
Project Management
with Git-BCS358C
GitHub is a web-based platform used primarily
for version control and collaborative software
development. It is built around Git, an open-
source version control system that tracks
changes in files and allows multiple people to
work on a project simultaneously without
interfering with each other's work.GitHub is
widely used by individual developers, teams,
and large organizations to collaborate on
projects, share code, and contribute to open-
source software.

THIRD SEMESTER
B.E DEGREE 2024

Dr. NAVEED
Assistant Professor
GITW-Bengaluru

MORE INFORMATION
www.github.com

GHOUSIA INSTITUTE OF TECHNOLOGY
FOR WOMEN

NEAR DAIRY CIRCLE, HOSUR ROAD, BENGALURU-560029, KARNATAKA
AFFILIATED TO VTU., BELAGAVI, RECOGNIZED BY GOVERNMENT OF KARNATAKA & A.I.C.T.E., NEW DELHI

GHOUSIA INSTITUTE OF TECHNOLOGY

FOR WOMEN

Near Dairy Circle, Hosur Road, Bengaluru , Karnataka 560029

Affiliated to VTU., Belagavi, Recognized by Government of Karnataka & A.I.C.T.E., New Delhi

PROJECT MANAGEMENT WITH GIT

 (BCS358C)

As per 2022 Scheme Syllabus Prescribed by V.T.U.

For

 THIRD SEMESTER

COMPUTER SCIENCE & ENGINEERING / INFORMATION SCIENCE & ENGINEERING

(Bachelor of Engineering)

Dr.NAVEED M.Tech., PhD.

Assistant Professor

Department of Computer Science & Engineering

 PROJECT MANAGEMENT WITH GIT/ BCS358C/THIRD SEMESTER / BACHELOR OF ENGINEERING

Dr.NAVEED / Assistant Professor / Department of Computer Science & Engineering / Ghousia Institute of Technology for Women,
Bengaluru

GHOUSIA INSTITUTE OF TECHNOLOGY FOR WOMEN
Near Dairy Circle, Hosur Road, Bengaluru-560029, KARNATAKA

Affiliated to VTU., Belagavi, Recognized by Government of Karnataka & A.I.C.T.E., New Delhi

PROJECT MANAGEMENT WITH GIT / BCS358C / THIRD SEMESTER / B.E DEGREE / 2024-25

This is to certify that Miss._____________________________________bearing

USN________________________of __________________________________ Branch completed the

academic requirements for the practical course work titled “PROJECT MANAGEMENT WITH GIT/

BCS358C” of THIRD SEMESTER B.E, prescribed by Visvesvaraya Technological University ,

Belagavi, for the academic year 2024-25. The details of Mark’s obtained by the candidate is given below.

Sl.No Particulars Max.Marks
(Execution+Record)

Marks

Obtained

Page

No

Staff

Sign

1 Expt-01
Basic Setup and Creation of a New

Repository

5+5

 =

10

 11

2 Expt-02
To add README.md file into the

Repository
 15

3 Expt-03 Creating and Managing Branches 19

4 Expt-04
Merging of Feature-Branch into the Master

Branch
 26

5 Expt-05 Updating of files in the feature-branch 28

6 Expt-06 Light Weight and Annotated Tags 34

7 Expt-07 Analyzing GIT History 39

8 Expt-08 GIT Cherry-pick and Revert 44

9 Expt-09 Git in VS Code 56

10 Expt-10 VS Code and Github (cloning of repository) 65

11 Expt-11
VS Code and Github (creating of new

repository)
 78

12 Assignment Experiments 20+20 = 40 86

Total Marks-A 150

Test Marks-B 100

Final Internal Assessment Mark’s.

[(A*30)/150] +

(B*20%) =

50

Internal Assessment Marks Awarded in Words: __

Signature of Staff Incharge with Date:

Template for Practical Course and if AEC is a practical Course Annexure-V

 Project Management with Git Semester 3

Course Code BCS358C CIE Marks 50

Teaching Hours/Week (L:T:P: S) 0: 0 : 2: 0 SEE Marks 50

Credits 01 Exam Marks 100

Examination type (SEE) Practical

Course objectives:

● .To familiar with basic command of Git

● To create and manage branches

● To understand how to collaborate and work with Remote Repositories

● To familiar with virion controlling commands

Sl.NO Experiments

1 Setting Up and Basic Commands

Initialize a new Git repository in a directory. Create a new file and add it to the staging area

and commit the changes with an appropriate commit message.

2 Creating and Managing Branches

Create a new branch named "feature-branch." Switch to the "master" branch. Merge the

"feature-branch" into "master."

3 Creating and Managing Branches

Write the commands to stash your changes, switch branches, and then apply the stashed

changes.

4 Collaboration and Remote Repositories

Clone a remote Git repository to your local machine.

5 Collaboration and Remote Repositories

Fetch the latest changes from a remote repository and rebase your local branch onto the

updated remote branch.

6 Collaboration and Remote Repositories

Write the command to merge "feature-branch" into "master" while providing a custom

commit message for the merge.

7 Git Tags and Releases

Write the command to create a lightweight Git tag named "v1.0" for a commit in your local

repository.

8 Advanced Git Operations

14.09.202315.09.2023

Template for Practical Course and if AEC is a practical Course Annexure-V

Write the command to cherry-pick a range of commits from "source-branch" to the current

branch.

9 Analysing and Changing Git History

Given a commit ID, how would you use Git to view the details of that specific commit,

including the author, date, and commit message?

10 Analysing and Changing Git History

Write the command to list all commits made by the author "JohnDoe" between "2023-01-01"

and "2023-12-31."

11 Analysing and Changing Git History

Write the command to display the last five commits in the repository's history.

12 Analysing and Changing Git History

Write the command to undo the changes introduced by the commit with the ID "abc123".

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

● Use the basics commands related to git repository

● Create and manage the branches

● Apply commands related to Collaboration and Remote Repositories

● Use the commands related to Git Tags, Releases and advanced git operations

● Analyse and change the git history

14.09.202315.09.2023

Template for Practical Course and if AEC is a practical Course Annexure-V

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.

The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the

SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be

deemed to have satisfied the academic requirements and earned the credits allotted to each subject/

course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE

(Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are 50 Marks.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

● Each experiment is to be evaluated for conduction with an observation sheet and record

write-up. Rubrics for the evaluation of the journal/write-up for hardware/software

experiments are designed by the faculty who is handling the laboratory session and are

made known to students at the beginning of the practical session.

● Record should contain all the specified experiments in the syllabus and each experiment

write-up will be evaluated for 10 marks.

● Total marks scored by the students are scaled down to 30 marks (60% of maximum

marks).

● Weightage to be given for neatness and submission of record/write-up on time.

● Department shall conduct a test of 100 marks after the completion of all the experiments

listed in the syllabus.

● In a test, test write-up, conduction of experiment, acceptable result, and procedural

knowledge will carry a weightage of 60% and the rest 40% for viva-voce.

● The suitable rubrics can be designed to evaluate each student’s performance and learning

ability.

● The marks scored shall be scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the

total CIE marks scored by the student.

Semester End Evaluation (SEE):

● SEE marks for the practical course are 50 Marks.

● SEE shall be conducted jointly by the two examiners of the same institute, examiners are

appointed by the Head of the Institute.

● The examination schedule and names of examiners are informed to the university before

the conduction of the examination. These practical examinations are to be conducted

between the schedule mentioned in the academic calendar of the University.

14.09.202315.09.2023

Template for Practical Course and if AEC is a practical Course Annexure-V

● All laboratory experiments are to be included for practical examination.

● (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer

script to be strictly adhered to by the examiners. OR based on the course requirement

evaluation rubrics shall be decided jointly by examiners.

● Students can pick one question (experiment) from the questions lot prepared by the

examiners jointly.

● Evaluation of test write-up/ conduction procedure and result/viva will be conducted

jointly by examiners.

● General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure

and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated

for 100 marks and scored marks shall be scaled down to 50 marks (however, based on

course type, rubrics shall be decided by the examiners)

● Change of experiment is allowed only once and 15% of Marks allotted to the procedure part

are to be made zero.

The minimum duration of SEE is 02 hours

Suggested Learning Resources:

● Version Control with Git, 3rd Edition, by Prem Kumar Ponuthorai, Jon Loeliger Released October 2022,

Publisher(s): O'Reilly Media, Inc.

