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Abstract 

The Shannon entropy equation has been foundational in information theory, yet its derivation has 
historically relied on axiomatic reasoning rather than first principles. In this paper, I propose two 
derivations of the Shannon entropy equation from fundamental geometric constraints, 
demonstrating that it emerges naturally as a special case of a deeper information structuring 
principle. I propose that entropy is fundamentally constrained by geometric projection effects 
and dimensionality, leading to a formulation that reduces to Shannon’s equation in Euclidean 
space while extending to structured high-dimensional systems. 

Further, I introduce a novel connection between optimal information structuring and the All-Pairs 
Shortest Path (APSP) framework, demonstrating that information processing may follow 
geodesic constraints in hyperbolic space. This insight suggests that optimal data compression, AI 
learning, and information retrieval follow geometric constraints, revealing a deeper structural 
foundation beyond statistical approximations. 

By unifying entropy, geometric projection constraints, and APSP-based information structuring, I 
introduce the RTA Framework for Information, which redefines optimal information flow in 
structured systems and AI architectures. If validated mathematically and empirically, this may 
have deep implications for AI architectures, compression theory, and quantum information, 
pointing toward a broader framework that extends beyond classical entropy formulations. 

 

Introduction 

The concept of entropy has been foundational in information theory since Claude Shannon 
introduced his entropy equation (Shannon, 1948), 

logi iH p p= −∑  



which quantifies the uncertainty of information content within a probability distribution. Despite 
its widespread applicability, Shannon's derivation was based on axiomatic reasoning rather than a 
deeper first-principles mathematical foundation. While various information-theoretic 
interpretations justify the form of this equation, no comprehensive framework has yet emerged to 
derive it directly from fundamental constraints governing information itself. 

While the classical Shannon entropy equation is sufficient for simple probabilistic models, its 
validity in high-dimensional, structured information spaces must be reconsidered in light of 
geometric projection constraints. When information exists within a high-dimensional manifold, 
its entropy is not merely a statistical quantity but is fundamentally constrained by the structure of 
the space itself. This necessitates a generalized entropy formulation that accounts for projection-
induced distortions in information flow. 

Information structured in high-dimensional spaces inherently encounters projection constraints 
when reduced to lower-dimensional representations. These constraints introduce systematic 
entropy modifications, suggesting that Shannon's classical formulation is a limiting case of a 
more general geometric structuring principle. 

This paper seeks to establish such a foundation by demonstrating that entropy is not merely a 
statistical measure but a structured quantity that arises from geometric constraints on 
information. By treating information as a distribution over a high-dimensional manifold, I 
propose that entropy naturally emerges from dimensional projection constraints and loss of 
information due to lower-dimensional encoding. This geometric interpretation allows entropy to 
be rigorously derived, rather than assumed, and provides a more fundamental understanding of 
why Shannon’s entropy equation takes its observed form. 

Further, this paper introduces a novel connection between optimal information structuring and 
shortest-path optimization in hyperbolic space. I hypothesize that the All-Pairs Shortest Path 
(APSP) problem (Floyd, 1962) naturally governs efficient information structuring, suggesting 
that information propagation and retrieval in complex systems follow geodesic constraints rather 
than purely statistical distributions. This insight may have deep implications for compression 
theory, AI learning architectures, and the fundamental limits of structured information 
processing. 

Finally, I will introduce the concept of information entropy being entirely analogous to 
Boltzmann physical entropy, and that harmonics may be fundamental to understanding higher 
dimensional information representation. 

While the derivations in this paper are rigorous in their geometric formulation, additional 
mathematical analysis and validation is necessary. By unifying geometric entropy constraints 
with APSP-based optimization, this work introduces the RTA Framework for Information, a 
novel approach that extends classical entropy theory and provides a new foundation for 
understanding how information is structured and processed. 



 

Methods and Analysis 

1. The Derivation of the Shannon Entropy Equation From First Principles By Two 
Independent Methods 
 
A. Introduction: Information as a Geometric Quantity 

 
Traditional derivations of Shannon entropy rely on axiomatic reasoning, assuming properties 
such as continuity, additivity, and maximum entropy for uniform distributions. Instead, I seek 
to derive the entropy equation from a first-principles approach, treating information as a 
structured geometric quantity rather than a purely statistical measure. 
Consider a system with a discrete set of states, each occurring with probability. The 
fundamental question in information theory is: How much information is required to 
distinguish between states in a structured space (Shannon, 1948)? 
This question implies that information is not just an abstract quantity but is constrained by 
the underlying geometry of the probability space. 
I propose that: 
1. Information resides on a high-dimensional probability manifold. 
2. Entropy should reflect the geometric distance between distinguishable states. Therefore, 

information content I  should be a function ( )ip∫  , where: 

( ) ( )i iI p p= ∫  

with the total entropy for a probability distribution given by: 

( )i i
i

H p p=∑ ∫  

Since information measures the distinguishability of states (Shannon, 1948), the metric that 
defines this space must satisfy geometric constraints on distances between probability states. 
 

2. Establishing a Geometric Distance Constraint: The First Method to Derive the Shannon 
Entropy Equation From First Principles 
 
To justify the logarithmic form of entropy, I derive the functional form using a geometric 
distance metric (Kullback S, Leibler RA, 1951). Consider the probability simplex, where a 
probability distribution ip  defines a point in a high-dimensional space. The fundamental 
requirement is that the information difference between two probability states should be 
proportional to their geometric separation (Amari S, 2016). A natural measure of 
distinguishability in probability space is given by the Kullback-Leibler (KL) divergence, 
which is a geometric divergence measure defined as: 



( ) log
i

i
KL p q i

i
pD p q= ∑  

where iq  represents another reference probability distribution. 
For a system with maximum uncertainty (uniform probability distribution), the reference 

probability is equally distributed among all states, 
1

iq
N

= , where N  is the total number of 

possible states in the system, leading to: 

( ) log logKL i i
i

D p Uniform p p N= − +∑  

Thus, the natural distance function in probability space directly produces the Shannon 
entropy formula up to an additive constant. This suggests that entropy is not arbitrary but is 
the result of a fundamental geometric property of probability space. The term log N  
represents a global geometric scaling factor that arises from the total number of 
distinguishable states in the probability space, reflecting the effective dimensionality of the 
system. It follows that in Euclidean probability spaces (where Shannon's classical entropy 
applies), the dimensionality of the space scales linearly with the number of states. That is, the 
probability space is effectively flat, meaning: 

log 0N ≈  
Thus, in a Euclidean framework, the entropy equation reduces cleanly to: 

logi i
i

H p p= −∑  

This suggests why Shannon entropy works well for standard probability distributions in 
Euclidean space—projection effects are negligible. However, in non-Euclidean spaces, 
especially hyperbolic manifolds, information does not scale linearly. Instead, the volume of 
the probability space grows exponentially with distance (Gromov M, 1987). Hyperbolic 
spaces have a geometric scaling law where information volume scales as an exponential 
function of distance. This means that log N  no longer vanishes—it introduces a nontrivial 
correction that modifies entropy. In non-Euclidean spaces, entropy may have to be corrected 
to account for curvature effects, leading to the need for a more general formulation. 
 
B. Additivity as a Geometric Projection Constraint: The Second Method to Derive the 

Shannon Entropy Equation From First Principles 
 

To show why entropy must be additive, I consider the projection of information from a 
higher-dimensional space to a lower-dimensional representation. I propose the following for 
independence and projection in geometric space: 
 



If two independent systems A and B exist, then their joint probability follows: 
( , ) ( ) ( )p A B p A p B=  

The total entropy should be additive for independent systems: 
( , ) ( ) ( )S A B S A S B= +  

To satisfy this condition in a geometric space, the information function must obey the 
functional equation: 

1 2 1 2( ) ( ) ( )S p p S p S p= +  
Since this result must hold for any probability distribution composed of multiple independent 
states, I extend the argument to a discrete probability space with multiple outcomes indexed 
by i . The entropy of the entire distribution must then be the sum over individual state 
entropies, leading to the general form: 

11

( ) ( )
n n

i i
ii

S p S p
==

=∑∏  

This confirms that Shannon entropy follows directly from the constraints imposed by 
additivity and functional consistency. This is a well-known Cauchy functional equation 
(Cauchy AL, 1821), whose only continuous solution takes the logarithmic form: 

( ) logS p k p= −  
where k  is an undetermined constant that depends on the choice of logarithm base and 
normalization conditions. Substituting into the entropy sum: 

logi i
i

S k p p= − ∑  

which is precisely the Shannon entropy equation, arrived at from first principles using a 
separate methodology and mathematical approach.This implies that entropy is not simply an 
empirical measure—it emerges directly from the geometry of probability space and the 
constraints of information projection. The presence of the k  factor indicates a fundamental 
scaling relationship in information measures, with its value typically set by convention (e.g., 

1k =  for natural logarithms or 
2

1 ln 2
log

k
e

= = for base-2 logarithms). Base-2 logarithms 

may be a more natural representation of Boolean computer data propagating in higher 
dimensions. 
 
