is invariant under
the left action of 1 x Sp(n — 1) if and only if the restriction of the
left action of 1 x Sp(n — 1) to the 1-dimensional space Vectc(P) de-
fines an irreducible representation of Sp(n — 1) whose highest weight is
c=(0,--- ,0).

Taking a = (« + 8 —~v,7,0,---,0) and ¢ = (0,--- ,0), the two rows of
inequalities become:

at+f—v=2 b=z v= bz 0= b3= ---= 0= b= 0;
bi> 0= by= 0= by= = 0= b,

Thus the only non-zero coordinate of the n-tuple b is b; and we are left
with counting the number of integers b; between o+ 5 —~ and . This
number is a + § — 2y + 1. Because v € [0, min(a, §)], this number is
higher than or equal to 1 and it equals 1 if and only if @ = 8 = 7.

Item 2: it just follows from Item 1 and Corollary 4.14.
End of proof.
Let us fix any a € N and write k = 2a. We now set to determine,
explicitly, the unique (up to a constant) bi-invariant polynomial of H
(given by Theorem 4.17).
Define the following set:
Ao = {(a,b) eN? Ja+b=a]}.
Let us consider the polynomials U, V, P defined by:
o U= z7Z1 +wiwr;

e V= Z?:z (2% + wwy);
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o P = 3 qeq, val” V?, where the various v4 denote complex
scalars (undetermined at this stage).

Polynomial P is obviously:
o homogeneous, of homogeneous degree («, a);
e bi-invariant.

We want P to be harmonic (in which case P actually belongs to the
subspace V¢ of H¥*). To ensure that this be indeed the case, we
need to apply the complex Laplace operator and make P belong to its
kernel. Remember that this operator is:

Ao = 42 (azraz 8wr8w> '

One easily checks that:

AcP(z,w) = va(a®> +a) U VP 4+ va(0® + (2n = 3)b) U2 VO L.
Given A € A, let us define:

e C1(A) =va(a®+a) and Ty (A) = ULV

o Oy(A) =va(b?+ (2n — 3)b) and Tp(A) = U*VP~L,
We have:

AcP(z;w) =4 Y (C1(A) - Ti(A) + Ca(A) - To(A)). (4.22)
AcA

By multiplying the brackets out in powers of U and V', we can write
down the list of monomials that come from T;(A), given A = (a,b) € A
and i € {1,2}; let us denote by M;(A) the set of such monomials.

Proposition 4.18. Consider two pairs A = (a,b) and A’ = (a,V)
such that A # A'. Then:
1. Mi(A)NMy(A) =0;

2. Ma(A) N Ma(A) = 0;
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3. (Mi(A)NMa(A) #0) = (A =(a—1,b+1));
4. M2(A)NM(A)#0) = (A =(a+1,0-1)).
Proof:

The monomials of M;(A) (resp. M;(A")), again with i € {1, 2}, split
into a first part which is a homegeneous polynomial of the variables
21,w1,%1, w1 and of homogeneous degree (a,a) (resp. (d/,a’)) and
a second part which is a homegeneous polynomial of the variables
22y ey 2y Wy« ooy Wy 22, - -« Zn, W2, . - . Wy, and of homogeneous degree
(b,b) (resp. (¥',V)). For monomials to coincide, their homogeneous
degrees must of course coincide, which is enough to establish (1), (2),

(3) and (4).
End of proof.

Consider two pairs A = (a,b) € A and A’ = (d/,b') € A such that
A+ A

o If a monomial appears in both M;(A) and Mo(A’) (implying
A" = (a—1,b+ 1)), then the coefficients it appears with are
C1(A) times some combinatorial coefficient and Cy(A’) times the
same combinatorial coefficient. Thus we must have:

C1(A) + Cy(A') = 0.

o If a monomial appears in both My(A) and M;(A’) (implying
A’ = (a+1,b—1)), then the coefficients it appears with are Cy(A)
times a combinatorial coefficient and C7(A’) times the same com-
binatorial coefficient. Thus we must have:

Co(A) + C1(4) = 0. (4.23)

Above considerations finally show us how to choose coefficients v4 in
the definition of P so as to ensure that P be harmonic. Figure 4.2
helps understand the following steps (assuming that o > 1):
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0
; // ///M//
(o) 0
(a,0) (3,a—3) 2,a-2) (1a-1) 0,a)
Vg V3 v, 121 Vo

Figure 4.2: induction method to find bi-invariant polynomials.

o List all pairs of A, from left to right:

(,0), (a—=1,1), ..., (L,a—1), (0,q).

» Start for instance with the pair Ag = (0, ) on the far right and
assign to it any coefficient v4, = vp; it determines C(Ap) (which
is in fact 0) and Cy(Ay).

o Move on to the pair A; = (1, — 1) on the left and compute the
only suitable coefficient v4, = 11 by using Equation (4.23).

o And so on, until the pair A, = (a,0) has been reached and its
coefficient v4, = v, computed.

Let us refer to this as the induction method.

Theorem 4.19. Given any even integer k € N and setting a = %, the
induction method computes the unique (up to a constant) bi-invariant
polynomial of H® (and this polynomial belongs to V&%),

Examples 4.2.1.
o Fora=1, one finds P=(1-n)U + V.

o Fora=2, oneﬁnalsP:%U2 + (1-2n)UV + V2
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Chapter 5

Compact picture and
hypergeometric equation

In this chapter, we work with the compact picture of our representa-
tions ;) 5, using the setting and results of Chapter 4.

5.1 Quaternionic projective space

In this work, straight lines are defined with respect to right multiplica-
tion: given x € H", the quaternionic line through z is the vector space

xH = {zh / h € H}.

The quaternionic projectice space P~ (H) is naturally the set of quater-
nionic lines of H". Quaternionic matrices act naturally on quaternionic
lines: given € H", an invertible matrix M € GL(n,H) assigns to
x H the quaternionic line through Mx. We call this action the natu-
ral action of GL(n,H) on P"~!(H). We now study the orbits under
the restriction of this action to the subgroup 1 x Sp(n — 1). Given
xH € P"1(H), we denote by O(z H) the orbit of z H. We show in the
next proposition that the orbits can be parametrised by a single real
variable.