● Pro Git book, written by Scott Chacon and Ben Straub and published by Apress, https://git-

scm.com/book/en/v2

● https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944433473699842782_shared

/overview

● https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01330134712177459211926_share

d/overview

14.09.202315.09.2023

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944433473699842782_shared/overview
https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944433473699842782_shared/overview

1

 INRODUCTION TO GIT

Git is a distributed version control system designed to handle everything from small to very large

projects with speed and efficiency. It was created by Linus Torvalds in 2005 for the development

of the Linux kernel.

AboutVersionControl

Whatis―versioncontrol‖,andwhyshouldyoucare?Versioncontrolisa system that

recordschangestoafileorsetoffilesovertimesothatyoucanrecallspecificversionslate

r.Fortheexamplesinthisbook,youwillusesoftwaresourcecodeasthefiles being

version

controlled,thoughinrealityyoucandothiswithnearlyanytypeoffileonacomputer.

Ifyouareagraphicorwebdesignerandwanttokeepeveryversionofanimageorlayout(

whichyou would most certainly want to), a Version Control System (VCS) is a

very wise thing to use.

Itallowsyoutorevertselectedfilesbacktoapreviousstate,reverttheentireprojectback

to

apreviousstate,comparechangesovertime,seewholastmodifiedsomethingthatmigh

tbecausingaproblem,whointroducedanissueandwhen,andmore.UsingaVCSalsog

enerallymeansthatifyou screw things up or lose files, you can easily recover. In

addition, you get all this for very littleoverhead.

LocalVersionControlSystems

Many people‘s version-control method of choice is to copy files into another

directory (perhaps atime-stamped directory, if they‘re clever). This approach is

very common because it is so simple,

butitisalsoincrediblyerrorprone.Itiseasytoforgetwhichdirectoryyou‘reinandaccid

entallywritetothewrongfileorcopyoverfilesyoudon‘tmeanto.

To deal with this issue, programmers long ago developed local VCSs that had a simple

database thatkeptallthechangestofilesunderrevisioncontrol.

2

Figure1.Localversioncontroldiagram

One of the most popular VCS tools was a system called RCS, which is still

distributed with manycomputers today. RCS works by keeping patch sets (that

is, the differences between files) in a specialformatondisk;itcanthenre-

createwhatanyfilelookedlikeatanypointintimebyaddingupallthepatches.

CentralizedVersionControlSystems

Thenextmajorissuethatpeopleencounteristhattheyneedtocollaboratewithdevelope

rsonothersystems.Todealwiththisproblem,CentralizedVersionControlSystems(C

VCSs)weredeveloped. These systems (such as CVS, Subversion, and Perforce)

have a single server that containsall the versioned files, and a number of clients

that check out files from that central place. For

manyyears,thishasbeenthestandardforversioncontrol.

Figure2.Centralizedversioncontroldiagram

This setup offers many advantages, especially over local VCSs. For example,

everyone knows to acertain degree what everyone else on the project is doing.

Administrators have fine-grained controlover who can do what, and it‘s far

easier to administer a CVCS than it is to deal with local databasesoneveryclient.

However, this setup also has some serious downsides. The most obvious is the

single point of failurethat the centralized server represents. If that server goes

https://www.gnu.org/software/rcs/

3

down for an hour, then during that hournobody can collaborate at all or save

versioned changes to anything they‘re working on. If the harddisk the central

database is on becomes corrupted, and proper backups haven‘t been kept, you

loseabsolutely everything — the entire history of the project except whatever

single snapshots peoplehappens to have on their local machines. Local VCSs

suffer from this same problem — whenever

youhavetheentirehistoryoftheprojectinasingleplace,yourisklosingeverything.

DistributedVersionControlSystems

This is where Distributed Version Control Systems (DVCSs) step in. In a

DVCS (such as Git, Mercurialor Darcs), clients don‘t just check out the latest

snapshot of the files; rather, they fully mirror

therepository,includingitsfullhistory.Thus,ifanyserverdies,andthesesystemswere

collaboratingvia that server, any of the client repositories can be copied back up

to the server to restore it. Everycloneisreallyafullbackupofallthedata.

Figure3.Distributedversioncontroldiagram

Furthermore, many of these systems deal pretty well with having several remote

repositories

theycanworkwith,soyoucancollaboratewithdifferentgroupsofpeopleindifferentw

ayssimultaneously within the same project. This allows you to set up several

types of workflows

thataren‘tpossibleincentralizedsystems,suchashierarchicalmodels.

4

AShortHistoryofGit

Aswithmanygreatthingsinlife,Gitbeganwithabitofcreativedestructionandfierycontroversy.

The Linux kernel is an open-source software project of fairly large scope.

During the early years ofthe Linux kernel maintenance (1991–2002), changes to

the software were passed around as

patchesandarchivedfiles.In2002,theLinuxkernelprojectbeganusingaproprietary

DVCS calledBit Keeper.

In2005,therelationshipbetweenthecommunitythatdevelopedtheLinuxkernelandth

ecommercialcompanythatdevelopedBit Keeperbrokedown,andthetool‘sfree-of-

chargestatuswasrevoked.ThispromptedtheLinuxdevelopmentcommunity(andinp

articularLinusTorvalds,thecreatorofLinux)todeveloptheirowntoolbasedonsomeo

fthelessonstheylearnedwhileusingBit

Keeper.Someofthegoalsofthenewsystemwereasfollows:

• Speed

• Simpledesign

• Strongsupportfornon-lineardevelopment(thousandsofparallelbranches)

• Fullydistributed

• AbletohandlelargeprojectsliketheLinuxkernelefficiently(speedanddatasize)

Since its birth in 2005, Git has evolved and matured to be easy to use and yet

retain these initialqualities.It‘samazinglyfast,it‘sveryefficientwithlargeprojects,

and it has an incrediblebranchingsystemfornon-

lineardevelopment(seeGitBranching).

WhatisGit?

So, what is Git in a nutshell? This is an important section to absorb, because if

you understand whatGit is and the fundamentals of how it works, then using Git

effectively will probably be much

easierforyou.AsyoulearnGit,trytoclearyourmindofthethingsyoumayknowaboutot

herVCSs,suchas CVS, Subversion or Perforce — doing so will help you avoid

subtle confusion when using the tool.Even though Git‘s user interface is fairly

similar to these other VCSs, Git stores and thinks

aboutinformationinaverydifferentway,andunderstandingthesedifferenceswillhel

pyouavoidbecomingconfusedwhileusingit.

Snapshots,NotDifferences

ThemajordifferencebetweenGitandanyotherVCS(Subversionandfriendsincluded)isthewa

yGit thinks about its data. Conceptually, most other systems store information as a list

of file-basedchanges. These other systems (CVS, Subversion, Perforce, and so on) think

5

of the information theystore as a set of files and the changes made to each file over time

(this is commonly described asdelta-basedversioncontrol).

Figure4.Storingdataaschangestoabaseversionofeachfile

Git doesn‘t think of or store its data this way. Instead, Git thinks of its data

more like a series ofsnapshots of a miniature filesystem. With Git, every time

you commit, or save the state of yourproject, Git basically takes a picture of

what all your files look like at that moment and stores areference to that

snapshot. To be efficient, if files have not changed, Git doesn‘t store the file

again,just a link to the previous identical file it has already stored. Git thinks

about its data more like astreamofsnapshots.

Figure5.Storingdataassnapshotsoftheprojectovertime

ThisisanimportantdistinctionbetweenGitandnearlyallotherVCSs.ItmakesGitreco

nsideralmosteveryaspectofversioncontrolthatmostothersystemscopied from the

previousgeneration. This makes Git more like a mini filesystem with some

incredibly powerful tools built

ontopofit,ratherthansimplyaVCS.We‘llexploresomeofthebenefitsyougainbythin

kingofyourdatathiswaywhenwecoverGitbranchinginGitBranching.

NearlyEveryOperationIsLocal

Most operations in Git need only local files and resources to operate —

generally no information isneeded from another computer on your network. If

you‘re used to a CVCS where most

operationshavethatnetworklatencyoverhead,thisaspectofGitwillmakeyouthinkth

atthegodsofspeedhave blessed Git with unworldly powers. Because you have

6

the entire history of the project

rightthereonyourlocaldisk,mostoperationsseemalmostinstantaneous.