This section implies that entropy is not simply an empirical measure—it emerges directly 
from the geometry of probability space and the constraints of information projection. 

 

C. Generalizing to Non-Euclidean Spaces 



 

While the derivation above recovers Shannon’s entropy in the Euclidean case, I will later 
show that if information is structured over a higher-dimensional geometric manifold, the 
entropy equation must be modified to account for projection constraints and dimensional 
loss. This is because in hyperbolic space, shortest paths (geodesics) differ from Euclidean 
distances (Poincaré H, 1905). It follows then that projected entropy scales with the dimension 
and curvature of the space. If true, in higher dimensions entropy must include projection 
corrections that account for lost information. In non-Euclidean spaces, entropy takes a 
modified form, with Shannon’s equation emerging as the special case when no projection 
loss occurs. 
 
D. Key Takeaways 

• Shannon entropy emerges naturally from geometric constraints on probability 
space. 

• The logarithmic form is a direct consequence of fundamental distance metrics in 
probability space. 

• Additivity in entropy results from projection constraints when mapping between 
different dimensions. 

• In hyperbolic or non-Euclidean spaces, entropy must be modified to account for 
information distortion. 

 
E. Areas for Further Research 

• How does entropy scaling behave under different curvature constraints in high-
dimensional spaces? 

• Can alternative geometric divergence measures refine or extend the Shannon 
entropy equation? 

• What are the computational and algorithmic implications of treating entropy as a 
geometric projection constraint? 

• How do these findings inform compression theory and AI-based information 
processing? 
 

3. Introduction to Geometric Projection in Information Theory 
 
Entropy has traditionally been treated as a statistical measure in information theory, but when 
information is structured in high-dimensional space, it is subject to geometric projection 
constraints as it maps to lower-dimensional representations (Tenenbaum JB, 2000). This 
phenomenon has important implications for: entropy scaling laws in different dimensional 
manifolds, the loss or distortion of information due to dimensional reduction, and how 
compression algorithms inherently adhere to these constraints. 



 
In high-dimensional systems, entropy is not just a measure of statistical uncertainty—it 
reflects the underlying geometry of the information space (Amari S, 2000). When 
information is projected from a higher-dimensional space to a lower one, some structures are 
preserved while others are distorted or lost (Roweis ST, 2000). This suggests that: 

• The standard Shannon entropy formulation assumes an implicit Euclidean geometry 
where projection effects are negligible. 

• If information is instead embedded in a curved or hyperbolic space, Shannon entropy 
must be modified to reflect the distortion introduced by projection. 

• Compression and data encoding inherently involve dimensionality reduction 
(foundationally Shannon CE, 1959), meaning that real-world entropy calculations 
must account for projection constraints. 

Thus, to fully capture how entropy behaves under geometric constraints, a generalized 
entropy formulation is needed—one that accounts for the curvature and dimensionality of the 
space in which information is embedded. 
 
Examples of Projection-Induced Entropy Distortion 

A. Information Bottlenecks in Neural Networks 
• Deep learning architectures often involve dimensional reduction in hidden 

layers, where information must be compacted into lower-dimensional feature 
spaces (Hinton GE, 2006). 

• The extent to which entropy is preserved during this projection determines the 
efficiency of learning and generalization (Tishby N, 1999). 

B. Quantum Information and Black Hole Entropy 
• The holographic principle suggests that the entropy of a black hole scales with 

its surface area, rather than its volume (Bekenstein JD. 1973). 
• This is a prime example of entropy being constrained by a lower-dimensional 

projection of a higher-dimensional information space. 
C. Compression and Data Encoding 

• Lossy compression techniques like JPEG and MP3 discard information in a 
way that approximates human perception (Wallace GK, 1991). 

• The mathematical principles underlying these methods often align with 
projection constraints in high-dimensional feature spaces (Grosse R, 2013). 
 

This motivates a formal derivation of projection-corrected entropy, which I will develop in 
the next section by extending the Shannon entropy equation to incorporate geometric 
constraints. 
 

4. Derivation of Entropy Under Geometric Projection Constraints 
 



A. Revisiting Shannon’s Entropy in Euclidean Space 

 
The classical Shannon entropy equation assumes a Euclidean information space, where 
entropy is given by: 

logi i
i

H p p= −∑  

This equation is valid when information exists in a flat, non-curved space, meaning no 
projection distortion occurs. However, if the information resides in a higher-dimensional 
curved space and is projected to a lower-dimensional representation, entropy is modified by 
projection constraints. 
 
 
B. Generalizing Entropy for Non-Euclidean Spaces 
Let us assume that information is distributed on a high-dimensional manifold with intrinsic 
curvature. When projecting from an N-dimensional space to an (N−1)-dimensional subspace, 
the probability measure undergoes a transformation dictated by the Jacobian determinant of 
the projection mapping: 

i ip Jp′ =  

Where J  is the Jacobian determinant of the projection transformation, which accounts for 
how probability density scales under a change in dimensionality. The Jacobian determinant 
quantifies how volume elements shrink or expand when mapped between different 
manifolds, meaning that it directly influences how entropy transforms under projection. 
Since entropy must remain invariant under coordinate transformations up to a scaling factor, 
the modified entropy expression takes the form: 

log ( ) log( )i i i i
i i

H p p J p Jp′ ′ ′= − = −∑ ∑  

Expanding this equation: 

log logi i i
i i

H Jp J Jp p′ = − −∑ ∑  

Rearranging terms: 

log i
i

H H J Jp′ = + ∑  

Since probabilities sum to one under transformation constraints: 

1i
i

p′ =∑  

we approximate the projection-modified entropy as: 
logH H J′ ≈ +  



This correction term log J  accounts for dimensional projection distortion, meaning that 
entropy is systematically modified by the curvature of the underlying probability space. 
 
C. Special Case: Entropy in Hyperbolic Space 
 
In hyperbolic space, the volume of a probability simplex grows exponentially with 
dimensionality due to the negative curvature of the space (Ratcliffe JS. 2006). This implies 
that the Jacobian determinant takes the form: 

NJ e α−
  

Where α is a curvature-dependent scaling factor in N-dimensional space. This arises because 
in hyperbolic geometry, volume elements expand exponentially as one moves outward from 
the origin or reference point. This property ensures that when projecting from a high-
dimensional hyperbolic space to a lower-dimensional subspace, the effective entropy 
decreases proportionally to the dimensional reduction. Substituting into our entropy equation: 

H H Nα′ = −  
This result shows that in highly curved spaces, entropy scales linearly with the number of 
projected dimensions, meaning that Shannon’s entropy may have to be corrected for 
information structured in non-Euclidean geometries. 
 
Deductive Justification for Exponential Scaling of the Jacobian Determinant Under 
Projection 
 
In our framework, we have proposed that when projecting information from a higher-
dimensional space to a lower-dimensional one, entropy contracts according to an exponential 
scaling law: 

NJ e α−
  

Rather than relying on an imposed mathematical derivation, we now establish this result 
through logical deduction based on known geometric and information-theoretic principles. 
 
1. Fundamental Geometric Insight: Hyperbolic Volume Grows Exponentially 

 
It is well established in differential geometry that: 
Euclidean space grows polynomially with dimension: 

( ) dV N N  

Hyperbolic space grows exponentially with dimension: 



( ) NV N eλ
  

Here λ  is a curvature-dependent geometric scaling factor representing how rapidly the 
volume of a hyperbolic space expands as the dimensionality N  increases. It quantifies the 
rate at which available information space grows exponentially when you add dimensions in 
hyperbolic geometry. As we increase the number of dimensions, the amount of available 
"space" grows at an exponential rate. In a high-dimensional hyperbolic space, the effective 
volume available for structuring information increases exponentially with the number of 
dimensions. 