Proposition 5.1. Consider any x = (x1,...,x,) € H". There exists a
unique 6 € [0, 3] such that, denoting x(6) = (cos,0, ...,0,sin6) € H",
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the quaternionic line x(0) H belongs to O(x H). Moreover, 6 is explicitly
given by the following formulas:

o if x1 #0, then 0 = arctan (||2']]), taking 2’ = (%, - "’;—’1‘),
o ifwy =0, then 0 = 3.
Proof:

Existence:

Suppose first that x; # 0. Then, writing 2’ = (x%il,m?xn%)’ we
have:

1 1 1
cH = (z1,...,2,) H= <:L'1,:B2, ,mn> H = (1,2")H.
I T I

Because 1 x Sp(n — 1) acts transitively on spheres of H" ™!, there exists

a matrix (1) 2 , with k& € Sp(n — 1), that takes (1,2')H to the

quaternionic line (1,0, ...,0, ||2/||) H (remember that || - || denotes the
norm of H"~1).

This quaternionic line can be rewritten

1 x’
(1,0,...,0, '] H = (WO 0, J%) H
and then simply
(1,0,...,0,]|2'||)) H = (cos 6,0, ...,0,sin 0) H
0

for some 0 € [0, 5[ (see Figure 5.1).

If now 1 = 0, thus ||2’|| = 1, then one can choose k so that ( (1) 2 )

carries x H onto (0, ...0, 1) H, which gives 6 = 7.
This establishes existence and formulas of 6.
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Figure 5.1: a single variable 6 to parametrise orbits.
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Uniqueness:

s

Suppose 6 and 0’ belong to [0, 5] and that the quaternionic lines () H
and z(0") H belong to O(zH). Then there exists k € 1 x Sp(n—1) such
that kx(0")H = x(0) H, which implies that there exists ¢ € Uy such
that:

kz(0') = x(0)q. (5.1)

Suppose that n > 3 and write
1 0 0
k=10 A B
0 b

L
with b e H, A € M;,_9,—2(H), L € My ,—o(H) and B € M,,_2 1 (H).
Equation (5.1) becomes:

cos &’ gcosf
Bsint' | = 0
bsin 6’ gsin@

We now split the rest of the proof into three cases.

o Case 1: 0,0 € [0,5[. Then q = cos0'  Bgin® = 0 and

cosf )

., sinfcos#’
bsin' = sl (5.2)
Subcase 1: 6" # 0. Then B must be 0 and Proposition 2.14 (see
Chapter 2) implies L = 0 but more importantly for us [b| = 1.
Thus from (5.2) it follows that |tand| = |tan#’|, which then
implies tan = tan @ and 0 = ¢’.
Subcase 2: ¢ = 0. Then sin = 0 and cos® = 1, so (5.2)
becomes tan € = 0 and finally § =0 = ¢'.

o Case 2: # =7. Then cosf = 0 implies cos# = 0 and finally
-
z .
o+ Case 3: ¢/ = 7. Then cos#’ = 0 implies g cos @ = 0, thus cos§ = 0
and finally § = 7 = @’ (because ¢ # 0).
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There remains the case n = 2, for which we choose k as ( (1) 2 ) with

b € Uy. Similarly to what is detailed above, we also obtain § = ¢'.

End of proof.

5.2 Reducing the number of variables

From now on, throughout the rest of this chapter, the setting is the
following:

e We fix an even integer k € N and write o = g
e We consider the space H* and its unique, up to a constant, bi-
invariant polynomial P, which in fact belongs to VS C H*®

(see Theorem 4.19).

o We denote by fp the spherical harmonic that corresponds to P,
that is:
fp= P‘S2N71 € Yoo,

We remind the reader that, by definition, the right action of Sp(1)
corresponds, in the quaternionic setting, to right scalar multiplication
by unit quaternions.

Invariance under the right action of Sp(1) enables fp to descend to a
function f on P~ !(H):

f : PYH) — C

zH —  fp(x),where z is assumed to belong to S2V~1,

Transferring, in the way one expects, the left action of K on spherical
harmonics to a left action, also denoted by L, of K on complex-valued
functions defined on P"~1(H), we write

L(k) f(zH) = f((k~"2)H)

for all (k,z) € K x §2N-1,
Invariance of fp under the left action of 1 x Sp(n — 1) implies that f is
invariant along the orbits of the left action of 1 x Sp(n—1) on P*~!(H).
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Therefore, f descends to a function on the classifying set O of orbits,
leading in turn to the following new function (via Proposition 5.1):

F : [0,5] — C

6 - F(O) = f(@O)E) = fp((9)).

Now, apply Formula (2.6) to write down the Casimir operator €7, of
L. This is how this operator acts on fp, given an element z € S~

Qr(fp)(r) = X xen, 38722

_(@ep(—tx)(fr) (@) =
62

2 o

XeBg

(fp ( exp(—tX)a;)) ,

t=0

as long as each expression g—; 0( fp (exp(—tX ):):)) above is well
t—

defined, which is the case because fp is smooth.

Corollary 4.3 says that the component V¢ is associated to the eigen-
value A = —(2a? + (4n — 2)a) of Q.

Qu(fp)(z) = Afp(x).

Given 6 € [0, %], one can apply this equation to = x(f) (see Section
5.1 for notation):

82
> o tzo(fP (exp(—tX)x(9)) ) = Afp (x(6)). (5.3)

XeBg

One can convert this into a differential equation satisfied by the func-
tion F' of the real variable #. But this requires to know for each X € By
and each t € R, which parameter £x(t) € [0,75] labels the orbit of
exp(—tX)xz(0)H under the left action of 1 x Sp(n — 1). Proposition
5.1 gives us the value of {x(t). Indeed, denoting by (yi,...,yn) the
coordinates of exp(—tX)xz(6):

e when y; # 0, we have £x g(t) = arctan ||y/||, where y’ = stands
Y2 Yn \.

for )
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e when y; = 0, we have {x () = 5.
Then (5.3) can be written:

82
2 o

XeBg

(Pexo(®)) = AF(9). (5.4)

t=0

We point out that in this equation, the expressions that appear in the
sum are automatically well defined. Finally, all we have to do now is
determine the coordinates of the various exp(—tX)z(#) and use above
formulas to compute &x ¢(t); let us also point out that we obviously
have:

Ex0(0) =06.

