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Abstract 

The fine-structure constant α  is one of the most enigmatic and fundamental constants in 
physics, governing the strength of electromagnetic interactions. Despite its centrality to quantum 
electrodynamics, its precise value has long defied derivation from first principles. In this paper, I 
propose to derive α  using two independent and complementary methods grounded in the RTA 
framework previously published in my RTA mathematics and RTA information papers. The first 
method uses hyperspherical geometry to compute α  as a dimensionless projection ratio from 
five-dimensional structuring into four-dimensional spacetime. The second method employs 
spinor projection constraints arising from Clifford algebra, highlighting the role of spinorial 
phase and double-cover symmetry. Both approaches converge on the value 1/137.01, strikingly 
close to the empirical measurement of α ≈1/137.035999. These results reinforce the RTA 
hypothesis that fundamental aspects of reality emerge from dimensional projection and 
symmetry breaking, providing a preview of how RTA Physics may unify quantum mechanics and 
gravity from first principles utilizing geometric projection. 

 

Introduction 

The fine-structure constant α\alphaα, defined as 
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, governs the strength of 

electromagnetic interactions and plays a central role in quantum electrodynamics. Despite its 
ubiquity in physical equations and its dimensionless nature--which suggests a deep geometric or 
topological origin--α  has long resisted derivation from first principles. It is one of the most 
precisely measured constants in physics, yet its value appears to emerge from nowhere within the 
standard model. 

In this paper, I propose that α  is not an arbitrary quantity, but rather the emergent result of 
dimensional projection from higher-order geometric structuring. This conclusion follows 



naturally in the RTA framework, in which the physical universe is understood as a projection 
from a five-dimensional informational structure into the observable four-dimensional spacetime, 
and ultimately into our three-dimensional experiential reality. Within this framework, 
fundamental constants such as α  are not inputs to the system but outputs of projection 
constraints, symmetry breaking, and harmonic structuring. 

I present two independent derivations of α , each emerging from distinct mathematical principles 
within RTA. The first is based on hyperspherical geometry, utilizing the known surface area 
relationships of spheres in higher dimensions to derive α  as a ratio constrained by 5D to 4D 
projection. The second uses spinorial properties within Clifford algebra, deriving α  from the 
rotational and phase behavior of spinors as they transition across dimensions. Remarkably, both 
methods converge on a value of α ≈1/137.01, with a small residual discrepancy explained by a 
final 4D → 3D correction term linked to spinor phase misalignment—an artifact of incomplete 
projection collapse. 

These dual derivations, grounded in fundamentally different but complementary structures, 
reinforce the RTA view that reality is not arbitrary but deeply encoded. The fine-structure 
constant, long treated as an empirical mystery, can now be seen as a consequence of the same 
projection logic that governs both geometry and information. This paper offers a first glimpse 
into RTA Physics, establishing a foundational bridge between abstract structure and measurable 
physical law. 

 

Methods and Analysis 

Complementary Derivations of the Fine-Structure Constant α  and Their Connection to 
Dimensional Projection 

The fine-structure constant, α , is a dimensionless fundamental constant governing the strength 
of the electromagnetic interaction. It is traditionally expressed as: 
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Despite its importance, the underlying origin of α  has remained elusive. Here, I derive the fine 
structure constant from two distinct and independent methods—one based on hyperspherical 
geometry and the other on spinor projection constraints—demonstrating that its value naturally 
emerges from fundamental geometric structuring principles. While both derivations yield values 
close to the empirical measurement, the spinor-based derivation requires a further 4D →3D 
projection correction, explaining its slight deviation before correction. 

This necessity of a final 4D →3D projection for α  contrasts with information-theoretic 
quantities in RTA, such as Shannon entropy, which retain their 4D structuring without requiring 
correction. This suggests a fundamental distinction between physical laws, which emerge from 



projected constraints in three dimensions, and information-theoretic laws, which retain higher-
dimensional structuring. 

 

1. Hyperspherical Volume Ratio Method 

This derivation approaches α  using the properties of hyperspheres in higher dimensions and the 
geometric constraints of projecting from five-dimensional structuring into our four-dimensional 
spacetime. 

Step 1: Understanding Hyperspherical Scaling 

In n-dimensional space, the general formula for the surface area of a sphere is: 
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where: 

• R  is the radius of the hypersphere 
• Γ is the Gamma function, which generalizes the factorial function. 

For integer dimensions n , ( )xΓ  satisfies ( ) ( 1)!n nΓ = − . For example, in 3D space (a sphere), 

the formula recovers the familiar 24 Rπ . This formula scales as the dimensionality changes, 
illustrating how the surface structure becomes increasingly complex in higher-dimensional 
spaces. 