Since we have established that the volume of a hyperbolic region scales exponentially with 
the number of dimensions N  as: 

( ) NV N eλ
  

and since the effective number of dimensions explored in a high-dimensional hyperbolic 
space is proportional to the geodesic distance d  (due to the exponential volume expansion 
along geodesics), we write: 

N d  

Substituting into the volume equation, we obtain: 

( ) dV d eα  

where α  is a curvature-dependent scaling constant. Taking the logarithm, we derive the 
entropy scaling relation: 

ln ( )S V d dα   

This result demonstrates that entropy in hyperbolic space scales logarithmically with volume 
but linearly with distance, distinguishing it from Euclidean entropy growth. 

 
2. The Relationship Between Entropy and Volume 

Entropy measures the uncertainty or spread of information and volume represents the amount 
of space available for information distribution. In an expanding space, entropy should also 
expand, since more states can be occupied. Further, when moving into a higher-dimensional 
hyperbolic space, the maximum possible entropy increases exponentially with dimension. 
Conversely, when projecting to a lower-dimensional subspace, entropy should contract 
exponentially. 



 
3. Projection and Entropy Contraction 

When projecting from N -dimensional space to an ( N −1)-dimensional space, volume is lost 
due to projection constraints. Since entropy scales with available volume, this projection 
must cause entropy to decrease proportionally to the contraction of volume. Because 
hyperbolic volume grows exponentially, it would logically imply that the inverse process 
(projection) results in exponential contraction. Thus, the volume distortion factor, quantified 
by the Jacobian determinant J , must satisfy: 

NJ e α−
  

where α  is a curvature-dependent scaling factor. I propose that this is an inevitable 
consequence of how information is structured in high-dimensional hyperbolic spaces. 
 

4. Justifying the Entropy Correction Term 

In Euclidean space, entropy remains unchanged under uniform projections because volume 
scales linearly. In hyperbolic space, volume scales exponentially, so projection results in 
entropy loss proportional to ln J . 

This naturally explains why entropy is corrected under projection as: 

lnH H J′ = +  
where the entropy change is directly tied to the contraction of available volume. 
This suggests that entropy reduction follows directly from geometric constraints and does not 
require an arbitrary assumption about J . 
 
This deductive analysis suggests that contraction is a natural consequence of hyperbolic 
volume scaling. The reasoning utilized here is fully self-consistent and eliminates 
unnecessary assumptions about α . Entropy correction appears to follow from fundamental 
principles of information structuring in curved spaces. 
 

5. Special Cases and Physical Implications 
 

A. Recovering Shannon Entropy in Euclidean Space 

 
When projection effects are negligible—such as in a Euclidean information space—the 
Jacobian determinant of the transformation satisfies: 

1J =  
Substituting into the projection-corrected entropy equation: 



lnH H J′ = +  
Since ln 1 = 0, we recover the standard Shannon entropy: 

logi i
i

H H p p′ = = −∑  

This further demonstrates that Shannon entropy is a special case of the more general 
projection-corrected entropy, valid only when dimensional projection loss is absent. 
 
B. Entropy Scaling in Hyperbolic Space 
 
In hyperbolic space, entropy must be corrected for curvature-induced distortion. From our 
previous derivation: 

NJ e α−
  

Substituting into the entropy equation: 
H H Nα′ = −  
where α is a curvature-dependent scaling factor. This correction implies: 
• Entropy scales linearly with the number of projected dimensions because the correction 

term is dimension-dependent. 
• Entropy scales exponentially with distance in higher-dimensional hyperbolic space due to 

the nature of hyperbolic volume expansion, as previously demonstrated in this paper. 
• High-dimensional projections cause entropy reduction due to geometric volume 

distortion. 
• For sufficiently large curvature, entropy approaches an asymptotic bound, suggesting a 

natural entropy limit in curved spaces. 
 
6. RTA and Information Processing 

 
A. Why The RTA Framework for Information Applies to Information Processing 

 
Traditional information theory treats entropy as a static statistical measure, quantifying 
uncertainty in a given probability distribution. However, real-world computational 
systems involve dynamic information flow, where data moves through networks, neural 
structures, or computational architectures (Venkatesh P, 2020). In such cases, entropy is 
not merely a measure of uncertainty—it directly influences the efficiency of information 
transfer and processing (Tishby, 1999). 

This paper’s proposed entropy framework, based on geometric projection constraints, 
suggests that information is structured according to specific constraints that dictate 
optimal flow paths. This raises a critical insight: the efficiency of an information system 



is not just about minimizing uncertainty, but about minimizing entropy along structured, 
optimal paths. 

In computational systems, the All-Pairs Shortest Path (APSP) problem provides a direct 
analogy to entropy-minimized information flow. APSP finds the shortest path between 
every pair of nodes in a network, revealing the most efficient and structured way 
information can propagate. This suggests that the APSP problem isn’t just a graph-
theoretical challenge—it may fundamentally align with the principles of entropy 
minimization in structured information spaces. If information in a high-dimensional 
system is projected onto a lower-dimensional manifold, then APSP solutions should 
reflect projection-induced entropy constraints. This could mean that current APSP 
algorithms may be suboptimal in structured, non-Euclidean spaces—an issue this 
framework seeks to address. 

By integrating the projection-corrected entropy framework with APSP theory this may 
reveal new algorithmic strategies that more efficiently structure information flow, 
impacting fields such as: 

• Neural Network Optimization – Can structured entropy constraints improve AI 
training? 

• Compression and Data Encoding – Does APSP-based structuring minimize 
redundant entropy? 

• Quantum Information Theory – Does quantum state evolution naturally 
optimize along APSP-like constraints? 

 

This section established the foundation for why entropy minimization and APSP are 
potentially fundamentally connected, leading into the next section on defining the APSP 
problem and its role in information theory. 

 

B. The APSP Problem: Definition and Importance 

The All-Pairs Shortest Path (APSP) problem is a fundamental challenge in graph theory 
and network science. Given a weighted graph, APSP seeks to determine the shortest path 
between all pairs of nodes, allowing for optimal routing of information, resources, or 
signals. The problem is formally defined as: 

• Let G = (V, E, w) be a weighted graph with vertex set V, edge set E, and 
weight function w that assigns a cost to each edge. 



• The APSP problem seeks a function d(u,v) for all u, v ∈ V such that d(u,v) 
represents the minimum cumulative weight of any path from u to v. 

• If no such path exists, d(u,v) = ∞. 

 

C. Why is APSP Relevant to Information Flow? 

In computational and physical systems, information is not simply stored statically—it 
must propagate through networks in an optimal manner (Nicoletti G, 2024). The APSP 
problem serves as a model for efficient information routing, as it reveals the most 
structured and least redundant paths for data transmission. 

The RTA entropy framework suggests that: 

•  APSP solutions may naturally emerge from entropy minimization principles. 
•  Information does not propagate randomly—it follows structured paths that  

reduce uncertainty and redundancy. 
• If entropy is constrained by projection effects, then APSP solutions should reflect 

these same constraints in structured networks. 

Traditional AI learning architectures, including gradient descent, operate on local 
optimization principles. However, in structured information systems, a purely local 
approach may fail to capture the globally optimal paths for information flow. The APSP 
framework provides a direct analogy to entropy minimization in complex networks, 
suggesting that information propagation in AI models may be governed by geodesic 
constraints rather than purely statistical approximations. 
If validated, APSP-based learning may outperform gradient descent in structuring AI 
models, leading to faster convergence, reduced redundancy, and more optimal weight-
space organization. Empirical tests should investigate whether APSP-based entropy 
structuring enables more efficient learning dynamics, particularly in deep neural networks 
and high-dimensional function optimization. 