5.3 Hypergeometric equation

We continue to work with the setting of Section 5.2.

In Equation (5.3), all terms corresponding to elements of the Lie algebra
of 1 x Sp(1) vanish, precisely because fp is invariant under the left
action of 1 x Sp(1). So the relevant elements of By are :

Bl,r

\/5 I

ClT‘ Flr Glr
LY =—2 V= —=,

\/i 7,7 \/i 7,7t \/§

where r denotes an integer such that 2 < r < n; let us denote by Z the
set of these integers.

Zi=MA,Zj=D1, Zjy=FE, X, =

Yri=

Exponential formulas of Lemma 2.13 give, taking r € Z, t € R and
n € {i,, jit:

cost —msint 0
exp(—tZy,) = ( On I, ) .
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cosT -+ —sinT

exp(—tX,) = : h : ,

sint -+ cosT
cosT .-+ —nmsinT
exp(—tY,,) = § ' )
p(=t¥ry) —npsint ---  cosT .- |’

where:
o the non-explicited entries are 1 on the diagonal and 0 elsewhere;
e the dots show the diagonal, Rows 1 and r and Columns 1 and r;

. t
¢ the variable 7 denotes Nt

Dealing first with matrices Z,:

The following proposition is straightforward:
Proposition 5.2.
1. exp(—tZy)z(0) = ((cost —nsint)cosh,0,...,0,sinb).

2. Suppose 0 € [0, 5[. Then:

€7,0000=0 5 & 4(0)=0.

Dealing now with matrices X, and Y, ,:

Case 1: r=n

This proposition is also straightforward:

Proposition 5.3.
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1. exp(—tXy)z(0) =

(cosTcosf —sinTsinb, 0, ...,0,sin 7 cosf 4 cos Tsin f) .

2. Suppose 0 €10, %[. Then for t small enough we have
cosT cos ) — sinTsin @ # 0
and
éxmg(t) =7+0¢€ }0,721-{

Also:
1

V2
Proposition 5.4. Consider n € {i,7,ji}.
1. exp(—tYy,,)z(8) =

€ 0(0) = & 4(0) = 0.

(cosTcosf —nsinTsind,0,...,0, —nsin T cos @ + cos Tsin ) .

2. Suppose 0 € 0, %[ Then cosTcosf —nsinTsinf # 0 and

cos? 7sin? 0 + sin? 7 cos? }0 ﬂ[
"2

&y, 0(t) = arctan\/
Also:

cos? 7 cos? f + sin? 7 sin?

1
/ _ . i —
gYnm,H(O) =0 5 Yn,nﬂ(o) - tan(29)

Proof:

A simple matrix multiplication proves Item 1. Let us now look at Item
2. Because cos 6 and sin @ are both non-zero and cos 7 and sin 7 cannot

be simultaneously equal to 0, one necessarily has

cosT cos ) — nsin Tsinf # 0.

Then the square root formula comes from Proposition 5.1 and the fact

that, given any (a,b,n) € R xR x{i, 7, ji}:

la +nb| = Va2 + b2

The reason why &y, ¢(t) belongs to the open interval |0, %[ is due to

the following facts:
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e arctan maps [0, +oc[ onto [0, 5[5

e the square root expression cannot take the value 0 because, again,
neither cos nor sinf are 0 and cos7 and sin 7 cannot simulta-
neously be equal to 0.

Now let us now compute &, 5(0) and &, 4(0). For this purpose, define
functions T, U, V, W, R, S, ¢ by (t,x,y are real variables):
N
o T(t) = V2!
e U(x) = cos? wsin? § + sin? z cos? 0;
V(z

) = cos? z cos? § + sin? z sin? 6;

. W:%,
« R(y) =/
e S=RoW;

e ¢ = arctanoS.

One obviously has
U(0) =sin?6, V(0) = cos? 0, W(0) = tan?(d), S(0) = tan, ¢(0) =6
and easily checks

U'(0)=0, V'(0) =0, U"(0) = 2cos(20) and V"(0) = —2 cos(26).

By writing W' = % and S’ = % and by differentiating W’

and S’ one obtains:

2 cos(26)
costd

cos(260)

Wi(0) =0, WH(0) = costftanf

, §'(0) =0 and S"(0) =

By writing ¢/ = 52 and by differentiating ¢’ one gets:

2
tan(20)

¢'(0) = 0 and ¢"(0) =
Finally, writing £ = ¢ o T', we have:
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o &, o(t) = (0o T)(t) = ¢'(T(1) - T'(t) = 75 - ¢'(T(1));
o &, =5 (¢ oDV (t) = 5 ¢"(T(t) - T'(t) = 5 - ¢"(T(1));
0.

« &,,(0)=0;

¢ ggﬂ,e (0) = tanb@)‘

Throughout the calculations, one can check that all expressions are
well defined.

End of proof.

Case 2: 2 <r <n (when n > 3 only)

Proposition 5.5.

1. exp(—tX,)z(f) = (cosTcosb,O0,...,0,sin7cosh,O0,...0,sinb),
where the term sinT cos @ is the ™" coordinate.

2. Take 0 € 0,5 [. If T € R is such that || is small enough, then

Vsin? 7 + tan? 9) .

1
€x, 0(t) = arctan (
c

0ST
Also:
€x, 0000 =0 ; &% 4(0)= ﬁ-
Proof:

The proof is straightforward; here are the steps:

o Define U(7) = sin? 7 + tan? 0 and check:
U(0) = tan®(f) , U’'(0) = 0 and U”(0) = 2.
e Define V = /U and check:
1
=tanf , V'(0) = dv"(0) = —.
V(0) =tan6, V'(0) = 0 and V"(0) r—
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o Define W(7) = cost and Z = %; then check:

2
Z(0) = Z'(0) = Z"(0) = .
(0) =tanf , Z'(0) = 0 and Z"(0) Sin(20)
e Define A = arctanoZ and check:
1
A0) =6, A(0) =0and A”(0) = .
(0) =0, A(0) =0and A"(0) = ——

These are the calculations with respect to the variable 7; remembering
that 7 = % establishes [tem 2.