Forexample,tobrowsethehistoryoftheproject,Gitdoesn‘tneedtogoouttotheserv

ertogetthehistory and display it for you — it simply reads it directly from your

local database. This means yousee the project history almost instantly. If you

want to see the changes introduced between

thecurrentversionofafileandthefileamonthago,Gitcanlookupthefileamonthago

anddoalocaldifference calculation, instead of having to either ask a remote

server to do it or pull an

olderversionofthefilefromtheremoteservertodoitlocally.

This also means that there is very little you can‘t do if you‘re offline or off

VPN. If you get on

anairplaneoratrainandwanttodoalittlework,youcancommithappily(toyourlocal

copy,remember?) until you get to a network connection to upload. If you go

home and can‘t get your VPNclient working properly, you can still work. In

many other systems, doing so is either impossible orpainful. In Perforce, for

example, you can‘t do much when you aren‘t connected to the server;

inSubversionandCVS,youcaneditfiles,butyoucan‘tcommitchangestoyourdatabas

e(becauseyour database is offline). This may not seem like a huge deal, but you

may be surprised what a bigdifferenceitcanmake.

GitHasIntegrity

Everything in Git is check summed before it is stored and is then referred to by

that checksum. Thismeans it‘s impossible to change the contents of any file or

directory without Git knowing about it.This functionality is built into Git at the

lowest levels and is integral to its philosophy. You can‘t

loseinformationintransitorgetfilecorruptionwithoutGitbeingabletodetectit.

mechanism that Git uses for this checksumming is called a SHA-1 hash. This is a 40-

characterstring composed of hexadecimal characters (0–9 and a–f) and calculated based

on the contents of afileordirectorystructureinGit.ASHA-1hashlookssomethinglikethis:

Youwill seethesehash valuesall overtheplace in Git because it uses

themsomuch. Infact,

Gitstoreseverythinginitsdatabasenotbyfilenamebutbythehashvalueofitscontents.

Git GenerallyOnlyAdds Data

When you do actions in Git, nearly all of them only add data to the Git

database. It is hard to get thesystem to do anything that is not undoable or to

7

make it erase data in any way. As with any VCS,

youcanloseormessupchangesyouhaven‘tcommittedyet,butafteryoucommitasnaps

hotintoGit,itisverydifficulttolose,especiallyifyouregularlypushyourdatabasetoan

otherrepository.

This makes using Git a joy because we know we can experiment without the

danger of severelyscrewingthingsup.Foramorein-

depthlookathowGitstoresitsdataandhowyoucanrecoverdatathatseemslost,seeUnd

oingThings.

TheThreeStates

Pay attention now — here is the main thing to remember about Git if you want

the rest of yourlearning process to go smoothly. Git has three main states that

your files can reside in: modified,staged,andcommitted:

• Modifiedmeansthatyouhavechangedthefilebuthavenotcommittedittoyourdatabaseyet.

• Stagedmeansthatyouhavemarkedamodifiedfileinitscurrentversiontogointoyo

urnextcommitsnapshot.

• Committedmeansthatthedataissafelystoredinyourlocaldatabase.

ThisleadsustothethreemainsectionsofaGitproject:theworkingtree,thestagingarea,

andtheGitdirectory.

Figure6.Workingtree, staging area, andGitdirectory

The working tree is a single checkout of one version of the project. These files

are pulled out of

thecompresseddatabaseintheGitdirectoryandplacedondiskforyoutouseormodify.

Thestagingareaisafile,generallycontainedinyourGitdirectory,thatstoresinformati

onaboutwhat will go into your next commit. Its technical name in Git parlance

is the ―index‖, but the phrase―stagingarea‖worksjustaswell.

8

The Git directory is where Git stores the metadata and object database for your

project. This is themost important part of Git, and it is what is copied when

youclone a repository from anothercomputer.

ThebasicGitworkflowgoessomethinglikethis:

1. Youmodifyfilesinyourworkingtree.

2. Youselectivelystagejustthosechangesyouwanttobepartofyournextcommit,whichadds

onlythosechangestothestagingarea.

3. Youdoacommit,whichtakesthefilesastheyareinthestagingareaandstoresthatsn

apshotpermanentlytoyourGitdirectory.

IfaparticularversionofafileisintheGitdirectory,it‘sconsideredcommitted.Ifithasbe

enmodified and was added to the staging area, it is staged. And if it was

changed since it was

checkedoutbuthasnotbeenstaged,itismodified.InGitBasics,you‘lllearnmoreaboutt

hesestatesandhowyoucaneithertakeadvantageofthemorskipthestagedpartentirely.

Uses of Git

1. Collaboration.

 Teams: Multiple developers can work on the same project simultaneously without conflicts.

Open Source: Git is popular in the open-source community, allowing developers from around

the world to contribute to a project.

2. Tracking Changes

 History: Git maintains a history of changes, which can be reviewed and reverted if necessary.

Blame: Identify who made specific changes to the code and when they were made.

3. Branching and Merging

Feature Development: Developers can create separate branches for new features, bug fixes, or

experiments without affecting the main codebase.

Code Reviews: Changes can be reviewed in branches before merging them into the main

branch.

4. Backup and Restore

Local Repositories: Each user has a complete copy of the repository, providing a backup of

the project.

Remote Repositories: Remote repositories (like those hosted on GitHub, GitLab, or

Bitbucket) provide additional backups and a centralized place to push changes.

5. Continuous Integration/Continuous Deployment (CI/CD)

Automation: Git can be integrated with CI/CD pipelines to automate testing, building, and

deployment processes whenever changes are pushed to the repository.

6. Documentation

9

README Files: Git repositories often include README files that provide information

about the project, how to set it up, and how to contribute.

Wikis: Many Git hosting services provide integrated wikis for detailed documentation.

Git is a powerful tool that has become essential for modern software development, enabling

efficient collaboration, robust change tracking, and streamlined workflows.

InstallingGit

Before you start using Git, you have to make it available on your computer.

Even if it‘s

alreadyinstalled,it‘sprobablyagoodideatoupdatetothelatestversion.Youcaneitheri

nstallitasapackageorviaanotherinstaller,ordownloadthesourcecodeandcompileity

ourself.

InstallingonWindows

Therearealsoafew ways to install Git on Windows.The most official build is

available fordownloadontheGitwebsite.Justgo tohttps://git-

scm.com/download/winand the download willstartautomatically.Notethatthisis a

project called Git for Windows, which is separate from

Gititself;formoreinformationonit,gotohttps://gitforwindows.org.

To get an automated installation you can use the Git Chocolatey package. Note

that the Chocolateypackageiscommunitymaintained.

OR to Download click below link

https://drive.google.com/file/d/1H9ZMW2lZnqNngLv-

PTXSbUUXPas56IVw/view?usp=sharing

Go through the installation process by clicking Next for all the steps at the last click on Launch

GitBash

https://git-scm.com/download/win
https://git-scm.com/download/win
https://gitforwindows.org/
https://community.chocolatey.org/packages/git
https://drive.google.com/file/d/1H9ZMW2lZnqNngLv-PTXSbUUXPas56IVw/view?usp=sharing
https://drive.google.com/file/d/1H9ZMW2lZnqNngLv-PTXSbUUXPas56IVw/view?usp=sharing

10

Click on Finish.

11

$ git config --global user.name "Dr.NAVEED"

$ git config --global user.email naveed.gce@gmail.com

EXPERIMENT-01 Basic Setup and Creation of a New Repository

Aim:

1. To create a new repository ―1WT23CS000‖ under any disc drive such as Z drive and also a sub

repository ―aboutMyself‖.

2. To make the default branch as master branch in some systems it is main branch.

3. To launch the git and enter the user configurations like name, email ID.

First-TimeGitSetup

To make the background color white and to make the theme Kohlrausch.

NowthatyouhaveGitonyoursystem,you‘llwanttodoafewthingstocustomizeyourGitenviro

nment. You should have to do these things only once on any given computer; they‘ll

stickaroundbetweenupgrades.Youcanalsochangethematanytime by running through

thecommandsagain.

YourIdentity

ThefirstthingyoushoulddowhenyouinstallGitistosetyourusernameandemailaddress.Thisis

important because every Git commit uses this information, and it‘s immutably baked

into thecommitsyoustartcreating:

Again,youneedtodothisonlyonceifyoupassthe--

globaloption,becausethenGitwillalwaysuse that information for anything you do on

that system. If you want to override this with

adifferentnameoremailaddressforspecificprojects,youcanrunthecommandwithoutthe-

12

-globaloptionwhenyou‘reinthatproject.