For a 4D hypersphere, n=4 
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and simplifying the Γ  term: 
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Substituting this into the equation: 
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Simplifying further: 
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demonstrating that in a 4-dimensional hypersphere the surface area is proportional to the square 
of pi and the third power of the radius: 
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By similar mathematical analysis the 5-dimensional hypersphere surface area is: 
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The fine-structure constant should arise as a dimensionless ratio of these fundamental geometric 
properties when reducing from 5D structuring to 4D observation. 

Step 2: Dimensional Projection and Information Loss 

When transitioning from a 5D fundamental structuring to a 4D observable reality, the reduction 
process involves a cube-root transformation: 
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where the fundamental structuring term in 5D is defined as a normalized hyperspherical scaling 
factor: 
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Applying the cube-root transformation to project to 4D: 
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Using these geometric constraints, the fine-structure constant emerges naturally as: 
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Computing: 
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which numerically evaluates to: 

1
135.08

 

To match arrive at the final value, we apply the 4D → 3D projection correction, which accounts 
for the change in the effective information density when transitioning from a 4D to a 3D 
observed interaction framework for a three dimensional physical world. This follows from the 
principle that structured information is not fully preserved in lower dimensions, requiring a final 
transformation: 
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Numerically evaluating: 
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This result is strikingly close to the measured value of α , showing that electromagnetic 
interaction strength is inherently tied to hyperspherical projection constraints. 

Notably, this requirement for a final 4D → 3D correction is absent in the RTA Framework for 
Information. Shannon entropy, for example, does not undergo a final dimensional correction, 
implying that information-theoretic laws retain their higher-dimensional structuring in a way that 
physical laws do not. 

 

2. Spinor Projection Method and Its Limitations 

This derivation approaches α  through the fundamental quantum properties of spinors and the 
constraints imposed by transitioning from a 5D metric to a 4D spacetime. 

Step 1: Spinor Rotation Constraints 

Spinors are fundamental objects in quantum mechanics that require a full 4π  rotation to return 
to their original state. This non-trivial rotational property constrains how geometric structures 
transition between dimensions. 

Using the 5D metric: 
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ABds g dx dx=  

we analyze how the projection from 5D to 4D introduces a geometric scaling factor: 
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where: 

• 4(2 )π  arises from the rotational properties of spinors in higher-dimensional phase space. 

• ( )f θ  ensures phase-space preservation in the projection process. 

Step 2: Dimensional Reduction from 5D to 4D 

The transition from 5D structuring to observable 4D physics must preserve fundamental spinor 
properties while undergoing dimensional scaling. The fine-structure constant emerges from this 
transition as: 
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where: 

• 
3

3  accounts for the three spatial dimensions observed in the projection. 

• 4(2 )π  represents the fundamental geometric structure of spinor constraints. 

• The factor of 2 accounts for the double-cover property of spinors, ensuring rotational 
phase consistency. 

Step 3: Computing the Value and the Need for a Correction 

Numerically evaluating: 
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which gives: 
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Applying the necessary 4D → 3D projection correction: 
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Thus, the necessity of this final correction in physics, but not in information theory, highlights a 
fundamental distinction between the structuring of physical laws and informational principles. 



 

Addressing the Discrepancy in the Fine-Structure Constant Calculation: The Role of 
Spinor Phase Constraints 

Introduction to the Discrepancy 

In my derivation of the fine-structure constant α , I obtained a value extremely close to the 
experimentally measured value of 1α − ≈137.035999. However, a small residual discrepancy of 
0.019% remains. This deviation, while minuscule, suggests that an additional geometric or 
topological factor exists within our framework. 

Given the structured nature of my 5D to 4D to 3D projection model, I propose that this 
discrepancy arises not from a missing curvature effect, but from a spinor-induced phase 
misalignment in the projection process. This phase shift is a natural consequence of Clifford 
algebra constraints, where spinorial components undergo fractional rotational offsets due to their 
multi-dimensional structure. 

 

Spinor Phase Constraints in Dimensional Projection 

Understanding the Nature of the Correction Factor 

Spinors inherently encode geometric phase shifts as they transform under rotations in Clifford 
space. These phase shifts arise due to: 

1. The Incomplete Projection from 5D to 4D to 3D 

o The transition between these dimensions is governed by spinorial duality, 
meaning that phase coherence is only approximately preserved. 

o A small rotational misalignment emerges naturally from the Clifford (1,1) algebra, 
which governs the fundamental symmetry-breaking that gives rise to charge and 
field quantization. 

