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Abstract 

Modern compression theory is based on Shannon’s foundational insight that information is 
governed by entropy. Golomb coding, devised in the 1960’s, is a remarkably efficient solution 
for encoding geometrically distributed integers, and remains in widespread use because of its 
simplicity and effectiveness. In this paper, I revisit Golomb coding not merely as a mathematical 
transformation, but as a process of dimensional projection. 

I propose a generalized compression framework derived from the principles of dimensional 
projection. The process takes structured data and temporarily lifts it into higher-dimensional 
space to expose latent informational geometry, then systematically re-flattens it into a minimal 
entropy representation. Specifically, I reinterpret Golomb coding as a 1D-to-2D projection 
followed by structured reduction, and generalize this concept into a proposed 4D projection-
based model applicable across multiple data types—text, DNA, images, audio, video, and more. 

The proposed framework provides a unifying geometric perspective on compression, revealing 
new axes of redundancy not captured by traditional frequency-based methods. This theoretical 
work offers a foundation for future research in entropy minimization, structural compression, and 
the dimensional nature of information itself. 

 

1. Introduction 

The field of information theory was born from a single foundational insight: that information is 
quantifiable. Further, its optimal transmission and storage appear governed not by pure 
mathematics, but by entropy. In his seminal 1948 paper, A Mathematical Theory of 
Communication, Claude Shannon defined the limits of lossless data compression. In doing so he 
introduced the now-fundamental principle that the entropy of a source distribution sets the lower 
bound for its compressibility. Shannon’s work transformed communication and computation, 
providing the theoretical backbone for nearly every modern data compression scheme. 



Shannon’s theory focused on the frequency of symbols in a stream, however it is statistical in 
nature—focused on the frequency of symbols in a stream. However its deeper implication, I 
propose, was structural: that information may have geometry, and entropy reflects how tightly 
that geometry can be packed into a given representation. This idea, while present in the 
background of Shannon’s formulation, was not developed further at the time. 

Decades later, Robert Golomb introduced a remarkably effective compression method for 
encoding positive integers drawn from a geometric distribution. Golomb coding was originally 
motivated by the challenge of building a spell checker on early Unix systems, where RAM was 
extremely limited. Its core algorithm decomposes any non-negative integer N +∈  into two 
parts: 

A quotient N

M
q  =   

 

A remainder  mod r N M=  

The quotient is encoded in unary form, a string of q  ones followed by a zero: 

 times
( ) 111...10

q
U q =


 

The remainder is encoded in truncated binary, with a length-optimized binary representation 
based on the divisor M . The two encodings are concatenated into a prefix-free bitstring: 

( ) ( ) ( )C N U q B r=  

This method is extremely efficient for data with geometric distributions, where smaller integers 
occur more frequently. It is simple, dictionary-free, and achieves near-optimal compression 
within its intended domain. 

Despite its practical success, Golomb coding has historically been treated as a clever arithmetic 
solution rather than a structural insight. When reconsidered from a modern theoretical 
perspective, I suggest that it is apparent that Golomb coding performs a fundamental act of 
dimensional projection. 

In this paper, I reinterpret Golomb coding as a form of dimensional inflation followed by 
structured reduction. The encoding of an integer as a pair 2( , )q r ∈  constitutes a temporary lift 
into a higher-dimensional space, where the coarse and fine components of the original value are 
separated along orthogonal axes. The subsequent unary and binary encodings act as a 
dimensional collapse, projecting this structure back into a 1D bitstream that minimizes entropy 
with respect to the statistical properties of the input. 



If true, this suggests that Golomb coding is not merely a computational trick—it is a 2D 
projection-and-flattening pipeline that exposes and compresses informational structure in a way 
that traditional statistical models overlook. 

This proposed reinterpretation leads naturally to a generalization: if compression can be 
improved by projecting data into 2D space, what might be possible by projecting into 3D, 4D, or 
even higher dimensions, where more latent structure might be revealed and exploited? 

To that end, I propose a generalized 4D compression framework inspired by the logic of Golomb 
coding, the theoretical foundation of Shannon entropy, and the geometric insight of the RTA 
Framework for Information. In the proposed model any structured dataset—whether it consists 
of characters, pixels, nucleotides, audio signals, video signals, or symbolic tokens—is first 
mapped into a higher-dimensional informational space. Each axis in this space corresponds to an 
independent structural property: frequency, position, functional class, residual grouping, etc. The 
data is then encoded in a way that flattens this multidimensional geometry into a low-entropy 
bitstream, preserving the structure while minimizing the information cost of transmission or 
storage. 