CheckingYourSettings

Ifyouwanttocheckyourconfigurationsettings,youcanusethegitconfig--

listcommandtolistallthesettingsGitcanfindatthatpoint:

It will show:

It will show all details and at the end user name and email ID will be highlighted. If

only user nameis required then git config user.name will be used.

To check email of the user use git config user.email

To clear the screen, use clear. Alternatively, you can use the keyboard shortcut Ctrl + L which

also clears the screen in most terminal emulators, including Git Bash.

13

To Create a New Repository (Folder): By name “1WT23CS000”.

First specify in which drive of your computer you want to create the new repository for Example

‗Z‘ Drive

In the next line you can see that Z drive is highlighted.

 To create a new repository by name 1WT23CS000

To switch to the new repository

You can see now

To create a sub folder ― aboutMyself‖ inside the main folder

To shift to the subfolder

Now you can see

Once the repository is created initialize the git:

It will make master branch as default branch.

14

OUTPUT:

15

EXPERIMENT No: 02 To add README.md file into the Repository

Aim:

1. To add README.md file into the repository /z/1WT23CS000/aboutMyself under master branch.

2. To add the contents given below:

3. To commit with a message ―Contents updated successfully‖

First get back to the repository by using:

Now the repository is ready:

To Add README.md file inside the sub folder

To check the file added:

It will show:

Note:Some times if it shows some error like Z drive is unsafe directory then to make it safe use:

If git add command shows some error, then use:

This command creates a file named README.md but it will be untraced. To make it traced use

mailto:naveed.gce@gmail.com

16

To open the README.md file.

An empty file will open. Type the below sample data:

To save:Ctrl+S

To Exit: Ctrl+X

To check the contents of the README.md File

It will highlight the contents of the file

To edit or modify the contents of the README.md file the same above procedure may be

adopted.

The data will be updated. But it will not be committed in the git. If we check the status:

It will show changes to be committed with a new file README.md highlighted in green color.

17

To commit the above with a message ―Added README.md file with basic data successfully‖

And then use

It will show you the message:

If you want to check the status:

It will show you nothing to commit, working tree clean:

`git add .` is used in Git to stage all changes in the current directory and its subdirectories for the

next commit. When you make changes to files in your Git repository, these changes are initially

considered "unstaged" or "untracked." Staging files with `git add .` prepares these changes to be

included in the next commit snapshot of your project.

Here‘s a breakdown of what `git add .` does:

Staging Changes: It adds all modified (tracked) files and all new files (untracked) to the staging

area.

Recursive Operation: The `.` represents the current directory and its subdirectories, so `git add .`

recursively adds changes from all directories and subdirectories.

Efficiency: It's a convenient shortcut to stage multiple files and changes quickly without

specifying each file individually.

After staging changes with `git add .`, you typically follow up with `git commit` to permanently

store those changes in the Git repository history.

18

OUTPUT:

19

Experiment_03 Creating and Managing Branches

Aim:

1. To create a new branch named "feature-branch‖.

2. To add a text file ―aboutMyself.txt‖ into the repository /1WT23CS000/aboutMyself .

3. To add the contents into the text file given below:

















4. To commit a message ―Added text file aboutMyself.txt successfully‖.

Normally the default branch will be master branch or in some system it will be main branch.

During the development stage it is desirable to create a new branch with any name and add all

the required files in it and carry on the process. Whatever the files added into the master branch

it will be visible in the new branch.But if we create a new file in new branch such as feature-

branch it will not be highlighted in master branch. Even if we modify the content of the file of

master branch in the new feature-branch it will not be updated until merged.

To create a new branch ―feature-branch‖:

First open the repository by using:

It will show:

By default, it will be master branch or in some case it will be main branch. To check out which

branch the current repository belongs use:

It will show

Though the type of branch will be normally highlighted under () in the drive itself.But still it is

required to checkout, the above can be used.

To create a new branch ―feature-branch‖:

Let us check whether the branch is created or not by using:

It will show:

20

Now we can see there are two branches.It will highlight the number of branches available with

the active branch shown in green color with * symbol

To shift to the new branch created:

It will shift to the new branch

If we check the number of files available in feature-branch by using

It shows:

It is shows README.md file which was created in master branch.If the check the contents of the

README.md file by using:

It shows:

Therefore, whatever files that were created in master branch are also available in the feature-

branch with the same contents.

But if we modify the contents of README.md file in feature-branch, will it get reflected in

master branch?

/**********/

/* For Knowledge Purpose Not for Record Writing */

 Let us checkout.

Remove Email ID from the file README.md available in feature-branch by using:

It shows:

21

Remove Email from the above and save the file.

Again, let us check the content by using:

It shows:

Therefore, there is no Email present in the above content. Now if we check the status by using:

It shows:

It tells us to save it with committed message. Let us save by committing a message ―Removed

Email Successfully from README.md‖

22

Now let us switch back to the master branch and check the contents of the same file

README.md by using:

It will get switched to master branch

Now let us check the contents of README.md file by using:

It shows:

We can see that the Email which was deleted in feature-branch is not deleted in master branch.

Therefore, if we want to update it into the master branch as well then git-merging will be used.

It shows

Now if we check the contents of README.md file in master branch by using

It shows:

23

Now we can see that after merging the contents are updated and we don‘t find Email in the above

content.

/*********/

To Create a new text file by name “aboutMyself.txt”

It shows some error.

To solve the error, let us add an untraced file by using

Then we will use

It will show some warning related to operating system. Just ignore it.

Now if we check the number of files available:

It shows two files available.

Add the contents by using:

A file will open, type the contents and save with Ctrl+S and exit by using Ctrl+X.





24













To check the contents of the file use:

It shows:

Save the file by committing a message ―Added aboutMyself.txt file successfully‖

Now let us find whether the same file is added into the master branch with same contents.

Here we don‘t find the file aboutMyself.txt which was created in feature-branch.

25

If we check the status,

It will show a message of working tree clean:

OUTPUT:

26

Experiment-04: Merging of Feature-Branch into the Master Branch:

Aim:

To merge feature-branch into the master branch

Now let us find whether the same file is added into the master branch with same contents.

Here we don‘t find the file aboutMyself.txt which was created in feature-branch.

To make the file aboutMyself.txt available in master branch git merging is used:

It shows:

Now if we check the files available in master branch by using:

It shows two files.

Now if we check the contents of aboutMyself.txt file by using:

It shows:

Commit the above with a message by using:

27

Merging feature branches into the main branch is a fundamental practice in modern software

development. It ensures that new features and improvements are regularly integrated, tested, and

made available to all team members, leading to a more robust and maintainable codebase. By

following best practices, teams can effectively manage their development process and deliver

high-quality software.

OUTPUT:

28

Experiment-05: Updating of files in the Feature-Branch

Aim:

1. To add the Qualification Details given Below into the file ―aboutMyself.txt‖ of the feature-

branch:

UG Degree: B.E – Mechanical Engineering

PG Degree:M.Tech – Manufacturing

PhD Degree: Materials Science

2. To commit the above with a message ―Added Qualification Details Successfully‖

3. To merge the feature-branch with the master branch and commit with a message ―Merged the

feature-branch Successfully and updated the file with Qualification Details‖.

4. To delete the feature-branch if no longer needed.

5. To get back the deleted feature-branch

Before proceeding checkout to the feature-branch from master branch by using:

It will get shifted to feature-branch

Let us checkout the number of files available by using:

It shows two files:

Now let us checkout the contents of the file ―aboutMyself.txt ‖ by using:

It shows:

To the above add the following data:

UG Degree: B.E – Mechanical Engineering

PG Degree:M.Tech – Manufacturing

PhD Degree: Materials Science

By using:

It will open a GNU file window as shown below:

29

Now type the above data. Save the data with Ctrl+S and exit the screen using Ctrl+X

Now let us check the data

It shows:

We can see the data is updated. If we check the status by using:

It shows that the file is modified but it is not committed. added. To commit with a message. To

commit with a message use:

Now if we check the status:

The working tree is clean.

Now let us check whether in master branch the data is updated or not. We will shift to the master

branch and checkout the contents of the file aboutMyself.txt

30

We can see that the contents of the file aboutMyself.txt are not updated in the master branch. To

update the contents git-merging will be used as shown below:

It will merge the contents of the file aboutMyself.txt present in feature-branch. It shows:

Now if we check the contents

It will show:

Now we can see that the contents are now updated after merging.

Note: If it shows some conflict resolve the issue and then proceed.