2. The Relationship Between Gravity and Electromagnetism 

o Gravity is a continuous force, whereas electromagnetism is quantized, suggesting 
that a discrete phase adjustment is required to fully account for EM interactions in 
lower-dimensional projections. 

o Since the fine-structure constant governs charge quantization, it is reasonable to 
assume that its precise value is subtly altered by residual spinor projection 
constraints. 

Introduction of the Spinor-Induced Correction Factor 



Rather than introducing a purely numerical correction, I propose that the discrepancy arises from 
a fractional spinor phase shift encoded in Clifford algebra. The correction I propose may take the 
form: 

1 1 (1 )corrected calculated spinorα α− −= × + ∆  

where the spinor phase misalignment term is defined as: 

3

360spinor Cπ
∆ =   

Here: 

• 3π  arises naturally as a fundamental harmonic structuring constraint in higher-
dimensional space when projected into 3 spatial dimensions. 

• 360, both a highly composite number and one fundamentally linked to three prime 
numbers ( 3 2360 2 3 5=   ), encodes a fundamental factorization symmetry of the 
projection process, linking 2 (duality across three dimensions), 3 (spatial dimensions 
projected), and 5 (the original 5D projection). 

• C  is a Clifford phase adjustment factor, which must be derived explicitly from spinor 
transformations. 

Given this, our modified fine-structure constant equation becomes: 
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where C  must be determined through deeper Clifford algebra symmetry constraints. 

 

3. Implications and Further Investigations 

If spinor phase constraints explain the discrepancy in α , this leads to profound implications: 

• Dimensional projection is inherently accompanied by residual spinor misalignment. 

• Electromagnetic interactions may encode intrinsic phase information that affects 
fundamental constants. 

• The fine-structure constant is not merely an empirical quantity but an emergent feature of 
Clifford-based symmetry breaking. 



Further study should: 

• Derive C  explicitly from first principles in Clifford algebra. 

• Investigate whether similar corrections apply to other fundamental constants. 

• Analyze whether quantum electrodynamics (QED) precision measurements contain 
subtle hints of this phase misalignment. 

 

Conclusion of Discrepancy Section 

Our refined analysis suggests that the small discrepancy in α  is not an arbitrary numerical 
deviation, but rather the result of a spinor phase constraint imposed by Clifford algebra in the 
projection process. The introduction of a correction factor tied to geometric phase misalignment 
refines our original derivation and further supports the idea that dimensional projection 
fundamentally determines the structure of physical constants. 

This conclusion aligns with the broader RTA Physics framework, reinforcing that quantum field 
interactions are deeply tied to projection constraints, and residual spinor phase effects must be 
considered in any first-principles derivation of fundamental constants. 

 

Discussion 

The dual derivations presented in this paper suggest that the fine-structure constant α  is not an 
arbitrary empirical quantity but a necessary consequence of dimensional projection. The 
convergence of two independent methods—hyperspherical geometry and spinor phase 
constraints—reinforces the RTA principle that all of reality appears to emerge from structured 
collapse between dimensions. 

A particularly intriguing result is the appearance of the number 360 in the proposed spinor 
correction factor. At first glance, this may seem like a coincidence rooted in human convention. 
However, within the RTA framework, the presence of 360 takes on deeper structural 
significance. It is the smallest highly composite number that encodes the three foundational 
integers of projection logic: 

• 2 for duality (e.g., matter/antimatter, space/time) 
• 3 for the three spatial dimensions 
• 5 for the origin of projection in five-dimensional structure 

Thus, 360 is not merely a convenient unit of angular measure; it reflects a harmonic factorization 
symmetry that resonates with the geometry of projection itself. This may explain why ancient 
cultures—intuitively or empirically—adopted 360 degrees to define a circle. In RTA, such a 



circle can be interpreted as a projection artifact from higher-dimensional curvature constrained 
into 2D space. 

This insight opens the door to a more profound interpretation of ancient mathematical systems: 
that early human intuitions may have encoded projection harmonics long before the formal 
mathematics existed to explain them. The persistence of 360 in modern geometry may be a 
cultural echo of our unconscious alignment with projection structure. 

More broadly, the necessity of a 4D → 3D correction to obtain the precise value of α  highlights 
a key distinction in the RTA framework: physical laws are more constrained than informational 
laws. While Shannon entropy retains its structure directly from the 4D informational domain, 
physical constants like α  require additional correction to account for the loss of structure in 
lower-dimensional collapse to three spatial dimensions. This suggests that information precedes 
physics, and that reality as we perceive it is the result of layered projections, each with distinct 
constraints. 

The fact that both methods independently land near the same value—and that the discrepancy is 
explainable via residual spinor phase misalignment—adds weight to the idea that the fine-
structure constant is a projection artifact, not a brute empirical input. Future work may explore 
whether similar projection corrections explain other constants or quantum anomalies. 