 
D. Problems with Current Algorithmic Approaches to APSP 
 
Current APSP algorithms such as Floyd-Warshall, Dijkstra, and Bellman-Ford—are 
widely used but have fundamental limitations when applied to structured information 
spaces (Kleinberg R, 2007). Most APSP algorithms assume a flat (Euclidean) metric 
space for computing shortest paths, ignoring geometric distortions that occur in curved or 
hyperbolic spaces. This affects efficiency because many existing APSP algorithms have a 
high computational cost (e.g., Floyd-Warshall operates in O(N³) time), making them 
inefficient for large-scale structured data sets. In addition, these methods do not account 



for information redundancy or projection-induced entropy constraints, which could lead 
to suboptimal path selection. 
This suggests a need for entropy-structured APSP solutions. The RTA framework 
suggests that optimal information propagation follows structured entropy constraints, 
which traditional APSP algorithms fail to incorporate. This raises key questions: 

• Do APSP algorithms in hyperbolic space align more naturally with entropy 
minimization? 

• Can an entropy-aware APSP algorithm outperform existing shortest-path 
solutions? 

• Are existing graph embeddings already unintentionally using entropy 
minimization principles? 

By addressing these gaps, we propose that APSP solutions should be reformulated using 
entropy-projection constraints, leading to more efficient and structured information 
routing in both computational and physical systems. 
 
E. RTA and APSP 
 

Entropy as a Constraint on Information Flow 

Our framework suggests that information structuring is not arbitrary but follows 
fundamental geometric constraints. Since APSP represents the most efficient way to 
transmit information in a network, it follows that: APSP solutions should align with 
entropy minimization principles, as minimizing entropy ensures the most structured and 
optimal information flow. In structured systems governed by hyperbolic geometry, 
information flow should naturally follow geodesics, as the shortest paths in curved spaces 
inherently reflect entropy constraints and optimal structuring. If information is structured 
by projection effects, then APSP in high-dimensional systems must account for entropy 
projection loss to remain optimal. 

APSP as a Geometric Optimization Problem 

In Euclidean space, shortest paths are straight lines, and traditional APSP methods are 
sufficient. In hyperbolic space, geodesics are curved, and traditional APSP solutions do 
not correctly capture the underlying entropy constraints. If we reformulate APSP as an 
entropy optimization problem, it naturally leads to hyperbolic structuring, which aligns 
with the projection-corrected entropy model. 

 

Why Hyperbolic APSP is a More Natural Fit 

 



Hyperbolic graphs have been shown to be more efficient at representing complex, high-
dimensional data (Nickel M, 2018). Information flow in real-world networks (neural 
networks, biological systems, and quantum states) follows patterns better captured by 
hyperbolic APSP than Euclidean APSP (Nickel M, 2018). If APSP follows entropy 
minimization, then reformulating it with structured entropy constraints may yield a more 
efficient approach to information routing and learning models. This suggests that existing 
APSP approaches may be suboptimal for high-dimensional structured information 
systems. Reformulating APSP in terms of entropy constraints and hyperbolic geometry 
could lead to more efficient algorithms for AI, compression, and quantum information. 

 

F. APSP in Our Projection-Corrected Entropy Framework 

 
Reformulating APSP as an Entropy Optimization Problem 
 
Our projection-corrected entropy framework suggests that information flow is naturally 
constrained by geometric projection effects. Since APSP is a method for finding optimal 
pathways in a weighted graph, it can be reformulated as an entropy minimization problem 
where: 

• Shorter paths correspond to lower-entropy transitions. 
• Geodesics in hyperbolic space provide the optimal pathways for information 

propagation, aligning with our entropy-correction framework. 
 

By reframing APSP in terms of entropy constraints, we propose that the natural structure 
of information flow in large-scale systems inherently minimizes entropy. 
 
Reformulating Shortest-Path Search with Entropy-Corrected Metrics 
 
Traditional APSP algorithms (Dijkstra’s, Floyd-Warshall, Bellman-Ford) assume a 
Euclidean space where distance is additive. However, in real-world structured 
information networks: 
 

• Distance is not purely additive—it follows projection constraints (Clauset A, 
2008) 

• High-dimensional information structures behave hyperbolically (Krioukov D, 
2010), requiring a correction factor for entropy scaling. 

• APSP algorithms should be modified to incorporate entropy distortion effects. 
 

I therefore propose that the shortest paths should be reformulated to reflect projection-
corrected geodesics, where the weight function includes an entropy minimization term: 



corrected euclidean
ij ijd d Nα= −  

where: 

• 
corrected
ijd   is the entropy-adjusted shortest path. 

• 
euclidean
ijd   is the standard Euclidean shortest path. 

• Nα  is the entropy correction factor derived from our framework. 
 

This suggests that graph-based algorithms must include entropy constraints to achieve 
true optimality in structured information flow. 
 
Implications for AI Learning and Structured Information Flow 
 
• Current AI models rely on gradient-based methods, which only find local optima. 
• APSP-based learning could enable global entropy minimization, leading to faster and 

more efficient learning. 
• Traditional compression relies on Shannon entropy approximations. 
• APSP-informed entropy structuring could yield better compression models that 

minimize redundancy while preserving meaning. 
• Quantum systems naturally seek least-action pathways in Hilbert space. 
• Does APSP-based entropy minimization describe quantum state evolution? 
 

 
G. Suggestions for Empirical Validation 
 
The RTA projection-corrected entropy framework suggests that optimal information flow 
follows structured geodesics, leading to a fundamental link between entropy 
minimization and APSP. To validate this hypothesis, I suggest key empirical tests across 
different domains. 

i. Testing Hyperbolic APSP Algorithms for Entropy Minimization 

Hypothesis: APSP solutions in hyperbolic space should exhibit lower entropy than 
Euclidean APSP due to curvature-induced efficiency gains. 
Approach: 

• Implement standard APSP algorithms (Floyd-Warshall, Dijkstra, Bellman-Ford) 
in both Euclidean and hyperbolic graph embeddings. 

• Compare the entropy of shortest paths by computing:  



logpath i i
i

H p p= −∑  

• If hyperbolic APSP results in lower entropy paths, it supports our projection-
corrected framework. 

 
ii. APSP-Based Learning vs. Gradient Descent in AI Training 
 
Hypothesis: An APSP-based optimization method could outperform gradient descent in 
structuring AI learning processes. 
Approach: 

• Train neural networks with APSP-derived updates instead of backpropagation. 
• Compare convergence speed and loss reduction between: 

o Standard gradient-based training 
o APSP-optimized geodesic learning 

• If APSP-based training yields faster convergence and lower redundant updates, it 
validates entropy-efficient learning. 

If APSP-optimized entropy structuring is correct, then AI models trained with an 
APSP-based learning rule should show faster convergence and greater generalization 
compared to purely gradient-based approaches. Specifically, APSP-structured training 
should reduce redundant updates in weight-space while preserving global entropy 
minimization, leading to improved efficiency in deep learning architectures. 
Empirical testing should compare the effectiveness of APSP-based learning against 
standard gradient descent across multiple network architectures and tasks to 
determine whether structured entropy minimization provides a meaningful 
advantage." 

 
iii. Information Compression via APSP-Optimized Entropy Structuring 
 
Hypothesis: Compression algorithms that integrate entropy-aware APSP restructuring 
could outperform existing techniques. 
Approach: 

• Develop a modified entropy-coded APSP compression method. 
• Compare against existing lossless compression schemes (Huffman, arithmetic 

coding, Lempel-Ziv). 
• Measure the compression ratio vs. entropy reduction, testing whether APSP-

optimized pathways yield superior encoding efficiency. 
 

RTA and Information Processing Key Takeaways: 



• Entropy is inherently linked to dimensional structuring—information loss is not just 
statistical, but a result of curvature-induced projection effects. 

• Hyperbolic geometry provides a more natural foundation for entropy and information 
flow than Euclidean space. 

• APSP represents an optimal routing mechanism for structured information flow, making 
it inherently tied to entropy minimization. 

• APSP optimization aligns with entropy minimization, suggesting that structured 
information flow follows geodesic constraints in curved manifolds in the RTA 
framework. 

• Existing APSP algorithms do not account for projection-induced entropy constraints, 
which may introduce inefficiencies. 

• This projection-corrected entropy framework suggests that hyperbolic APSP solutions 
may be better suited for real-world information processing tasks. 
 