31

To delete feature-branch:

First, we will check no. of branches available by using:

It shows two branches with master branch in active mode.

To delete we will use:

It will show:

If we check the number of branches available by using:

It will show:

It shows only one branch i.e., master branch.

To get back the feature-branch:

To get back the deleted feature-branch use:

It will restore and get back to the feature-branch:

Now if we check the number of branches available:

It shows two branches. Now let us check the number of files available in feature-branch

It shows the same two files that were available before deleting the branch. Let us check the

contents of aboutMysellf.txt file:

32

It shows the same contents which were available before deleting.

Note: Always download the updated version of git bash. In some version it will show some

reference code when ―git reflog‖ command is used. Then to restore the deleted branch ―git

checkout -b feature-branch ref. code‖ command will be used.

OUTPUT:

33

34

Experiment-06: Light Weight and Annotated Tags

Aim:

1. To update the file ―README.md‖ and add ―Date of Joining to GITW: 1
st
 Oct-2023‖ to it under

the repository /1WT23CS000/aboutMyself under master branch.

2. To commit with a message ―My Date of Joining to GITW Updated successfully‖

3. To add a light weight tag v1.0 into file ―README.md‖

4. To add an Annotated tag v2.0 with a message ―My Date of Joining to GITW‖ into the same file

In Git, there are two main types of tags:

1. Lightweight Tags

2. Annotated Tags
Each type serves different purposes and has different characteristics.

1. Lightweight Tags

Lightweight tags are simple and act like a pointer to a specific commit. They are just a name

(like a branch) that points to a specific commit. Lightweight tags do not contain any additional

metadata such as the tagger name, date, or a tagging message.

Characteristics:

 Simple and fast to create.

 Do not store any additional information beyond the commit they point to.

 Similar to a branch that doesn‘t change.

Lightweight tags are useful when you just want to mark a specific point in your history, such as a

commit representing a release, without the need for additional metadata.

2. Annotated Tags

Annotated tags store additional metadata, including the tagger‘s name, email, date, and a tagging

message. They are stored as full objects in the Git database, which makes them more robust and

verifiable.

Characteristics:

 Include metadata (tagger name, email, date, and message).

 Stored as full objects in the Git database.

 Can be signed with GPG to verify authenticity.

Annotated tags are suitable for marking releases or other significant milestones where you want

to include detailed information about the tag.

Summary

 Lightweight Tags: Simple, fast, and just a pointer to a commit. Created with git tag tagname.

 Annotated Tags: Contain metadata, are stored as full objects, and can be signed. Created with

git tag -a tagname -m "message".

Use lightweight tags for simple markers and annotated tags when you need more information and

robustness.

First ensure that we are in master branch. Let us checkout the number of files available in master

branch by using:

It will show:

It shows two files. Let us checkout the contents of the README.md file by using:

35

It shows:

Now to the above we will add a content such as ―My date of Joining to GITW‖ by using

It will open GNU screen. Add the data and save it and exit by using Ctrl+S and Ctrl+X.

Now if we check the contents.

We can see the contents are updated.

Now we will commit the above with a message ―My Date of Joining to GITW

Updatedsuccessfully‖ by using:

36

To add lightweight Tag v1.0 to the above committed message:

It will add the tag by name v1.0. Now to check whether it is added or not use:

It will show all the tags available

It shows one tag by name v1.0. Now let us check the contents of the tag v1.0 by using:

It will show:

We can see the committed message along with the contents added to the above file in last line

with green color.

Light wight tags will show only the committed message. It will not show the tagger name and its

details. For those Annotated tags are used as shown below:

To create Annotated tag v2.0 with a message “My Date of Joining to GITW”

Use the following code:

37

It will add an annotated tag v2.0. To check the number of tags available use:

It shows two tags. To check the contents of tag v2.0 use:

It will show:

It will show details with tagger name and its details:

OUTPUT:

38

39

Experiment-07: Analyzing GIT History

Aim:

1. To view the details of specific commit, including the author, date, and commit messageforthe

givencommit ID.

2. To display the commits made in master branch

3. To obtain details of the commit with full details such as Author name, Email, date, timings,

committed messagefor the given ID 44fcdcbof master branch

4. To display the commits made in feature-branch

5. To obtain details of the commit with full details such as Author name, Email, date, timings,

committed message for the given IDc3a5454of feature-branch

6. To write the command to list all commits made by the author "Dr. NAVEED" between "2024-

01-01"and "2024-12-31."

7. To write the command to display the last five commits in the repository's history for master

branch as well feature-branch.

First find out how many branches are available or how many branches were created other than

the default master branch by using:

It will show the available branches with current branch in green color.

To display commits made in master branch use:

It will show:

Note: Running the git log master --oneline command will show you a simplified, one-line-per-

commit log of the feature-branch. This is useful for quickly viewing the commit history in a

compact format.

To check committed details for the given ID44fcdcb:

It will show:

40

Author name, Email, Date,timings and committed messages are shown.

Similarly for feature-branch:

It will show:

Now for the given ID c3a5454use:

It will show.

41

To list all commits made by the author "Dr. NAVEED" between "2024-01-01" and "2024-

12-31."

It should be ―Year-Month-Day‖ format. It will show:

Note: Press Q to get back to coding.

If we require the details in brief just in one line then use:

It will show:

42

To display the last five commits in the repository's history for master branch:

It will show:

Note:To get full details avoid --oneline:

Similarly for feature-branch:

It will show:

OUTPUT:

43

44

Experiment-08: GIT Cherry-pick and Revert

Aim:

1. Create a new file ―bugfile.txt‖ in feature-branch and obtain the details such as day and

time of this file from master branch without merging it

2. To check committed message with date and time by using the reference ID in any branch

such as feature-branch for the ID: c3a5454 by using cherry-pick command. Resolve the

error if it exist.

3. To write the command to undo the changes introduced by the commit with the ID

"b5b6caf" in master branch. Change the committed message from ―Deleted data1.txt file

successfully‖ to Deleted data1.txt file successfully which was a dummy file for testing

purpose‖. Resolve the error if it exist.

The git cherry-pick command is used to apply the changes introduced by an existing commit

onto the current branch. It allows you to select a specific commit from one branch and apply it to

another branch, without merging the entire branch history. For example, if you want to add some

committed message done in feature-branch into the master branch without merging the feature-

branch into the master branch then git cherry-pick is helpful. This can be useful in a variety of

situations, such as:

1. Porting Specific Changes: If you've made a specific fix or feature in one branch and

want to apply it to another branch without merging all other changes from the source

branch, you can use git cherry-pick to apply just that commit.

2. Selective Backporting: When you need to backport, a bug fixes from a development

branch to a stable branch without including all other changes.

3. Undoing Changes: You can also use git cherry-pick in combination with a revert

commit to undo specific changes made by a particular commit.

To create a new file “bugfile.txt”:

First, we will shift to feature-branch by using

To add a bugfile.txt in feature-branch use:

It shows some error: We will use echo >bugfile.txt and then use git add

It will add an untraced file bugfile.txt. To trace it and add it use:

It will show:

45

Ignore the warning as it is related to type of operating system.Now if we check the number of

files.

We can see bugfile.txt is added. If we check the status:

It shows new file and it will ask to commit. To commit with a message "Added bugfile.txt

successfully with confidential information" use:

Now if we check the status

Everything is fine.Now to check this committed message in master branch without merging

feature-branch into master branch, we will shift to master branch.

Let us find out the history of feature-branch to get the reference ID related to bugfile.txt by

using:

It will show:

From the above we got the ID as: fd00805. By using

46

We can get information about the time and date details of the bugfile.txt inserted into the feature-

branch. It shows

Now if we check the history of master branch

We can see that the committed message added in feature-branch related to bugfile.txt is now

saved in master branch.

Therefore, date and time of the bugfile.txt is obtained successfully without merging feature-

branch into the master branch by using git cherry-pick.

To check committed message with date and time by using the reference ID in any branch

such as feature-branch in the above ID c3a5454by cherry-pick command:

Use git cherry-pick command for thegiven IDin feature-branch: as shown below

First, we will use:

To check the details of the committed message with date and time for the above ID use:

It will show the details if no error found. If error found it will show the error.

47

It tells that the cherry-pick is now empty due to conflict resolution. Follow the instruction given

above. We will use git commit --allow-empty. A window will open as shown below:

The committed message is shown in brown color. If you want to modify the message it can be

modified or else keep as such.

48

To get back to the coding screen press Esc button and then type ―:wq‖ at the footer as shown

above and then enter.