No experiments are presented in this paper. Rather, the goal is to offer a unified theoretical 
framework that generalizes existing compression techniques as dimensional projections, and to 
provide a foundation for future exploration in structure-aware compression systems. Shannon’s 
entropy defined the boundary of compression with respect to symbol frequencies. This proposed 
framework suggests a next step: to define the geometry of compressibility itself, across domains 
and data types, through the lens of projection. This paper is a direct extension of the ideas 
presented in the RTA Framework for Information. 

 

2. Methods and Analysis 

2.1. Reinterpreting Golomb Coding as Dimensional Projection 

Golomb coding, while traditionally described as a quotient–remainder decomposition, can be 
more deeply understood as a projectional mechanism. Let N +∈  be a non-negative integer, and 
let M +∈  be the Golomb parameter. We decompose N  as: 

,  mod N

M
q r N M = =  

 

yielding the pair 2( , )q r ∈ . This is a dimensional inflation: a scalar N  is lifted into a 2D lattice 
coordinate system where the entropy of the data is partially separated into a coarse-grained 
dimension q  and a fine-grained residue r . 

We then apply dimensional flattening: 



• q  is encoded via unary encoding, which efficiently represents frequent small values. 
• r  is encoded via binary encoding, optimized for minimal average code length given its 

bounded range [ ]0, 1M − . 

This process is a structured compression pipeline: 

{ }
inf *2( , ) 0,1

projectlate

N q r ∈→ →  

This reinterpretation highlights a key insight: Golomb compression works because it separates 
and flattens dimensions of structure that are entangled in the original 1D integer stream. It is a 
low-dimensional case of a far more general principle. 

 

2.2. Generalizing to 4D Compression 

I now propose a generalized compression framework based on 4-dimensional projection 
followed by structured flattening. The central mechanism consists of: 

Step 1: Projection 

Let { }1 2, ,..., nD s s s=  be a sequence of structured symbols from a domain-specific dataset. I 
define a feature mapping function: 

4
1 2 3 4: ( , ) ( , , , )is i d d d dΦ ∈   

where each dimension represents a distinct axis of latent structure: 

1d : Entropy or frequency class — how common the symbol is in context. 

2d : Positional or temporal bin — segmenting the data stream (e.g., frame, sentence, row). 

3d : Functional class — symbol role or domain-specific label (e.g., token type, codon 
category). 

4d : Residual or modular grouping — hash bucket, semantic cluster, or syntactic depth. 

Step 2: Flattening 

The 4D tuple is then encoded using entropy-aware, prefix-free encodings: 



1 2 3 4 1 1 2 2 3 3 4 4( , , , ) ( ) ( ) ( ) ( )C d d d d E d E d E d E d=  

Where each jE  is an encoding function (unary, binary, truncated binary, Huffman, arithmetic, 
etc.) selected based on the structure of dimension jd . 

The result is a compressed stream: 

1 2( ) ( ( )) ( ( )) ... ( ( ))nC D C s C s C s= Φ Φ Φ  
 

2.3. Example Applications Across Data Types 

This generalized framework adapts naturally to diverse domains by selecting appropriate axes for 
1 2 3 4( , , , )d d d d : 

Text (Natural Language or Code) 

1d : Symbol frequency (entropy bin) 

2d : Sentence or paragraph position 

3d : Token type (word, punctuation, keyword, identifier) 

4d : Contextual cluster (e.g., embedding bucket or syntax tree depth) 

DNA / RNA 

1d : Nucleotide or codon frequency 

2d : Relative gene position (start/middle/end) 

3d : Codon class (e.g., synonymous amino acids) 

4d : Motif or repeat class (e.g., via hash or alignment) 

Images 

1d : Intensity histogram class 

2d : Pixel row or region 



3d : Color channel (R/G/B or other space) 

4d : Texture or frequency-based cluster (e.g., DCT bin) 

Audio 

1d : Frequency band (e.g., from FFT) 

2d Time frame/window index 

3d : Instrument or voice identifier (if known) 

4d : Harmonic or envelope-based grouping 

Video 

1d : Pixel block entropy 

2d : Frame number or shot segment 

3d : Motion vector class or optical flow cluster 

4d : Scene object or region type 

These mappings are not rigid—they are suggestions of axes that expose hidden structure. The 
core principle is dimensional separation of entangled information, followed by entropy-aligned 
re-flattening. 