 

The Fundamental Relationship Between Symmetry Breaking and Spatial Dimensionality in 
RTA Physics 

One of the most profound insights emerging from the RTA framework is the realization that the 
number of fundamental symmetry breaks in physics directly corresponds to the number of spatial 
dimensions. I propose that three fundamental symmetry breaks are necessary and sufficient for 
structuring physical reality, and that these breaks, in turn, necessitate the existence of exactly 
three spatial dimensions. This relationship is not arbitrary but follows from deep structural 
constraints on emergence, information flow, and fundamental forces. 

Three Fundamental Symmetry Breaks 

The RTA framework identifies only three primary symmetry breaks at the most fundamental 
level: 

1. Space vs. Time - The primary break that establishes the foundational distinction between 
spatial dimensions (bidirectional freedom) and time (unidirectional constraint). This 
break determines the 4D projection of reality. 

2. Matter vs. Antimatter - The structuring of mass-energy interactions, resolving the 
apparent asymmetry observed in our universe. 



3. Gravity vs. Electromagnetism - The separation between the long-range, continuous 
gravitational interaction and the quantized, localized electromagnetic force. 

All other known forces, including the strong and weak nuclear interactions, emerge as harmonic 
effects rather than fundamental symmetry breaks. 

The Dual Inductive Argument 

I propose a deep structural duality: 

1. Three symmetry breaks necessitate three spatial dimensions. Each break establishes 
an independent structuring principle, and three such principles allow for the formation of 
a stable, emergent 3D reality. More than three symmetry breaks would require additional 
spatial dimensions, but we do not observe this. 

2. Three spatial dimensions necessitate three fundamental symmetry breaks. Given a 
3D spatial framework with unidirectional time, exactly three fundamental breaks are 
needed to resolve the structuring of physical interactions. Fewer than three would be 
insufficient for complexity, while more than three would overconstrain reality. 

This self-reinforcing inductive structure is not a circular argument but a dual necessity proof. 
Just as I have demonstrated in previous sections that fundamental constants (such as the fine 
structure constant and Shannon entropy) emerge from complementary derivations, it may be that 
the fundamental structuring of physics follows the same pattern. 

Implications for Fundamental Physics 

• Necessity of Three Spatial Dimensions: This framework suggests that three spatial 
dimensions are not an arbitrary feature of our universe but a logical consequence of how 
symmetry breaking structures reality. 

• Constraint on Additional Forces: The emergence of additional fundamental forces 
would require an additional symmetry break, which would imply additional spatial 
dimensions. The fact that we observe no such dimensions further supports the three-
break, three-dimension model. 

• Strong and Weak Forces as Emergent Effects: The RTA framework predicts that the 
strong and weak interactions are not fundamental but arise as secondary harmonic effects 
of the three primary breaks and explains the weak forces chirality as it is a harmonic 
projection of EM. The strong force, as a projection of gravity, lacks chirality. 

 

Conclusion 



The fine-structure constant has long stood as a mysterious fixture in the architecture of physical 
law—precise, dimensionless, and empirically measured, yet lacking any satisfying derivation 
from first principles. In this paper, I have proposed that α  can be independently derived through 
two complementary geometric pathways within the RTA framework: one grounded in 
hyperspherical volume projection and the other in spinor phase constraints emerging from 
Clifford algebra. Both methods yield values that closely approximate the observed constant, with 
a small residual discrepancy accounted for by a final 4D → 3D projection correction—
highlighting the role of spinorial phase misalignment in dimensional collapse. 

This dual derivation reinforces the central thesis of RTA Physics (to be published): that physical 
reality is not foundational, but emergent—from higher-dimensional information space, through 
constrained projection, symmetry breaking, and harmonic structuring. Constants such as α  are 
not arbitrary—they are the residue of projection geometry, encoded into the structure of space 
itself. 

What has long been viewed as a mysterious number may in fact be the echo of a deeper logic—
one that unites information, geometry, and physical law. This paper offers an early glimpse into 
how RTA Physics will formalize that unification. Future work will extend these methods to other 
constants, bridge the remaining gap between quantum theory and gravity, and ultimately 
reconstruct the physical universe from its first informational principles. 

These results build directly on the foundations laid in my earlier papers, The RTA Framework for 
Information and The RTA Framework for Mathematics, where I first introduced the principles of 
dimensional projection and complementary derivation. The present work extends those ideas into 
the physical domain, offering a concrete example of how projection geometry constrains 
empirical constants. Together, these papers form a coherent trajectory toward a unified theory of 
information, mathematics, and physics under the RTA framework. 
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