End of proof.
Above calculations also establish:

Proposition 5.6. Consider n € {i,7,ji}.

1. exp(—tY,,)z(0) = (cos T cosb,0,...,0,—nsinTcosb,0,...,0,sin 9),
where the term —nsinT cos@ is the ™" coordinate.

2. Take 0 € 10,5 [. If 7 € R is such that || is small enough, then

1
£y, ,6(t) = arctan ( \/m> .
Ccos T
Also: 1
/ 0)=0 - ") = ——
5Yr,6( ) ) ng,G( ) 2 tan0

Assembling all terms in (5.4)

Equation (5.4) can be written:

> F"(010(0)) (€hr0(0))” +
n € {i,j,ji}
2<r<n
M € {X,, Yy, Zn}

F'(€41,0(0))€41,6(0) = AF(6).
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Combining this to Propositions 5.2, 5.3, 5.4, 5.5 and 5.6 finally gives
for 6 € 10, 3 [:

6 4 in — 8
tan(20) = tan@

F(0) + < > F'(0) — 2AF(0) =0.  (5.5)

If one considers the smooth diffeomorphism (onto)

Y o 10,50 — 10,1]
0 —> cos26

and applies the change of variables u = (), then one obtains the
standard hypergeometric equation given in the theorem below, which
is one of our main results and which summarises this chapter. Before
we state it:

Definition 5.7. The reduced version of fp is the function
pp=Foyp

Theorem 5.8 (Compact picture and hypergeometric equation). Con-
sider « € N and k = 2a. Consider the unique (up to a constant)
bi-invariant spherical harmonic of Y*. Then the restriction ¢ of its
reduced version to the open interval |0, 1] satisfies the following hyper-
geometric equation:

where A = —(2042 + (4n — 2)a).
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Chapter 6

Non-standard picture and
Bessel functions

We use the definition of the non-standard picture given in [8] (Section
5.1, where it is actually called the non-standard model). This picture
was initiated by the authors of [35], who studied degenerate principal
series of the real symplectic group Sp(n,R).

We now fix (),0) € R x Z.

6.1 Non-standard picture

Let us denote by (s,u,v) the coordinates on C x C™ x C™ ~ C?™*1

and define some partial Fourier transforms along specific variables of
C2m+1:

 Denote by L! the set of equivalence classes of functions
g:Cc* 1l ¢
such that for almost all (u,v) € C™ x C™:
/(C|g(7',u, v)| dr < 4o0.
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For such functions g and such pairs (u,v) we set:

Fr(9)(s,u,v) :/g(T’u’ v) e~ mRe(T) g
C

e Denote by Lé the set of equivalence classes of functions
g:C*mHl ¢

such that for almost all (s,u) € C x C™:

[ lotsw )l d < +oc.

For such functions g and such pairs (s, u) we set:
fg(g)(s,u,v) = / g(s,u’g) e—2i7rRe<v,£> dg.
(Cm

Density of LI N L*(C*™*!) and L{ N L*(C*"*!) in L*(C*"*!) implies
that above formulas completely define two partial Fourier transforms,
written respectively:

FT . LQ(c2m+1) N L2(C2m+1);

fé . L2((C2m+1) SN L2(@2m+1>.

We now define the partial Fourier transform F on which is based the
non-standard picture:

F =FroFe. (6.1)
For functions f € LY(C?*™1) 0 L2(C*™!), one can write:
FPsuw) = [ frugetmelmodarg  (62)
CxcCcm
Finally:

Definition 6.1. The non-standard picture of ;s has L2(C*FL) gs
carrying space. The action of G is then the conjugate under F of the
action of G in the non-compact picture; in other words, F intertwines
the action of G in the non-compact picture and the action of G in the
non-standard picture.
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6.2 Aim of this chapter: specific highest
weight vectors

Decomposition (4.4) and Theorem 4.6 tell us what the K-types of ;) 5
are: they are the isotypic components of the left action of K which sit
in the spaces H*? such that § = 8 — o. This point of view comes from
the compact picture. Though this picture has helped us describe all
K-types, it is interesting to see what they look like in other pictures,
in particular the non-standard one. This is the point of the rest of
this chapter. Recalling Theorem 4.2, for technical issues we restrict to
K-types labelled by v = 0, namely the components Voa’ﬂ whose highest
weight vectors are

P(?”B(z,w, zZ,w) = wf 8.

Because we intend to use the right action of Sp(1), we consider an
entire space H* of harmonic polynomials.

So we now fix (for the rest of this chapter) any k¥ € N and consider
values of o and S such that:

a+p=k.
We denote by g, s the restriction of Pg"ﬁ to the unit sphere S2VN—1,
Let us call g the function in the induced picture that corresponds to

Ja,3- It extends g, g, meaning: Ylgon—1 = G- Remember that g must
satisfy the covariance relation for all non-zero complex numbers c:

Mo>=(;0ﬁd4kwg

We define

a(s,u) = /1 +4[s[2 + ul|?

and

r(s,u,v) =/ a?(s,u) + [[v]|%.

97



By restricting g to the complex hyperplane {1} x Cx C™ x C™, we
obtain the function G g defined on C?mt by:

Ga,,@(57 u, ’U) = g(l) u, 28, U)
= (s, o) g

1 U 2s v >
r(s,u,v) r(s,u,v) r(s,u,v)" r(s,u,v)

B ( 1 )Z’HN ( 1 u 25 v )
(s, u,v) Yo r(s,u,v)” r(s,u,v) r(s,u,v)’ r(s,u,v) /"
Finally, due to the total homogeneity degree k of Py B,

(2s)"

iIx+k *
(a(s,u) + o]|2) % 1"

Gop(s,u,v) = (6.3)

The function G, g is the non-compact form of g, 3. We point out
that we automatically know that G, s belongs to the Hilbert space
L?(C?*™+1): this follows from the identifications between the carrying
spaces in the various pictures.

The aim of the rest of this chapter is to determine the non-standard
form F(G,pg) of Gop (using the composition formula F = Fr o F¢).
The explicit non-standard form we end up with is given in Theorem
6.10 and also in Theorem 6.11, which is a recap that puts all these cal-
culations back into context. Calculations will involve Bessel functions
and various technical results which, for convenience, we put together
in the next section.