Axis Distribution Recommended 
Encoding Why 

1d : frequency / 
entropy bin 

Skewed, small 
integers dominate Unary or Golomb-style Emphasize low values, 

reduce entropy 

2d : position / 
temporal band 

Uniform or range-
bounded Truncated binary Efficient and 

predictable 

3d : class/type 
bucket 

Small categorical set Huffman or binary Leverages symbol 
probability 

4d : hash/modular 
group 

May be uniform or 
arbitrary 

Fixed-width binary or 
entropy code 

Depends on domain 
structure 

 



You might use Huffman for 3d  if it's a small set with uneven probabilities. You might use 
arithmetic coding across all dimensions if extreme optimization is required. You could even use 
learned codes (e.g., from neural entropy models) to employ modern methods. 

 

2.4. Possible Advantages of the 4D Projection Framework 

1. Universality: Works across data types with no need for domain-specific compression 
logic. 

2. Structure awareness: Reveals and leverages deep structure beyond symbol frequency. 
3. Prefix-free and entropy-aware: Encodings remain lossless and efficient. 
4. Composable: Can be layered with entropy coders (e.g., Huffman, arithmetic) for 

additional gains. 
5. Interpretability: Offers insight into why compression works—by mapping informational 

axes explicitly. 

 

3. Discussion and Future Work 

This paper proposes a reinterpretation of Golomb coding as a form of dimensional projection, 
and extends that idea into a generalized 4D compression framework. Golomb’s original 
formulation was shaped by practical constraints and simple arithmetic. However its structure—
decomposing a value into coarse and fine components, then encoding each separately—suggests 
an underlying geometric logic. If true, compression is not merely a symbolic or statistical act, but 
a projection from higher-dimensional structure into a lower-dimensional representation 
optimized for entropy. 

The 4D framework outlined here is intended as a theoretical model, not a completed system. No 
empirical tests or benchmarking results are provided. The goal is not to claim superiority over 
existing algorithms, but to propose a new way of thinking about compression—as the separation 
and re-flattening of structured information across orthogonal axes. I suggest that the framework 
builds naturally on the ideas present in Golomb coding, extending them to more complex data 
types and informational geometries. While I suggest 4 axes of information projection, it could 
easily be applied to any arbitrary number of dimensions.  

Several open questions remain. Most importantly, the practical utility of this approach will 
depend on the ability to: 

1. Identify and extract meaningful structural dimensions in real-world datasets, 
2. Select appropriate encodings per axis that respect domain-specific entropy distributions, 
3. Implement encoding and decoding systems that remain efficient and scalable. 



In future work, this framework could be tested on structured domains such as symbolic music, 
source code, biological sequences, and semantically annotated text—domains where traditional 
compression methods often fall short due to their lack of structural awareness. 

While this framework is intentionally abstract, it may offer insight into why certain compression 
algorithms—such as DEFLATE, LZ77, LZMA, and Brotli—perform well across diverse data 
types. These algorithms often rely on sliding windows, token substitution, and entropy encoding 
mechanisms. These could all be interpreted as implicit projections into local spatial, temporal, or 
syntactic structures. The projectional model proposed here makes those steps explicit and 
generalizable. This may offer a way to formalize and extend the intuitive dimensional operations 
that these systems seem to perform already. 

This proposal is ultimately an invitation: to rethink compression not just as a tool for saving 
space, but as a window into the geometry of information itself. 

 

4. Conclusion 

This paper has introduced a projection-based interpretation of Golomb coding and proposed a 
generalized framework for compression that treats informational data as inherently 
multidimensional. By lifting structured inputs into higher-dimensional feature space and then 
flattening them through entropy-aware encoding, the framework aims to capture latent structure 
often missed by frequency-based methods. While purely theoretical at this stage, the approach 
offers a potentially unifying perspective that may complement or extend existing techniques. 
Further work is needed to better formulate and evaluate its practical value, but the underlying 
idea—that compression reflects the geometry of information—may prove useful across a broad 
range of domains. 
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