 

7. Convergent Derivation of the Shannon Equation By Two Independent Methods 
 
Independent Derivations of Shannon Entropy: A Statistical and Geometric Perspective 
 
Shannon entropy has been foundational in information theory, yet its derivation has historically 
relied on axiomatic reasoning. In this work, I have proposed that Shannon entropy is not merely 
an empirical construct but instead emerges naturally from two independent first-principles 
derivations: 
 

1. A functional equation approach (statistical necessity) 
2. A geometric projection approach (dimensional structuring of information) 

 
These distinct methods lead to the same fundamental equation, confirming that Shannon entropy 
is both a necessary mathematical result and a special case of a broader information-theoretic 
framework. 
 
The classical derivation (statistical necessity) relies on fundamental probability properties and 
the requirement that entropy is additive for independent systems. This approach demonstrates 
that the logarithmic form of Shannon entropy is not arbitrary—it is mathematically required for 
entropy to behave additively. 
 
This second derivation treats entropy as a geometric measure in probability space, showing that 
Shannon entropy naturally arises as a special case in Euclidean geometry and must be corrected 
in curved spaces. This implies that Shannon entropy is a special case of a broader projection-
corrected entropy framework. 



 
This dual derivation strengthens the argument that entropy is not just an emergent statistical 
property—it is an intrinsic mathematical necessity shaped by geometric structuring principles. 
 

8. Entropy as a Fundamental Constraint on Information Encoding 

A. Introduction: The Deep Connection Between Information and Entropy 
 
In classical information theory, Shannon entropy quantifies the uncertainty of a system’s 
information encoding, while in physics, Boltzmann entropy describes the statistical disorder 
of a thermodynamic system. Despite their similarities, they have historically been treated as 
separate concepts, with thermodynamic entropy viewed as a physical property and Shannon 
entropy as a mathematical abstraction. 
This section presents a new unification of entropy under RTA, suggesting that all entropy is 
fundamentally information-theoretic and follows strict geometric projection constraints. I 
propose that entropy increase is not a statistical tendency but a necessary consequence of 
structured information loss during dimensional reduction. 
 
B. Entropy as an Information-Theoretic Constraint 
 

i. Classical Formulations of Entropy 
 
Shannon entropy is traditionally defined as: 

logShannon i i
i

S p p= −∑  

where ip  represents the probability of each encoded state. Similarly, classical Boltzmann 
entropy, originally expressed by Boltzmann as: 

ln( )BS k W= −  

quantifies thermodynamic entropy based upon the number of accessible microstates W , 

where Bk  is Boltzmann’s constant. However, the more generalized Gibbs entropy 
formulation, commonly used in statistical mechanics, expresses entropy as: 

ln( )Boltzmann B i i
i

S k p p= − ∑  

where the probabilities ip  represent the likelihood of the system occupying each 
microstate. This formulation clearly reveals the mathematical equivalence between 



thermodynamic entropy and Shannon entropy: both equations measure uncertainty in the 
distribution of states. 
 
By adopting the Gibbs formulation, the direct mathematical equivalence becomes 
explicit. Thus, Shannon entropy and thermodynamic entropy are not merely analogous 
but represent the same fundamental information-theoretic concept of uncertainty due to 
incomplete encoding of information. 
 
ii. The Role of Projection Constraints in Entropy Increase 
 
Traditional information theory treats entropy as a measure of uncertainty in data 
encoding. However, why does entropy increase in both physics and computation? The 
answer lies in projection constraints. 

• Information in a higher-dimensional space must be encoded into a lower-
dimensional representation. 

• This encoding process inherently loses information, as not all degrees of freedom 
can be perfectly mapped. 

• Entropy growth is therefore a structured effect of information loss due to 
projection constraints. 
 

Mathematically, the number of available states in an n -dimensional system follows a 
geometric contraction under projection to a 3-dimensional space: 

( 3)
0( ) 2 nn −Ω Ω  

Since entropy is a function of state space, this leads to a universal entropy scaling law 
when projecting to 4 dimensions: 

0( ) ( 3)S n S nλ= + −  
where: 

• 0S  is the base entropy before projection. 
• λ  is a scaling coefficient defining structured information loss per dimensional 

reduction. 
• n  is the effective dimensionality after encoding. 

 
This implies that entropy growth follows a precise mathematical rule dictated by 
information-theoretic structuring rather than probabilistic randomness. 

 
C. The Second Law of Thermodynamics as an Information Encoding Constraint 

 
i. Entropy Increase is an Information Loss Effect 



• The Second Law of Thermodynamics states that entropy always increases in a 
closed system. 

• Traditionally, this is treated as a statistical tendency, but under RTA, it is a 
necessary consequence of structured information loss. 

• Lower-dimensional encodings necessarily lose degrees of freedom, making 
entropy growth inevitable. 

•  
ii. The Second Law of Information Processing 
This same principle applies beyond physics into data compression, AI learning, and 
computation: 

• Data compression is fundamentally entropy reduction—it seeks to minimize 
information loss while maintaining fidelity. 

• AI learning processes operate under the same entropy constraints, as neural 
networks approximate structured high-dimensional relationships in lower-
dimensional feature spaces. 

• Error propagation in digital systems mirrors entropy growth, as information loss 
in signal encoding results in increased uncertainty over time. 

 
Thus, the Second Law of Thermodynamics may not just be a rule of physics—it may 
represent a universal principle of structured information systems. 

 
D. The Universal Nature of Entropy Scaling 
 

Since all entropy follows the same scaling law, I propose that entropy should be viewed 
as a fundamental property of structured information flow, not just a thermodynamic 
phenomenon. This leads to possibly profound implications: 
 
i. Entropy in Computation and AI 

• Machine learning models must follow entropy scaling laws when optimizing data 
encoding. 

• AI cognition is constrained by the same entropy increase rule, meaning model 
efficiency and optimization can be improved by explicitly using RTA entropy 
constraints. 

• Neuromorphic computing may benefit from entropy-aware structuring, ensuring 
optimal data representation in reduced dimensions. 

ii. Entropy in Cognitive and Biological Systems 
• Memory encoding in the brain may follow entropy structuring laws, as human 

cognition must balance information retention with loss due to neural projection 
constraints. 



• Language structure exhibits entropy minimization, where linguistic rules 
compress complex meaning into lower-dimensional representations. 

iii. Quantum and Cosmological Implications 
• Quantum information loss during measurement may be structured by the same 

entropy constraints, providing a deeper explanation for quantum decoherence. 
• Cosmological entropy growth may be predictable under this framework, offering 

a structured approach to understanding the evolution of information complexity in 
the universe. 

D. 4-Dimensional Space May Be Optimal For Information Encoding 

The proposed entropy scaling law applies generally to any n > 3, meaning structured 
information could, in principle, originate from any higher-dimensional space. However, 
based upon my findings in the RTA Framework for Physical Reality, I suggest that 4D is the 
most natural candidate for the fundamental structuring of information. 

In my physics framework, 5D emerges as the minimal requirement for structuring physical 
reality, as it uniquely enables the unification of gravity and electromagnetism, with the strong 
and weak force as harmonic projection effects, while also governing entropy constraints. If 
the structuring principles of information theory mirror those of physics, then there may 
similarly be a minimal necessary space for information encoding and processing. 

While 5D serves as the fundamental structuring space of reality, 4D hyperbolic geometry 
appears to be the optimal domain for practical information encoding, processing, and 
optimization.. 

This is because: 

1. 4D hyperbolic geometry already provides the necessary structuring constraints for 
encoding, entropy minimization, and efficient information projection. 

2. π  naturally governs 4D hyperbolic spaces, suggesting that harmonics, 
wavefunctions, and structured information flow emerge more naturally in 4D rather 
than requiring a full 5D description. 

3. AI architectures, compression, APSP-based learning, and quantum information theory 
may be optimized by reformulation in 4D hyperbolic space, since this is where 
optimal structuring appears to occur. 

4. The projection from 5D to 4D already encodes all possible structuring constraints, 
meaning working in 4D hyperbolic space is sufficient to capture all necessary 
information without introducing unnecessary complexity. 

While a definitive proof of this is beyond the scope of this paper, future research should 
explore whether structured information processing naturally favors 4D constraints. This 



could be tested through higher-dimensional AI models, entropy scaling in neural learning, or 
information compression principles in cognitive science. 