Now it will show the details of the commit.

We can see that the above committed message of feature-branch with the ID: c3a5454 is now

saved in master branch.

To check use:

We can see that the committed message of feature-branch is now added into the master branch

with a new ID b4b021a. This is helpful if we want to share some important commit of feature-

branch into the master branch without merging the entire feature-branch into the master branch.

Let us check some other ID such as 7c1af39 as shown below.

Use the git cherry-pick command for the above ID.

49

It shows some error.

To open the file use:

It will open the file README.md.

Remove the conflicting text and edit the content as shown below. Keep the cursor at the text and

type ―:wq‖ and then press enter.

It will open an Attention file:

50

Type E and the proceed.

Add the modified file and continue with the cherry-pick

It will open the conflicting file

51

Type ―:wq‖ then enter

52

Now we got the committed message.

Now if we check the history of master branch for the last two commits

It will show:

We can see that the committed message of feature-branch is now added into the master branch

with a separate ID: 47f6b3e.

53

To undo the changes introduced by the commit with the ID "b5b6caf" in master branch.

First let us find out last 5 commits made in master branch by using:

It will show:

Now to change the committed message for the refence ID b5b6caf to ―Added bugfile.txt

successfully with very important information‖ use

It will open the file as shown below.

Edit the above file and change the content as to save and quiet type ―:wq‖ as shown below:

54

Now if we check the last two committed message in master branch by using:

It will show :

We can see the change of committed message in the above.

OUTPUT:

55

GIT and VS Coding
Visual Studio Code (commonly referred to as VS Code) is a free, open-source code editor

developed by Microsoft. It is designed to be lightweight yet powerful, with a rich set of features

for developers. Here are some key aspects of VS Code. It is a versatile and powerful code editor

that balances a lightweight footprint with rich functionality, making it a popular choice among

developers of all kinds.

Key Features of VS Code:

1. Cross-Platform: Available on Windows, macOS, and Linux, making it accessible to a wide

range of developers.

2.Extensible: It has a vast ecosystem of extensions available through the Visual Studio Code

Marketplace. These extensions can enhance the editor with additional functionality, such as

language support, linters, debuggers, and more.

3. Integrated Git Support: VS Code provides built-in Git integration, allowing users to perform

Git operations like commits, branches, merges, and more directly from the editor.

4. Debugging: It has an integrated debugging tool that supports multiple programming languages

and can be extended through plugins.

5. IntelliSense: Offers smart code completions based on variable types, function definitions, and

imported modules, making it easier and faster to write code.

6.Customizable: Users can customize the editor's appearance and functionality through settings,

themes, and keybindings.

7.Terminal Integration: Includes an integrated terminal that supports various shells (e.g., Bash,

PowerShell), allowing developers to execute command-line operations within the editor.

8. Multi-Language Support: VS Code supports a wide range of programming languages out of

the box and can be extended to support more through extensions.

9. Code Navigation and Refactoring: Provides features for easy navigation through code, such as

"Go to Definition," "Peek Definition," and powerful refactoring tools.

10. Snippets and Emmet: Offers code snippets and Emmet support for faster coding.

Use Cases:

1.Software Development: Suitable for developing applications in various languages like

JavaScript, Python, Java, C++, and more.

2.Web Development: Popular among web developers for working with HTML, CSS, JavaScript,

and frameworks like React, Angular, and Vue.

3.Data Science: Can be used for data science tasks with extensions for Jupiter Notebooks,

Python, and data visualization tools.

4.DevOps and Cloud: Integrated terminal and extensions for Docker, Kubernetes, and Azure

make it useful for DevOps tasks.

56

5. Community and Ecosystem: VS Code has a large and active community contributing to its

extensions and core features. The Visual Studio Code Marketplace offers a wide range of

extensions that can significantly enhance the editor's functionality.

To download VS Code: Click the link given below:

https://drive.google.com/file/d/1q1zzTLY_ELwFg2mS2wJZRn3gD1V0CRQ7/view?usp=drive_l

ink

https://drive.google.com/file/d/1q1zzTLY_ELwFg2mS2wJZRn3gD1V0CRQ7/view?usp=drive_link
https://drive.google.com/file/d/1q1zzTLY_ELwFg2mS2wJZRn3gD1V0CRQ7/view?usp=drive_link

57

Experiment-09: Git in VS Code

Aim:

1. To clone the repository /z/1WT23CS000/aboutMyself from Git-Bash to VS code:

2. To add a new file vsFile.txt under VS code. Add the following data:

Vs File details:

 Version: 2.1

 Date of Installation: 30/07/2024

 Author Name: Dr.Naveed

and commit a message ―Added vsFile.txt successfully‖

Basic Setup after Installation:

To change the background Theme to white use Ctrl+K+T

Select Light High Contrast as shown above.

Under Extension search for GitHub and Install it.

58

To clone the repository from git bash to VS code platform:

First, we will shift to the required repository position by using:

Now we are in the project repository. To clone this in VS Code use:

It will clone the repository in VS code and it will get operated as shown below:

59

We can see the repository aboutMyself inside which there are two files available.

aboutMyself.txt and README.md files.

We can see on left side the repository aboutMyself. The branch will be shown on left bottom

screen:

To operate git bash under VS code: Click on the Terminal then NewTerminal and then Git bash.

We can see the terminal screen below.

By default it will show powershell. Change it to git Bash as shown below:

60

To maximize the screen, click on ^ symbol.

Note: To Zoom In and Zoom OUT use Ctrl+ and Ctrl -

61

All the basic git commands which were used in GITBash can be used over here as shown below:

Note: If (master) is not highlighted then use git init command.

Now all the commands that were used in git bash can be used over here as shown above.

62

To add a new file “vsfile.txt” apart from the commands we can directly use:

Add the data: Vs File details: Here we can copy and paste it. This was not available in gitbash.

Version: 2.1

Date of Installation: 30/07/2024

Author Name: Dr.Naveed

U- shows it is untracked. The white dot symbol shows it is not saved. Use Ctrl+S to save. The

white dot will disappear.

If we check the status:

It shows untracked file without commit.

To track the file and get added use:

63

Now there is no symbol U. If we check the status:

Everything is fine.

OUTPUT:

64

 Introduction to GIT-HUB

GitHub is a web-based platform for version control and collaboration, primarily used for code. It

leverages Git, a distributed version control system, to manage and track changes in source code

during software development. GitHub offers both free and paid plans and provides a wide range

of features that facilitate collaborative coding, project management, and more.

GitHub is a powerful platform that combines the functionalities of Git version control with

additional tools for collaboration, project management, and automation. Its widespread adoption

in the software development community makes it an essential tool for developers, teams, and

organizations.

Key Features of GitHub

1. Repository Hosting:

 - GitHub allows users to host repositories, which can be either public or private. Repositories

contain all the files, history, and metadata for a project.

2. Version Control with Git:

 - GitHub uses Git to track changes in code. This includes features like branching, merging, pull

requests, and commit history.

3. Collaboration:

 - Multiple developers can work on the same project simultaneously. GitHub provides tools for

managing contributions, reviewing code, and discussing changes.

4. Pull Requests:

 - A pull request is a feature that allows developers to propose changes to a repository. Other

team members can review, discuss, and approve or reject these changes before they are merged

into the main codebase.

5. Issues and Project Management:

 - GitHub provides an issue tracking system to manage bugs, feature requests, and other tasks. It

also offers project boards and task management features to help organize and prioritize work.

6. Actions and Continuous Integration/Continuous Deployment (CI/CD):

 - GitHub Actions allow users to automate workflows, such as running tests, building projects,

and deploying applications, directly from their repositories.

7. Documentation and Wikis:

 - Users can create and maintain documentation for their projects using Markdown files within

the repository or GitHub's wiki feature.

8. Social Networking for Developers:

 - GitHub has social features like following users, starring repositories, and forking projects,

which help foster community and collaboration.

9. Security Features:

 - GitHub offers various security features, such as vulnerability alerts, Dependabot for

dependency management, and security advisories.

65

10. Integration with Other Tools:

 - GitHub integrates with a wide range of third-party tools and services, including IDEs, project

management tools, CI/CD systems, and more.

Applications:

1.Open-Source Projects: Many open-source projects are hosted on GitHub, allowing contributors

from around the world to collaborate.

2.Private Projects: Companies and organizations use GitHub for private projects, taking

advantage of its tools for collaboration, code review, and CI/CD.