6.3 Bessel functions and useful formulas

We shall need to compute various integrals. Some will be expressed in
terms of Bessel functions. Let us recall definitions of these functions.
In these definitions, following for instance [37] (Sections 5.3 and 5.7),
we take v to be any complex number (called the order) and the variable
z € C\{0} to be such that —m < Arg(z) < =:

1. The Bessel function of the first kind is the function J, defined
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> (—1)k 2\ v 2k
Ju(z) = - )
A= i ()

We point out that for v € Z, J_,(z) = (—=1)"J,(2).

. The Bessel function of the second kind is the function Y, defined
by:
Ju(z) cos(vm) — J_,(2)

sin(vm)

Yy (2) =
when v ¢ 7 and, when v € Z, by

Y,(z)= lim Yi(z).
0<|e—v|<1

We point out that for v € Z, Y_,(2) = (—1)"Y, ().

. The modified Bessel function of the first kind is the function I,
defined by:

AETE S ER—.
S & PR DDk +1) \2 '

We point out that for v € Z, I_,(2) = I, (2).

. The modified Bessel function of the third kind is the function K,
defined by
_mly(z) - L(2)

Ko(2) 2 sin(vm)

when v ¢ 7 and, when v € Z, by

Ky(z) = lim  Kd(2).
0<|e—v|<1

We point out that K_,(z) = K,(2).

Remarks:
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e The Gamma function is a meromorphic function that has no zeros
and whose poles are 0,—1,—2--- (they are all simple poles). In
the series above, some coeflicients may involve terms ﬁ for cer-

tain poles z (in which case there are only finitely many coefficients
of this sort); but this is not a problem, since such coefficients are
simply 0 (because |I'(x)| = +00).

e At the end of this work, we recall the differential equations that
are satisfied by the various Bessel functions.

When the order is a nonnegative integer, one can define Bessel functions
as integrals (see [17], Chapter 8, Section 8.411, Formula 1.11, or [10],
Chapter VII, Section 7.3.1, Formula (2)):

Proposition 6.2 (Bessel integral representation). When v € N, one
can define J, as follows:

1 2m izsinf _—ivl
Jy(2) = o e e "7do.

As a consequence, by writing
cosa cosf + sina sinf = cos(a — ) = sin (;T —a+ 0)

and using a change of variables one can prove:

Corollary 6.3 (Another Bessel integral representation). Given any
veN, p>0andacR:

/271' ew@ e—ip(cosa cos 6 +sina sin ) do = 27T€iu(af%) Jy(p)
0

Formulas in this proposition are stated in [11] (Chapter VIII: Formula
(20) of Section 8.5 and Formula (35) of Section 8.14); one can also find
them in [17] (Section 6.565, Formula 4., page 678 and Section 6.596,
Formula 7.8, page 693):

Proposition 6.4 (Two integral formulas involving Bessel functions).
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o For any real number y > 0 and any complex numbers a, v, u such
that Re(a) > 0 and —1 < Re(v) < 2Re(u) + 3, one has:

o0 —p—1
/ 2V ts (a:2 + a2) ! Ju(zy)y/Ty doe =
0

alj—uyu+%Kufu(ay)
240 (p + 1)

e For any real number y > 0 and any complex numbers a, 3, v, i
such that Re(a) > 0, Re(8) > 0 and Re(v) > —1, one has:

/OO 2t (332 + 52>_% K, (a(x2 + 62)%> Jy(zy)\/ry do =

0

©

aiuﬁy+17“yy+%(a2 + 92)57%7% p—v—1 (,8((12 + y2)%> .
This next formula is stated in [10] (Section 7.4.1, Item (4), page 24):

Proposition 6.5 (Asymptotic expansion for Modified Bessel func-
tions). For any fired P € N\{0} and v € C:

K, (2) = (;;)ée_z (lpz_:l F(%+V+p> (22)7P

pzoplf(%—i-y—p)

+0 (yz\—P)) .

The following proposition can be derived from Section 9.6 of [12]:

Proposition 6.6 (The Bochner formula). Consider any integer p > 2.
For ¢ € SP~1 and s > 0:

/Sp_l e 2™ 4o (&) = 27781_§J§_1(27r5),

where & - &' denotes the Euclidean scalar product of RP applied to the
elements of the sphere & and &' seen as elements of RP.

We end this section by recalling two standard results: the first gives suf-
ficient conditions to differentiate integrals with respect to parameters
and the second relates the standard polar change of coordinates.
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Proposition 6.7 (Integrals and parameters). Given an integer p > 1
and a pair (a,b) € R? such that a < b, consider a function

f:RP x]a,b]— C.

Denote by (x,\) the coordinates on RP x]a,b] (A is the parameter).
Assume that:

o for all fired \ €la,b|, the function x — f(x,\) is integrable on
RP;

o the function A\ — f(x,\) is differentiable for all fized x € RP;

o there exists an integrable function g : RP — [0, 00| such that for
all (z,\) € RP x]a, b[:

of
@] < (o)
Then, for all \ €]a,b[, the function x — %(m, A) is integrable on RP,
the function
¢ : Ja,b — C
A — g flz,N) da

is differentiable and

$(\) = /R g{(x,x) dr.

Proposition 6.8 (Integrals and polar coordinates). Consider any in-
teger p > 2 and a measurable function f : RP — C (with respect to
the Lebesque measure of RP). Write elements © € RP\{0} as r§ with
r>0 and & € SP~L.

Then f is integrable on RP if and only if the function

(r,€) €]0, +00[xSP~L — f(r€)

is integrable on |0, +o0o[x SP~! with respect to the measure rP~Ldr do ().
When integrability is satisfied, we have:

L, (@) = /0 OO( - f(rg)da(g)> P~ Ldr.
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We now set to prove the main result of this chapter. The calculations
are long and technical. We spread them over two sections: Section 6.4
(which applies F¢) and Section 6.5 (which applies F-). In Section 6.6,
we summarise in a single and self-contained statement what we have
achieved; this is our main theorem, namely Theorem 6.11.