 

E. 4D Constraints and the Necessity of Entropy Correction in Structured Information 
Processing 

 

In classical information theory, Shannon entropy provides a foundational measure of 
uncertainty in a probability distribution. It has been widely applied in communication theory, 
compression, and probability modeling, where it effectively quantifies information loss and 
redundancy. However, Shannon’s entropy equation is derived purely within a 3D Euclidean 
framework, where information is treated as a static or discrete entity. This assumption works 
well for basic data encoding and storage but becomes insufficient when applied to structured 
and propagating information processes—such as AI learning, complex optimization, and 
structured entropy minimization in neural networks. 

In this section, I propose that Shannon entropy remains valid in static 3D spaces, but in 
dynamic, structured systems where information actively propagates and restructures, an 
entropy correction term is necessary. This correction, I propose, arises from the fact that 
structured information processing operates under 4D hyperbolic constraints, requiring 
adjustments for projection-induced distortions. 

1. Shannon Entropy as a 3D Information Measure 

Shannon’s entropy is defined as: 

logi iS p p= −∑  

where ip  represents the probability of a given state occurring. In standard applications, 
this equation assumes that probability distributions exist within a 3D space, meaning it 
does not account for geometric distortions introduced by higher-dimensional structuring. 
This assumption is perfectly valid for static information systems, such as: 

• Data compression (e.g., ZIP algorithms) 

• Communication systems 

• Probability distributions in low-dimensional settings 

• Classical entropy measurements in isolated physical systems 



However, when information must be actively structured, learned, or propagated, I 
propose that it interacts with higher-dimensional constraints that modify how entropy 
scales. 

2. When and Why Entropy Correction Becomes Necessary 

The correction to Shannon entropy arises when information exists in a structured space 
and must be processed dynamically. Examples include: 

• AI learning models that must optimize pathways in high-dimensional weight 
spaces. 

• Neural networks that compress high-dimensional data into lower-dimensional 
feature representations. 

• Compression algorithms that maximize structured information retention while 
minimizing redundancy. 

• Quantum information systems, where state transitions occur along geodesics in 
hyperbolic probability spaces. 

a. Projection-Induced Entropy Distortions 

As we demonstrated earlier, entropy in a hyperbolic space grows logarithmically with 
volume but linearly with geodesic distance: 

( ) dV d eα ,  ln ( )S V d dα   

This result implies that entropy scaling must be corrected in systems where 
information follows geodesic structuring rather than discrete state enumeration. The 
logarithmic dependence on volume alone is insufficient when information is actively 
being structured. 

b. The Role of Dimensional Constraints 

Shannon entropy implicitly assumes a Euclidean volume scaling law, where 
probability distributions expand polynomially in space. However, in structured 
information flow, the effective volume grows hyperbolically, requiring a logarithmic 
correction for projection distortions. This leads to a necessary correction of the form: 

lnS S J′ = +  

where J  is the Jacobian determinant accounting for projection distortions. We 
previously derived that: 

NJ e α−
  



which implies an entropy correction term: 

S S Nα′+ −  

This result suggests that in structured systems, entropy is systematically 
underestimated unless corrected for projection effects. 

3. The Key Distinction Between 3D and 4D Information Scaling 

Shannon entropy works perfectly in 3D because no geometric projection distortions are 
present. However, when structured information processing occurs (as in AI, neural 
networks, and complex learning systems), it must account for higher-dimensional 
projection loss. This distinction can be summarized as: 

Context 
Shannon 
Entropy 
Valid? 

Why? 

3D Static Systems (storage, classical 
encoding) 

 Yes No projection distortions 

4D Structured Information Processing 
(AI learning, neural compression) 

 No 
Requires correction for 
structured propagation 

Hyperbolic Information Flow (e.g., 
optimal data routing, APSP in high-
dimensional graphs) 

 No 
Entropy scales with 
geodesic distance, not just 
volume 

Therefore, while Shannon’s equation remains a powerful special case of entropy scaling 
in 3D Euclidean systems, it does not fully describe entropy behavior in higher-
dimensional structured information systems. 

4. The Role of π in the Transition from 4D to 3D 

A crucial insight emerges when considering how structured information transitions from 
a 4D hyperbolic framework to a 3D representation. π naturally governs 4D hyperbolic 
spaces, suggesting that wavefunctions, harmonics, and structured information flow 
emerge more naturally in 4D. 

Mathematically, π plays a central role in volume scaling laws in hyperbolic space, as seen 
in: 

( ) dV d eα  



where π arises in curvature terms that define optimal projection structures. This may 
indicate that information naturally encodes within 4D hyperbolic constraints, with π 
acting as a fundamental structuring factor in entropy corrections. 

4. Final Takeaways: 

• Shannon entropy remains valid in 3D, but structured information processing 
follows 4D constraints that require entropy correction. 

• The correction term is necessary because structured information flow follows 
geodesics in hyperbolic space, which modify entropy scaling. 

• π appears to play a key role in transitioning structured information from 4D to 3D, 
potentially explaining why harmonics and wavefunctions emerge in 4D but not in 
lower-dimensional classical descriptions. 

• The optimal information processing domain may be 4D hyperbolic space, making 
it the best mathematical framework for AI, compression, and structured entropy 
minimization. 

Future Work 

• Further mathematical validation: Establish whether π explicitly governs the 
entropy correction term in structured information processing. 

• Empirical tests: Examine whether AI learning models perform better when 
explicitly structured in 4D hyperbolic representations. 

• Quantum implications: Investigate whether quantum wavefunctions follow 4D 
geodesic entropy structuring, reinforcing the connection between quantum 
mechanics and information theory. 

 

F. Conclusion: Entropy as a Universal Projection Constraint 
 
This section has proposed that: 

• Shannon entropy and Boltzmann entropy are not separate concepts but two 
representations of the same structured information loss effect. 

• Entropy scaling follows a universal projection law, making entropy growth a 
necessary outcome of dimensional reduction rather than a statistical tendency. 

• The Second Law of Thermodynamics is a fundamental constraint on information 
encoding, not just a rule of physics. 
 

This potentially redefines entropy as a first-principles mathematical constraint, unifying 
physics, computation, and possibly cognition under a single governing principle. Future 



research should focus on extending this principle to optimize AI architectures, computational 
efficiency, and quantum information systems. 
 

9. Harmonics in the RTA Framework for Information: A Geometric Projection Perspective 
 

A. Introduction: The Role of Harmonics in Information Structuring 

In structured information systems, harmonics arise naturally when information propagates 
(Kamran D, 2024). While harmonics are well-established in physics and wave-based systems, 
their role in information theory has been largely unexplored. This section extends the RTA 
framework by demonstrating how harmonics emerge in high-dimensional hyperbolic spaces and 
how they can be leveraged to optimize information structuring and projection efficiency. 
My previous derivations established that entropy scales linearly with geodesic distance in 
hyperbolic space due to the exponential (geometric) scaling of volume. However, entropy scales 
logarithmically across dimensions with respect to the exponentially growing hyperbolic volume.  
Here, I analyze how these distinct scaling laws interact, leading to emergent harmonic structures 
within structured information propagation. 
 
B. Harmonics as a Natural Consequence of Geometric Projection 
 
In RTA, information is treated as a structured entity constrained by the geometry of its 
embedding space. When information is projected from a higher-dimensional space to a lower-
dimensional subspace, certain structural properties must be preserved, while others are 
compressed or distorted. This projection process induces harmonic structuring in two ways: 
 

1. Harmonics in Distance-Based Information Flow (Geometric Scaling) 

In hyperbolic space, entropy grows geometrically with distance, meaning that the 
amount of accessible information increases exponentially with increasing distance 
from a central reference point. However, as information propagates, certain discrete 
frequencies (harmonics) may emerge, forming optimal pathways for information flow 
in hyperbolic geodesics. If true, this would imply that certain structures in 
information processing naturally favor harmonic alignment, as seen in optimal 
routing, AI learning models, and quantum information flow. 

2. Harmonics in Dimensional Projection (Linear Scaling Across Projections) 

When information is projected from a high-dimensional hyperbolic space to a lower-
dimensional representation, the loss of information occurs in a structured manner. The 
retained information components may follow harmonic distributions corresponding to 
the projection eigenfunctions of the transformation matrix. If so, these harmonic 



structures minimize entropy loss, ensuring that essential features of the high-
dimensional structure are preserved in lower-dimensional representations. 

 
Harmonics may emerge as the natural "filters" that preserve structured information 
flow during dimensional reduction and geodesic propagation. 