3.Personal Projects and Portfolios: Developers often use GitHub to showcase their work and

build a portfolio.

4.Learning and Experimentation: GitHub is a valuable resource for learning new technologies, as

many projects and tutorials are hosted there.

 To Sign-up and create an account in the git-hub refer the following link and follow the

steps to create an account.

https://github.com/

https://github.com/

66

Experiment-10 VS Code and Github

Aim:

1. To clone the repository /z/1WT23CS000/aboutMyself from VS code to your github

account for both master branch and feature-branch.

2. To create a new file github.txt in VS code add the following data: Push to the github

account with committed message ―Added github.txt file successfully‖ into the master

branch.

 githubID: naveedgce

 Version: 2.1

 Date of installation: 01/08/2024

First open the VS code and initialise the repository and configure the author name and Email

address as shown below:

Sign in to your github account:My github account is naveedgce. You can type your own github

account with your USN as ID.

Click on + sign to add New repository

Fill up all the details as shown below. Give the repository name as 1WT23CS000.Make it public

so that everybody can access.

Donot activate README.md file as there is already README.md file available in our

repository.

67

Now we can see that a new repository by ―1WT23CS000‖ is created as shown below:

68

Click on the repository name and copy the URL of the repository created by referring:

Use the below code in VS coding screen git remote add origin < paste the copied URL of github

repository >:

After this use the below code to push your repository into your GitHub account:

69

It will ask for Authentication by signing into your GitHub account:

Once you log in into your GitHub account successfully it will show:

Now we can find all the files copied into our GitHub repository;

70

It shows 12 commits done so far. If we click on it:

71

To push feature-branch:

It will add into the GitHub account and it will ask to compare and pull the request as shown

below:

Click on compare & Pull request:

72

Click on Create pull request:

Click on Merge Pull Request.

It will ask for Confirm merge. Click on it.

73

It shows a message of successfully merged and closed. Now if we click on the branches, it will

show two branches.

If we click on the feature-branch:

It shows all the files that are available in feature-branch along with the 9 commits.

74

To add a new file github.txt into the VS code and then to push into the GitHub account Use:

Click on New file and enter the data into it and save it.

If we check the status:

It shows untracked file with symbol U. To track it and to commit use:

75

Check the GitHub account:

There is no file added into GitHub account.

To push into GitHub account use:

76

It shows some error:

There might be some conflict. To resolve use:

A screen will open showing the conflict message. Keep it as such or it can be modified as well.

To save and quit type ―:wq‖ as shown below and enter.

It shows:

Then use the following to commit with a message.

77

Now let us use the previous code to push the file into the GitHub account.

Now it shows a successful message.

Now if we check our GitHub account:

We can see the github.txt file added into it.

Note: If there is some conflict due to multi users . To remove the user logged into the account

refer the following.

78

OUTPUT:

79

Experiment-11 VS code and Github

Aim:

1. To create a new repository ―githubRepository‖ from the GitHubaccount. Add README.md

file

2. To clone the repository into the VS code. To add the following data into README.md file

 First Name:

 Last Name:

 Email ID

 GitHub ID:

 Mobile Number:

3. To push the repository into the GitHub account

First login into your GitHub account. Go to the home page and then click on add a new

repository as shown below:

Type the repository name and check for the availability. Each repository is unique and cannot be

of the same name. You can type your last three digits of your USN along with this name.

Provide a brief description about it. My first GitHub repository. Add a README.md file which

can be later filled.

80

Click on Create repository.

We can see that the new repository is created in our GitHub account as shown below.

81

To clone this repository into the local server through VS coding platform there are two options:

Option-01:

Close the vs code editor if previous repository is in active state. Go the home page with

Welcome file. Click on Clone Git Repository.

It will ask for the GitHubrepository URL.

82

Click on code and then click on copy option of the URL as shown below:

Now go to the VS code page and add the above URL

It will ask for the folder. Select any drive such as Z drive.

Now we can see our repository is created in VS code platform

83

Now the project is ready to be worked.

Option-02

We can also do in the other way as well. In the previous project screen: Get back to Z drive by

using:

It will get shifted to Z drive. Now we can use a code such as ―git clone <paste the URL of

GitHub repository>‖ as shown below:

The above https://........was copied from the GitHub account.

To add the data:

Open the README.md file and add the following data and save it:

1. First Name:

2. Last Name:

3. Email ID

4. GitHub ID:

5. Mobile Number:

https://........was/

84

To push the updated file into the GitHub account:

First, we have to commit the task with a message. If we check the status.

Therefore, to commit use the following:

To push the above into the GitHub repository: Remember the repository that was created in the

GitHub account shows main branch not master.

85

We cannot use master here for coding;

If no conflict exists then it will show a successful message.

Now let us check the GitHub account.

We can see the information is updated. Earlier README.md file was empty. Now it shows the

data.

86

OUTPUT:

87

VIVA-VOCE

1. What is Git?
Git is a distributed version control

system used to manage project code

and track changes over time.

2. Who developed Git and why?
Linus Torvalds developed Git in

2005 for managing Linux kernel

development after the community

stopped using BitKeeper.

3. What are the three states in Git?
Modified, Staged, and Committed –

representing a file's current

workflow stage.

4. What is a repository in Git?
A repository is a project directory

tracked by Git, containing all version

history and files.

5. How do you initialize a Git

repository?
By using the command git init inside

the project folder.

6. What is a staging area in Git?
A temporary area where changes are

prepared (staged) before committing

to the repository.

7. What is a commit in Git?
A commit saves the current staged

changes to the Git repository

permanently with a message.

8. What command is used to set user

identity in Git?
git config --global user.name

"Name" and git config --global

user.email "email@example.com"

9. What is the command to view

current Git configuration?
git config --list

10. How to clear the Git Bash screen?
Use clear or press Ctrl + L.

11. What does git add . do?
It stages all the modified and new

files in the current directory for the

next commit.

12. How to create a new file and add

content?

Use nano filename or touch

filename, then edit and save.

13. What is the purpose of a

README.md file?
It provides basic documentation and

information about the repository.

14. How to check the status of your

working directory?
git status shows changes, untracked

files, and staged files.

15. How do you create a new branch?
git branch feature-branch creates a

new branch named ―feature-branch‖.

16. How to switch branches in Git?
Use git checkout branch-name.

17. What is merging in Git?
Merging combines changes from one

branch into another.

18. How to merge a feature branch

into master?
First switch to master using git

checkout master, then use git merge

feature-branch.

19. What happens if you modify a file

in a feature branch?
Changes remain local to that branch

until merged into master.

20. How do you delete a branch?
Use git branch -d branch-name.

21. What are Git tags?
Tags mark specific points in Git

history, often used for releases.

22. Difference between lightweight

and annotated tags?
Lightweight tags are simple pointers;

annotated tags store metadata like

author and date.

23. How to create a lightweight tag?
git tag v1.0

24. How to create an annotated tag?
git tag -a v2.0 -m "Tag message"

25. How to list all tags in a repository?
Use git tag

88

26. Can tags be pushed to remote

repositories?
Yes, using git push origin tagname

27. Can you delete a tag?
Yes, use git tag -d tagname

28. How to view details of an

annotated tag?
Use git show tagname

29. Are tags part of branches?
No, tags are separate and point to

commits, not branches.

30. Why use tags in Git?
To mark release versions or

important milestones in the

codebase.

31. What is git log used for?
To view the commit history with

author, date, and message.

32. How to see commits by a specific

author?
git log --author="Author Name"

33. How to view commit logs in brief?
git log --oneline

34. How to view commits between

dates?
git log --author="Name" --

since="YYYY-MM-DD" --

until="YYYY-MM-DD"

35. How to view a specific commit

using ID?
Use git show commit-ID

36. What does git diff do?
Shows the difference between files

or commits.

37. Can Git log be used to see changes

across branches?
Yes, using options like git log

branch-name.

38. How to view the last 5 commits?
git log -n 5

39. Can we search commit messages?
Yes, with git log --grep="message"

40. What is git blame used for?
To find who last modified a

particular line of code.

41. What is git cherry-pick?
It applies a specific commit from

another branch into the current

branch.

42. Use case of cherry-pick?
Useful when you want only specific

changes from a feature branch.

43. How to undo a commit?
Use git revert commit-ID

44. How to amend a previous commit

message?
Use git commit --amend

45. What is git reflog?
It records updates to the tip of

branches, helping you recover lost

commits.