6.4 First transform

By definition:

B (25)”
AN = o

In real coordinates, writing £ = z+iy and v = a+ib (elements x,y, a, b
each belong to R™) and identifying £ and v with the elements (z,y)
and (a,b) of R™ x R™, formula (6.4) reads:

672i7rRe<v’£> df (64)

+n

Fe(Gap)(5,u,0) =
/ (25)°
R™R™ (a2(s,u) + |22 + y)|2) 7 "

e 2im(@T=bY) dody. (6.5)

We remind the reader that the dots in the exponential term refer to
the usual Euclidian scalar product of R™. Proposition 6.8 allows us
to switch to polar coordinates in Formula (6.5): given non-zero pairs
(z,y) and (a,—b), we write (x,y) = rM and (a, —b) = r'M’, where we
take M and M’ to belong to the sphere S?™~! of R?™ and where we

set:
r=/llzll* + lyl* = [1§]| > 0;
r'=1/a? + (=b)2 = ||v| > 0.

This is possible because the function
(r, M) €]0, +00[x S>™ 1 —s G(s,u,rM) e~ 2mMM

is integrable with respect to the measure 2™~ !dr do(¢). This follows
from the inequality

2m—1

r 1

= [ k+3

iAt+k

(a?(s,u) +1r2) 2

+n
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and Riemann’s usual criterion for integrability.
Here, we denote by M - M’ the Euclidean scalar product of R?™ applied

to the points M and M’ of the sphere S?™~1 seen as vectors of R>™.
Polar coordinates change the integral of Formula (6.5) into

) 25)¢ P ’
/ / ( 5) T 67227r7"r M-M dO’(M) T‘2m71d7’.
0 \Jsn (a2(s,u) +02) 5T
(6.6)

Integral (6.6) can be written:

/OO (28)a / efQiﬂrr’M-M’do_(M) rszldr
0 (a2(s,u) +1r?) Pt tn \ Jgzm-1 ‘
(6.7)

Proposition 6.6 then changes (6.7) into

o 2 (0%
/ ( 5) T 271'(7“7‘/)1_me_1(271'7“7"/)7‘2m_1d7‘. (68)
0 (a2?(s,u) +1r?) 2

Because 1’ = ||v]|, (6.8) becomes

« « —m o T‘m
S s o1 (2rlollr)dr. (6.9
0 (a2(5,u) + %)

We now want to apply Proposition 6.4. But it uses another notation
system than ours. To understand how to switch from one to the other,
let us define new variables x,y, u by:

A+ k
xzr;y:%’HvH;u:Z;— +n—-1; v=m-—1.

Then (6.9) becomes:

1
v+35

(3]
2cx+17_(.sa”v||1—my—%/ €
(a2(s,u) +12)

Proposition 6.4 (first formula) now gives (as long as ||v|| > 0)

1 Jm—1(2y)yayde.  (6.10)

ol
2a+l7TSaHUH1—my—%aV Hryt 2Ku—ﬂ(ay)7
20T (n+ 1)
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which, back to our own notation choices, is equal to

iAtk Atk +1

2a+18aﬂ. 5+ ( H,UH ) 5
: K ok, y(2ma(s,u)||v]]).
F(w\;—k —|—n) a(s,u) (#55+1)

Because K,, = K_,, whatever the value of v, we have proved so far:

Proposition 6.9. Given any A € R and any (o, B) € N2, consider the
non-compact version G, g of the highest weight vector g, 3. Then, for
all (s,u,v) in Cx C™ x C™ such that v # 0:

a+1 « 7rA+n HUH At
Fe(Gap)(s,u,v) =2%s T AT \ats,0) Kpq1(2ma(s, u)|[v]),

Atk
where k = a+ andA:TJr.

6.5 Second transform

Given any (s,u,v) € CxC™ xC™ (we assume v # 0), we want to
apply Fr to F¢(Gqo,g) by writing

Fr(Fe(Gap))(s,u,v) = / Fe(Gop)(r,u,v) e 2mRGT) g (6.11)
C

Let us first check that the function 7 —— F¢(Gog)(T,u,v) is indeed
integrable. In other words, we wish to know whether the integral

PG rou0)] dr

or, more explicitly,

/‘Qa-i-l @ 7TA+n ( HUH >A+1K (2 ( )” H)‘ d (6 12)
- T (A ) \a(r, o) A1 (2ma(T, u)||v T .

is finite or not. Let us split (6.12) into two integrals:
e one integral, denoted by Iy, over the unit ball By of C;

 one integral, denoted by Is, over C\Bj.
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Because ||v]| # 0 and a(7,u) > 1, the function that sits under Inte-
gral (6.12) is continuous on B; and therefore I; is finite. Proposition
6.5 (using the integer P = 1) and Proposition 6.9 allow us to write
| Fe(Ga,p)(T,u,v)| in the following way (A, B,C denote positive con-
stants and B > 1):

a 1
% o~ C(B+4Ir)? <1+o <1>> (6.13)
(B+4r?)+ C(B +4|r[)?

Then for |7| large enough and a suitable constant D > 0,

A o D
k+360||(1+|>

7|z @ 7|

is an upper-bound of (6.13). The exponential term forces convergence
of I and this finally establishes the desired integrability assumption,
which will allow us to switch to polar coordinates.

Let us again use the letters a,b,x,y, but this time taking them to
simply be real numbers such that s = a + ¢ and 7 = x + iy. Then
Re(s7) = ax — by and (6.11) becomes

2ettpentin (ol )M |
K 2 —2im(az—by)
/Rz T (A+n) (a<7,u)> a+1(2ma(r, w)lv]]) e dxdy,

which can be re-organised as

672i77(am7by) dzdy.

2°“+17T’”’"‘IIUIA+1/ T K41 (2ma(r, u)||v]])
F'(A+n)  Jre (a(r,u)) !

(6.14)
Let us again use polar coordinates (outside the origin):

o (z,y) =rvg withr > 0, 0 € R and vy = (cos 0, sin 0); accordingly,
T =re?.

o (a,—b) =7r'vg with 7’/ >0, ' € R and vy = (cos#,sin@’).