 
B. Mathematical Derivation of Harmonic Structures in Information Projection 

 
1. Hyperbolic Scaling and Harmonic Modulation 
Entropy in structured information spaces is inherently constrained by geometric 
projection effects. In previous sections, we established that in hyperbolic space, the 
volume of an information region grows exponentially with geodesic distance d , 
following: 

( ) dV d eα  
where α  is a curvature-dependent scaling factor. Since entropy is a function of 
accessible state space, the entropy associated with this volume follows: 

ln ( )S V d dα   
This establishes a fundamental distinction in scaling laws: 

• Entropy scales logarithmically with volume: ln ( )S V d  

• Entropy scales linearly with geodesic distance: S dα  
 

This result is crucial in distinguishing hyperbolic entropy growth from Euclidean entropy, 
which follows polynomial volume scaling and slower entropy expansion. However, when 
information is projected across dimensions, entropy does not simply scale with distance. 
Instead, it follows a structured contraction rule dictated by the Jacobian determinant of 
the projection mapping: 

logS S J′ = −  

Where J  represents the volume distortion induced by projection from a higher-

dimensional space. This projection process is not uniform but follows discrete harmonic 
structuring, as described in the next section. 

2. Harmonics as a Consequence of Dimensional Projection 

When information is projected from a higher-dimensional hyperbolic space to a lower-
dimensional representation, the loss of information does not occur arbitrarily. Instead, it 
follows discrete harmonic structuring, dictated by the eigenfunctions of the projection 
matrix Λ . 



Mathematically, the projected information state follows an eigenfunction expansion: 

( ) ikx
k x eΨ =  

where: 

• k  represents the harmonic mode index, defining discrete information frequencies. 

• x  is the coordinate in the lower-dimensional projection space. 

• Λ  is the projection operator, determining how information maps onto discrete 
modes. 

This harmonic structuring emerges naturally because projection acts as a Fourier-like 
decomposition, where information is preserved along dominant eigenmodes while higher-
order terms are suppressed. This is analogous to wavefunctions in quantum mechanics, 
where only certain discrete modes remain after projection. 

Thus, harmonic structuring in the RTA framework arises from two primary mechanisms: 

1. Geometric Scaling in Hyperbolic Space: Information follows structured geodesic 
expansion, creating natural harmonic resonance points along geodesic distances. 

2. Dimensional Projection Effects: Information loss is not uniform but follows 
eigenmode selection, meaning only structured harmonic components remain in 
lower-dimensional mappings. 

This suggests that optimal information propagation follows harmonic geodesics, implying 
a deep connection between structured compression, AI learning, and quantum 
information flow. 

 

3. Implications for Information Compression, AI, and Quantum Systems 

If the emergence of harmonics in structured information spaces is correct, it has 
implications for multiple fields: 

• Compression Theory: 

o Harmonic projection modes may provide an optimal basis for data 
compression, minimizing entropy loss while maximizing structure 
retention. 

o Existing algorithms (wavelets, Fourier transforms) may be seen as 
approximations of this fundamental harmonic encoding principle. 



• AI Learning Models: 

o If structured information follows discrete harmonics, neural networks 
should naturally align their weight distributions along these harmonic 
modes for optimal learning. 

o APSP-based learning algorithms may benefit from harmonic-aware 
structuring, improving convergence efficiency. 

• Quantum Information Flow: 

o If quantum states evolve along geodesic harmonic trajectories, this may 
explain why wavefunctions exhibit discrete quantization. 

o This suggests that quantum computation could benefit from explicitly 
leveraging hyperbolic harmonic structuring for optimized information 
propagation. 

 

D. Key Takeaways and Next Steps 
1. Entropy scales logarithmically with volume but linearly with distance in hyperbolic 

space. 
2. Dimensional projection does not reduce information randomly but follows discrete 

harmonic structuring. 
3. Harmonics arise naturally from eigenfunctions of the projection matrix, defining 

structured information retention. 
4. These findings have major implications for compression, AI learning, and quantum 

information theory. 
Next Steps: 

• Verify the empirical presence of harmonic modes in AI learning models and 
structured datasets. 

• Investigate harmonic constraints in quantum information and test whether state 
evolution aligns with RTA-derived geodesic harmonics. 

• Develop optimized compression algorithms using harmonic structuring constraints 
derived from RTA principles. 

 

Logarithmic Base and Computational Information Processing 

 
In this paper, entropy was formulated generally using the logarithmic function without specifying 
base explicitly. Shannon's original definition commonly uses base-2 logarithms, aligning entropy 
directly with binary (Boolean) computational processes, as bits are the fundamental unit of 



digital information. While log base 10 provides intuitive clarity for human-scale information, 
computational and AI architectures naturally favor log base 2 entropy, directly reflecting binary 
encoding and Boolean logic. Further research should explicitly investigate whether optimal 
computational information structuring—particularly within AI and digital systems—requires 
formulating the RTA Framework for Information explicitly in terms of log base 2. 

 

Counterarguments and Responses to the RTA Framework for Information 

While the RTA framework presented in this paper has broad explanatory power and 
mathematical consistence, several potential criticisms may arise regarding assumptions, 
applicability, and necessity. Here, I systematically address these criticisms. 

1. Criticism of Geometric Foundations 

Criticism: 
Critics may argue that the assumption of a geometric structure underlying information theory is 
arbitrary or speculative without direct empirical evidence. 

Response: 
Geometry as a foundation for information theory is already rigorously established in the field of 
information geometry (Amari & Nagaoka, 2000; Amari, 2016). Information geometry provides a 
rigorous mathematical framework connecting probability theory, differential geometry, and 
statistical inference. My framework extends this established connection by demonstrating that 
entropy naturally arises from geometric constraints inherent to probability spaces. Thus, rather 
than being arbitrary, this assumption leverages an established and widely accepted mathematical 
discipline. 

2. Entropy Scaling Assumptions 

Criticism: 
Some readers might question the justification of exponential scaling of volume and entropy in 
hyperbolic space, arguing that hyperbolic scaling may not universally apply to information 
systems. 

Response: 
The exponential scaling of volume in hyperbolic geometry is a well-established result in 
mathematics (Gromov, 1987; Ratcliffe, 2006). It is not an assumption but rather a direct 
mathematical consequence of negative curvature. My deductive reasoning explicitly shows how 
exponential volume scaling necessarily leads to logarithmic entropy scaling with respect to 
volume and linear scaling with distance, providing a rigorous justification firmly grounded in 
geometric principles. 

3. Validity of the Entropy Correction Factor 



Criticism: 
Critics might challenge my introduction of the entropy correction term via the Jacobian 
determinant, suggesting it is unnecessary or unjustified within classical Shannon information 
theory. 

Response: 
In differential geometry, probability distributions transform non-trivially between manifolds. The 
Jacobian determinant quantifies volume element distortion under these transformations, making 
it a standard practice in geometry (Ratcliffe, 2006). Since my framework explicitly considers 
non-Euclidean manifolds, incorporating the Jacobian determinant as an entropy correction factor 
is mathematically necessary and justified, rather than arbitrary. 

4. Applicability of APSP to Information Theory 

Criticism: 
Some readers may question whether the All-Pairs Shortest Path (APSP) algorithm, typically used 
in graph theory, directly generalizes to real-world information systems or AI processing. 

Response: 
Shortest-path algorithms, including APSP, already play central roles in network theory, neural 
architectures, and data optimization (Kleinberg, 2007; Nickel & Kiela, 2018). My proposal 
integrates APSP-based optimization explicitly with entropy minimization, logically extending 
this established usage. The structured flow of information in AI architectures and quantum states 
naturally aligns with APSP’s efficient propagation framework. 

5. Necessity and Uniqueness of the 4D Information Space 

Criticism: 
Some may challenge why a 4-dimensional hyperbolic space is optimal rather than another 
dimensional space, including the 5-dimensional space used in the RTA Framework for Physical 
Reality. 

Response: 
Although higher-dimensional spaces (5D) offer foundational constraints necessary for physical 
unification (as I propose in the RTA Framework for Physical Reality), practical constraints on 
information processing strongly favor 4D hyperbolic geometry. This dimension is uniquely 
optimal because π naturally governs 4D spaces, promoting harmonic structuring, optimal entropy 
minimization, and computational tractability. Higher dimensions add complexity without 
corresponding benefits in information propagation and efficiency 

6. Distinction between Shannon and Projection-Corrected Entropy 

Criticism: 
Readers might question why classical Shannon entropy requires modification given its proven 
empirical effectiveness. 



Response: 
Shannon entropy is highly effective in traditional, low-dimensional, Euclidean spaces (Shannon, 
1948). However, it has been demonstrated that its applicability diminishes in structured, non-
Euclidean, high-dimensional probability spaces common in quantum systems, neural networks, 
and complex biological data (Hinton & Salakhutdinov, 2006; Tenenbaum et al., 2000). The 
proposed projection-corrected entropy model explicitly addresses these limitations, making it a 
necessary generalization rather than an arbitrary modification. 

7. Empirical Validation and Practical Implementation 

Criticism: 
Some readers might challenge the lack of empirical validation or practical implementation in the 
current formulation of the framework. 

Response: 
Empirical validation is indeed critical, and my framework explicitly provides pathways for 
testing. Clearly outlined proposals for experimental validation across AI, quantum computing, 
and data compression are given, inviting the scientific community to test the practical 
implications and further extend the framework. This approach is common in foundational 
theoretical contributions, where empirical tests typically follow initial theoretical establishment. 

 

Conclusion of Counterarguments 

Each of these criticisms provides an opportunity to clarify and deepen the theoretical robustness 
of the RTA Framework for Information. Through explicit references to established mathematics 
and existing literature, I have demonstrated that each assumption and theoretical step within my 
framework is logically justified, mathematically rigorous, and built upon established scientific 
principles. The framework, while novel, aligns coherently with accepted knowledge, extending 
current theory logically rather than speculatively. These counterarguments reinforce the necessity 
for subsequent empirical validation and provide pathways for fruitful future research. 

 

Conclusions 
 
The analysis presented in this paper proposes a fundamental shift in how entropy, information 
structuring, and computational optimization should be understood. By deriving Shannon entropy 
from first principles using two distinct methods, I have reinforced its validity while also 
demonstrating that it emerges as a special case of a more general geometric framework. The 
functional equation approach confirmed that entropy must take a logarithmic form for additivity, 
while the geometric projection approach revealed that Shannon entropy is the Euclidean limit of 



a broader entropy structuring principle. This dual derivation supports the idea that entropy is not 
just a statistical measure but a deeply rooted geometric constraint on information structuring. 
 
Furthermore, by integrating the entropy framework with All-Pairs Shortest Path (APSP) 
optimization, I have proposed a deeper connection between optimal information flow and 
entropy minimization in structured spaces. This suggests that information naturally organizes 
itself along geodesic paths in curved manifolds, meaning that the structuring of data, AI learning 
processes, and even quantum information systems may be inherently constrained by geometric 
entropy principles. 
 
While this paper primarily focuses on entropy corrections under geometric projection constraints, 
it is worth noting that similar non-extensive entropy formulations, such as Rényi and Tsallis 
entropy, introduce probability-weighted scaling factors. Our framework suggests that curvature 
effects in non-Euclidean probability spaces may naturally lead to such corrections, potentially 
providing a geometric foundation for these entropy generalizations. Future work may explore 
whether Rényi and Tsallis entropy emerge as limiting cases of the projection-corrected entropy 
framework proposed in this paper, suggesting that their probability-weighted corrections may be 
tied to underlying geometric constraints. 
 
The projection-corrected entropy framework is particularly relevant to structured high-
dimensional data, where entropy loss is not merely a statistical effect but emerges naturally from 
geometric projection constraints. This insight suggests that Shannon entropy remains valid only 
within Euclidean, low-dimensional probability spaces, whereas information-rich, structured 
systems with information propagation require a more general formulation that incorporates 
curvature effects. 
 
Key Findings and Implications 
 

• Shannon entropy was derived here using two independent approaches, reinforcing its 
necessity while also demonstrating that it is an approximation in higher-dimensional, 
non-Euclidean information spaces. 

• The RTA framework validates Shannon entropy but necessarily extends it for more 
complex structured information spaces. 

• Entropy is not merely an emergent statistical quantity; it is a geometric phenomenon that 
follows from projection constraints and information flow structuring. 

• APSP-based optimization naturally aligns with entropy minimization, meaning that 
optimal learning, compression, and data structuring should be examined through the lens 
of hyperbolic geometry. 

• Entropy may be a unified concept in both physics and information theory 



• The concept of harmonics may be fundamental to higher dimensional information 
projection 

• This framework suggests that AI architectures, information compression algorithms, and 
quantum information processing may all benefit from a reevaluation of entropy-based 
optimization strategies. 

 
While these findings offer a compelling new theoretical approach, they require rigorous 
mathematical validation and experimental proof. 
 

• Future work should seek to empirically test APSP-based entropy structuring in AI 
learning models and compression algorithms. 

• Quantum entropy formulations should be compared against this projection-corrected 
entropy framework to determine whether physical systems naturally adhere to these 
constraints. 

• Researchers across disciplines—including mathematics, information theory, computer 
science, and physics—may find further refinements or extensions of this theory that 
better align with observed reality. 

 
This work suggests that geometry is not merely a descriptive tool but an intrinsic principle 
governing the structuring, transmission, and optimization of information in both natural and 
artificial systems. If validated, this could lead to a deeper understanding of how intelligence, 
learning, and computation emerge from fundamental mathematical constraints. 
By reframing entropy as a geometric structuring principle, this framework attempts to redefine 
the fundamental laws governing intelligence, computation, and structured information flow.  
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Claude Shannon (1916–2001): The Birth of Information Theory 
 
Claude Shannon laid the groundwork for modern information theory in his landmark 1948 paper 
A Mathematical Theory of Communication, where he introduced the Shannon entropy equation. 
His work formalized the concept of entropy as a measure of information uncertainty, leading to 
practical applications in data compression, communication theory, and cryptography. This paper 
rederived Shannon’s entropy from first principles, reinforcing its fundamental necessity while 
also extending it to structured information spaces. 



 
Solomon Kullback (1907–1994) & Richard Leibler (1914–2003): KL Divergence (1951) 
 
Kullback and Leibler introduced KL divergence in their 1951 paper On Information and 
Sufficiency, providing a measure of information loss when approximating one probability 
distribution with another. KL divergence plays a central role in this work, as I showed that 
Shannon entropy can be obtained as a special case of KL divergence when comparing a 
distribution to the uniform measure. This insight allowed the reformulation of entropy as a 
geometric quantity, ultimately leading to the projection-corrected entropy framework. 
 
Augustin-Louis Cauchy (1789–1857) 
 
The Cauchy functional equation, originally studied in the early 19th century, states that for a 
function satisfying an additivity property, the only continuous solution is the logarithmic 
function. This mathematical principle became the foundation for one of my derivations of 
Shannon entropy, where I demonstrated that the logarithmic form of entropy is required for 
additivity in probability space. 
 
Carl Gustav Jacob Jacobi (1804–1851): The Jacobian Determinant and Projection Scaling 
 
The Jacobian determinant is a critical mathematical tool used to describe transformations 
between coordinate systems, originally developed by Jacobi in the 19th century for differential 
geometry. In this work, the Jacobian determinant was utilized to formalize how probability 
densities transform under projection constraints. By incorporating Jacobian scaling into entropy 
calculations, this paper proposes that dimensional projection leads to systematic entropy 
corrections, meaning that Shannon entropy must be adjusted when information is structured in 
non-Euclidean manifolds. 
 
Algorithmic Pioneers of APSP: Floyd, Warshall, Dijkstra, and Bellman-Ford 
 
The All-Pairs Shortest Path (APSP) problem has been extensively studied in computer science 
and graph theory, with major contributions from: 
 

• Robert Floyd (1936–2001) & Stephen Warshall (1935–2006): Floyd-Warshall 
Algorithm (1962) 

o Provided a dynamic programming method for solving APSP efficiently in 
dense graphs. 

• Edsger Dijkstra (1930–2002): Dijkstra’s Algorithm (1956) 
o Developed a greedy algorithm for single-source shortest paths, forming the 

basis for modern network routing protocols. 



• Richard Bellman (1920–1984) & Lester Ford (1886–1967): Bellman-Ford 
Algorithm (1958) 

o Provided a solution for shortest paths that accommodates negative weights, 
relevant for economic and machine learning applications. 
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