Let us point out that we obviously have r = |7| and ' = |s|. Let us
also write a(r,u) instead of a(r,u):

a(r,u) = /1 +4r2 + ||ul|2.
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Integral 6.14 can now be written:

20t o A /°° r*Kay1(2ma(r, w)v])
0

I'(A+n) (a(r, u))AJrl

(/27r eia@ e—2i7rr7"’(cos 0 cos 0’ +sin Osin 6’) dH) rdr. (6 15)
0
Following Corollary 6.3, the inner integral
27
/ eia@ 672i7rrr’(cos 0 cos @’ +sin6 sin6’) do
0

is equal to
omei(?'~%) Jo(2mrr"). (6.16)

Remembering that 7' = |s| and 6’ = Arg(s), (6.16) is equal to:
2mei (818 =5) T (277 s)).
This turns (6.15) into:
gact2pAtntd |y, HAHeia(Arg(E)—%)
I'(A+n)

/oo rotl )y (2ma(r, u)|ol))
; (atr, u))A—H

Jo(2mr|s|)dr. (6.17)

We can now apply the second formula of Proposition 6.4. To help follow
notation choices made in this proposition, we set:

e x =2r and dx = 2dr;
B =1+ |ul]*>0;

a = 2r||v]| > O (careful: this variable a is not what we have
denoted a(r,u));

y = mls| > 0;

] ]/:O(7
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. ,u:A—f—l.

Plugging these expressions in (6.17) and using Proposition 6.4, we fi-
nally achieve what we announced at the end of Section 6.2: compute
the non-standard form F, (F¢(Gqap)) of Gop (therefore of g, g). The
formula we obtain is:

Theorem 6.10.
F(Gap)(s,u,v) =

27)" :
/ i ( T) Atk e_QZWRe(sT+<U7§>) de§ _
CxC™ (L 472 + [lull® + [1€]17) >

R(s,u,v) K os ( VL [lul? \/s\2+4uv||2)

where
(_'f)a IA+B+n | ’2_,_4” HQ Z.A;(S
R(s,u,v) = MMZS - ° UQ
PP p(Bk 4y \ /T Tull?
and:

o (k,a,n)eN?,0<a<kandn>2;
o (s,u,v) ECxC"xC™ and (1,§) e CxC™ ;
e s#0 andv #0.

6.6 Statement of main result

The following result, which serves as a recap, binds together the
formula of Theorem 6.10 and all the ingredients that are needed to
understand the meaning of this formula.

In this theorem, we consider three groups M, A and N, respectively
isomorphic to the groups U(1) x Sp(m, C), RL™ (multiplicative group
of positive reals) and H%mH (complex Heisenberg group), embedded
in Sp(n,C) as follows (denoting elements of M, A, N respectively by
m,a,n):
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eif(m) 0 0
B 0 A 0 C
= 0 0 ]e@m ¢ |
0 B D
with 6(m) € R and ( € Sp(m, C);

e W @
SQ
olo o —

afa) 0
0 In
TeT 0 0 (Oz(a))_1 ’
0 0 0 Iy
with a(a) €]0, oo[;
1 |25 W
0 Ly|w 0
R VRO S RO
0 0| —-u Iy

with (s,u,v) € Cx C™ x C™.
We consider the group @Q = M AN.

Theorem 6.11 (Non-standard picture and Bessel functions).
Consider n € N such that n > 2 and set N =2n, m =n — 1.

Let G be the group Sp(n,C) and Q = MAN its parabolic subgroup
introduced above; let K be the subgroup Sp(n). Consider (A, ) € R x Z
and the character x;x s defined on Q by

Xixg(man) = £i00(m) (a(a))i)\—i-N‘

Consider the degenerate principal series representations of G (see Sec-
tion 3.2.1 of Chapter 3 for details):

TixS = Indg XiAs-

Consider k € N and any (o, 3) € N? such that o+ = k; set § = B—a.
Consider the irreducible (finite-dimensional) subrepresentation of
71'@')\,5‘K whose highest weight is (k,0,---,0). Then the corresponding
highest weight vector (up to a constant) is given:
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e in the compact picture by the function

Gap @ SNlCCixCr —  C
(Z,IU) — wix'ilﬁa

e in the non-compact picture by the function

Gop @ CxC"xC" — C
(s,u,v — G
) R

Y

e in the non-standard picture by the function F(Gap), which is
defined for all (s,u,v) in C x C™ x C™ such that v # 0 and s # 0

by

F(Giap)s,1,0) = Blsu,0) Kings (/1 a2yl + aof?)

with
. A+
R(s y U) _ .(_ig)a piAEB+n ]3]2 +4””H2 2
T Bk oy \ ry/TH [l

Remark: as we have pointed out before, the symbol N refers to a group,
Symbols n, m to elements of groups, while the three symbols also refer
to dimensions; context makes intended meanings of these symbols clear.

6.7 Two interesting properties

In this section, we make two observations that seem relevant to us: we
feel they may prove useful in further investigation of the K-types of
the various representations ;) s in the non-standard picture.

6.7.1 A differential operator that connects certain K-
types

If we look back at Figure 4.1 of Chapter 4, we see that the highest
weight vectors we have studied in this present chapter are those that
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correspond to the components of the column on the far left. We
saw in Theorem 4.11 that the operator e applies a highest weight
vector onto the one immediately above (up to a constant). When
restricting to the highest weight vectors of the left column, the action
of e can be interpreted, with respect to their non-standard versions
given by Theorem 6.11, as a differential operator that acts on Fourier
transforms; this present section makes this clear.

In our study of properties of F with respect to differentiablity and
multiplication by coordinates:

o (7,u,&) will denote the coordinates on C x C™ x C™ with respect
to initial functions f;

e (s,u,v) will then denote the coordinates on C x C™ x C™ with
respect to F(f).

Theorem 6.12 (Differential induction formula). Suppose k > 2 and
B > 2. Then:

2 0

}—(Ga-i-l,ﬁ—l)(s’u’v) = Tiﬂ_%(}-(Gaﬁ)(sauvv))'

Proof:

For 0 <a<k—1and (r,u,§) € CxC™ xC™:

Ga—i—l,,B—l(Tv U, 5) = (T(Ta u, 5)) _i/\_N_kgoz—‘rl,,B—l (15 U; 27—7 g)

= (r(rw,g) " )
=27 (r(r,u,8)) "V M (2r)°
=27 Go (7,4, §).

Theorem 6.12 then follows from Lemmas 6.13 and 6.14 given below.
End of proof.

Remark: as we see in the proof, one switches from G, g to Got1,8-1
by multiplying by 27; this corresponds to the action of the operator e
studied in section 4.2.1.
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Lemma 6.13. If 8 > 2, then, given any u € C™, the maps
(1,6) e Cx C™ — Gop(T,u,8)

and
(1,8) € CXC™ — 7 G p(T, 1, &)

are both integrable.
Proof:

Let us call ¢ the map (7,&§) — TGy (T, u,§) (we point out that
integrability of this map forces integrability of the other map).

There is no problem as to the integrability of ¢) on the unit ball By (0)
whose center is the origin. So one just needs to check integrability on
the set R?™\ By(0).

Given a non-zero element (7,&) of C x C™ ~ C", there exists a unique
r €]0,+o0o[ and a unique M € S*"~! such that if (1a7,&y) € Cx C™
denote the coordinates of M seen as an element of C x C™, then:

(7,6) = r(Tar, Enr)-

Identifying complex coordinates on C x C™ with real coordinates on
R? x R?™ ~ R?" and applying Proposition 6.8, we see that 1) is inte-
grable if the function

(r, M) €]0, —|—oo[><82”_1 — 7 G (rTar, u, 7€)

is itself integrable on ]0,+o00[xS?"~! with respect to the measure
r?2"=tdr do(M). We have:

L a ,.2n
|7 Go g (rTar, u, r€nr)| i (rrar ) Dk
(L+Afrmar 2+ [Jull® + Iréae]?) "
2ara+2n
- (r2)§+n
L]

This finishes the proof, because § > 2 and r > 1.
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End of proof.

Lemma 6.14. Consider a function f: CxC™ xC™ — C. Assume
that the maps

and

(1,8) — 7 f(7,u,8)

are both integrable on Cx C™ for all w € C™. Consider the map 1 :
(7—7 u, f) T f(7'7 u, 5) . Then:

-7:(1/1)(3’%@) = L2(]:‘(.](.)(87uvv))

—im Js
Proof:
Switch to real variables:
o 5=, + iy, with (z,,ys) € R?;
o U= Ty + Yy, with (zy,y,) € R™ xR™;
o U =Ty + iy, with (2,,y,) € R x R™.

Similarly for the integration variables 7 and £ that enter the definition
of the non-standard Fourier transform:

o T =, +iy,;, with (z,,y,;) € R%
o & =ux¢+ixe with (we, x¢) € R™ x R™.
To make expressions in the integral shorter, define:
o W= (Tr, Tu, Te, Yr, Yus Ye);
o dw = dx; dw, dz¢ dy, dy, dye.

We remind the reader that the dot simply refers to the standard eu-
cliean product (of R™ here). With these notation choices, Definition
6.2 reads:

Flsuwn) = [ falw)exp meevmesareie) gy,
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Coordinates xs and ys are just parameters that appear in the integral.
Lemma 6.13 and Proposition 6.7 enable us to differentiate this integral
with respect to both parameters and obtain:

aa (F(s,u,v)) = /2 —2ima, fr(w) exp” TP YsYr FTvTe Y0 Ye) ).
Ls R27
0 . —2im (st — +Zoy Te—Yo-Ye)
3 (F(s,u,v)) = [ 2wy fr(w) exp sEr—YsYr T Te=YoYe) dyy,
Ys RZ"

This finishes the proof because, by definition, the operator % is equal

1 o) - 0
to 5 (87566 —lays).

End of proof.

Corollary 6.15. Consider integers k,a, 8 such that k > 2, a+ =k
and B > 1. Then:

2 \* o0”
F(Gas)sun) = (=) 5z (FGo s w0).
The following diagram shows how the operators of this section relate
to one another, connecting functions and their transforms (assuming

that 3 > 2):

Jat1,6-1 — Gat18-1 — F(Gat1,5-1)

[4e 214 [ =2

9o, —_— Ga,/j —_— f(GOé,B).

6.7.2 Underlying Emden-Fowler equations

Theorem 6.11 gives the following expression for the highest weight vec-
tors g, g in the non standard picture:

. iA+S
(_Z-g)aﬂ.z)\—i-ﬂ—i-n ( |3’2+4HUH2> 2
T

9+l F(—i/\;"C +n) V14 [ull?
. 2 2 2
KM2+5 (71'\/1 + ||l \/\s\ + 4||v]| ) .
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One inevitably notices a sort of two variable structure in this expres-
sion. Indeed, the particular value o = 0 and the square root terms lead
one to study the functions

¥y + )0, +00[%]0, +o0] — VC
(2,y) — (2) Ky (xy),

where the parameter v is taken to be any complex number.

For any given v € C, zg > 0 and yg > 0, define the functions:

Ozow : ]0,F+00[ — C
y o hu(zo,y);
Gyo © 10,400 — C
x — wl’<w7 ?JO)
Because the function K, is a modified Bessel function of the third kind,
we have:
1 L, V2
K, (&) + EKV(S) “\Ite Ky(§) = 0.

In this equation, £ can be taken as a real or a complex variable; here,
we choose & € R. Combining this equation with the first and second
derivatives of the functions ¢, , and ¢, ,, one can check the following
proposition.

Proposition 6.16. Given anyv € C, zg > 0, yg > 0 and takingy > 0:

1+ 2v
<y>@;o,y<y> 2 pm(y) = O

(1-2v)

Opow(Y) +

¢g07y($> + ¢{yo,ll(x) - y(Q) d)yo,l/(l‘) = 0.
Both equations can be written as (taking a € C, b > 0 and ¢t > 0):
u'(t) + %u’(t) ~ bu(t) = 0. (6.18)

Such equations belong to the family of Emden-Fowler equations (or
Lane-Emden equations), which appear in various forms and have been
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studied in many works (see for instance [6], [2], [3], [43] and [46]).

The general solutions of (6.18) can be written as the following combi-
nations (with ¢-dependent coefficients) of Bessel functions of the first
and second kind:

ut) = Oy t'z" o (=itVh) + Cz e Y (—itvh).

This implies that ¢, and ¢, are such combinations, which gives
new formulas for the function 1, thus other formulas for the non-
standard version of the highest weight vector of Theorem 6.11 (when
a=0).
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