46. Can git cherry-pick cause

conflicts?
Yes, conflicts may arise if the same

content was modified.

47. How to resolve cherry-pick

conflicts?
Edit the file, resolve the conflict,

then commit.

48. How to change a commit message

in history?
Use git rebase -i and modify

messages carefully.

49. How to check file history using

Git?
Use git log filename

50. What is git revert vs git reset?
git revert creates a new commit that

undoes changes; git reset changes

commit history.

51. What is GitHub?
A platform for hosting Git

repositories and collaborating on

projects online.

52. How to clone a GitHub repository

to VS Code?
Use git clone URL and open it in VS

Code.

53. How to push local changes to

GitHub?
Use git push origin branch-name

54. What is git remote add origin?
It links the local repository to a

remote GitHub repo.

89

55. How to configure Git in VS Code?
Set Git path in settings and enable

Git extension.

56. What is a pull request?
A request to merge changes from one

branch to another in GitHub.

57. How to create a GitHub

repository?
Click on ―New‖ in GitHub, name the

repository, and set options.

58. How to view commit history in

GitHub?
Navigate to the ―Commits‖ tab in the

repository.

59. What is GitHub Actions?
A CI/CD feature to automate

workflows in GitHub.

60. What are forks in GitHub?
A personal copy of someone else's

repository to contribute.

61. How to rename a file in Git?
git mv oldname newname

62. How to remove a file from Git?
git rm filename

63. What is .gitignore?
A file that specifies which files Git

should ignore.

64. How to list all branches?
git branch

65. What is HEAD in Git?
It refers to the current commit your

working directory is based on.

66. What is a detached HEAD state?
When HEAD points directly to a

commit, not a branch.

67. Can Git track empty directories?
No, Git only tracks files.

68. How to revert to a previous

commit?
Use git checkout commit-ID

69. How to reset staging area?
git reset unstages files.

70. How to discard changes in

working directory?
git checkout -- filename

71. Why use branches in projects?
To work on features independently

without affecting the main codebase.

72. When should you use tags in a

project?
During stable releases or version

marking.

73. Why is Git preferred in large

projects?
Due to its distributed architecture,

speed, and branching efficiency.

74. What is the role of commits in

collaboration?
They provide checkpoints for

tracking changes and debugging.

75. How does Git help in team

development?
Enables parallel development,

tracking contributions, and resolving

conflicts.

76. How often should you commit

changes?
Frequently, with meaningful commit

messages.

77. Why commit messages are

important?
They describe changes clearly for

future reference.

78. How can Git help in backups?
Local and remote repositories serve

as backups.

79. Why use Git over traditional file

copy methods?
Git provides version control, history,

and collaboration support.

80. What is the advantage of using VS

Code with Git?
Integrated terminal, Git GUI, and

ease of code editing.

81. What is version control?
A system for tracking changes in

files over time.

82. Difference between Git and

GitHub?
Git is the version control system;

GitHub is a hosting platform for Git

repositories.

83. What is a commit hash?
A unique ID for each commit, used

to reference it.

90

84. Why is Git distributed?
Each user has a complete copy of the

repository.

85. Can you work offline with Git?
Yes, most operations are local and

can sync later.

86. Why use git init?
To start tracking a new project with

Git.

87. Is Git case-sensitive?
Yes, file names in Git are case-

sensitive on case-sensitive systems.

88. What happens when two users edit

the same file?
Git highlights conflicts during

merge.

89. What is a conflict in Git?
When Git cannot automatically

resolve differences between changes.

90. How to resolve conflicts?
Manually edit the file and commit

resolved version.

91. What is the use of .md files in

GitHub?
Markdown files for documentation

and project info.

92. What command is used to edit files

in terminal?
nano filename

93. How to stage only specific files?
git add filename1 filename2

94. What is the role of git push?
Uploads local commits to the remote

repository.

95. What command sets the default

branch name in newer Git

versions?
git config --global init.defaultBranch

main

96. What is the importance of lab

record in Git course?
Essential for tracking learning

progress, assessed during CIE.

Reference:

The theory part of the material from page number 8 to 16 is extracted from the Prescribed

Textbook by the University as shown below.

92

ASSIGNMENT

Q1.(EXP-01)BasicSetupandCreationofaNewRepository Aim:

1. Tocreateanewrepository“1WT23CS000”under anydiscdrivesuch asZ drive andalso a sub

repository “aboutMyCollege”.

2. Tomakethe defaultbranch as masterbranchin some systemsit is main branch.

3. Tolaunchthegit andentertheuserconfigurationslikename,emailID.

(EXP-02)Toadd README.mdfileintotheRepository

Aim:

1. ToaddREADME.mdfileintotherepository/z/1WT23CS000/aboutMyCollegeunder

master branch.

2. Toaddthe contentsgiven below:

3. Tocommitwithamessage“Contentsupdatedsuccessfully”

(Exp-03)Creating andManagingBranches

Aim:

1. Tocreateanewbranchnamed "feature-branch”.

2. To add a text file “aboutMyCollege.txt” into the repository

/1WT23CS000/aboutMyCollege.

3. Toaddthe contentsinto thetext filegiven below:

4. Tocommitamessage“AddedtextfileaboutMyCollege.txt successfully”.

93

(Exp-04)MergingofFeature-BranchintotheMasterBranch: Aim:

Tomergefeature-branchintothemasterbranch

Experiment-05: UpdatingoffilesintheFeature-Branch

Aim:

1. ToaddtheBriefReviewofGITWinthefile“aboutMyCollege.txt”ofthefeature- branch:

GITW was established in the year 2023, affiliated with Visvesvaraya Technological University

(VTU), Belagavi, Karnataka. Recognized by AICTE, New Delhi, and the Government of

Karnataka, ranking first in women's minority education in the state. The college provides hostel

facilities and organizes diverse programs enhancing students' overall personality. It offers B.E

Programs in:

 ComputerScience&Engineering

 InformationScience&Engineering

 Electronics&CommunicationEngineering

Tocommit theabovewitha message“AddedbriefreviewofGITW Successfully”

Tomergethefeature-branchwiththemasterbranchandcommitwithamessage“Mergedthe feature-

branch Successfully and updated the file with review Details”.

Q.5(Exp-06)LightWeightandAnnotatedTags Aim:

1. To update the file “README.md” and add “Date of Joining to GITW: 1
st
 Oct-2023”

to it under the repository /1WT23CS000/aboutMyCollege under master branch.

2. Tocommitwith amessage“My Date ofJoining to GITWUpdatedsuccessfully”

3. Toadd alight wighttag v1.0 into file“README.md”

4. ToaddanAnnotatedtag v2.0withamessage“My DateofJoiningtoGITW”intothe same

file

Q.6(Exp-09)GitinVSCode Aim:

1. Toclonetherepository/z/1WT23CS000/aboutMyCollege fromGit-BashtoVS

code:

2. ToaddanewfilevsFile.txtunderVScode.Addthefollowingdata: Vs

File details:

 Version:2.1

 DateofInstallation: 30/07/2024

 AuthorName:Dr.Naveed

andcommitamessage “AddedvsFile.txt successfully”

88

SUMMARY OF CODING

EXPERIMENT-01

// To start the git and to make master branch as default branch

$ git init

// To register your name (author name) and Email address for the

 new project

$ git config --global user.name “Dr.NAVEED”

$ git config --global user.email naveed.gce@gmail.com

// To check the author name , email address and other data:

$ git config --list

// To check author name of the project

$ git config user.name

// To check email address of the author

$ git config user.email

// To clear the screen of the terminal (Ctrl+L)

$ clear

// T get into the Z drive of the computer hard disk. It can be

 any symbol

$ cd /z

// To create a repository “1WT23CS000”

$ mkdir 1WT23CS000

// To get back to the repository

$ cd 1WT23CS000

// To create another sub-repository “aboutMyself”

$ mkdir aboutMyself

// To get back to aboutMyself

$ cd aboutMyself

// To get back in single shot

$ cd /z/1WT23CS000/aboutMyself

mailto:naveed.gce@gmail.com

89

EXPERIMENT-02

//To make any drive like z drive as a safe directory

$ git config --global --add safe.directory z:/

// To add a new file like README.md as untracked file

$ echo > README.md

// To track the file like README.md

$ git add .

//To commit with a message like Added README.md file successfully

$ git commit -m “committed message”

// To edit the file like README.md in an open screen

$ nano README.md

// To read the contents of a file like README.md under terminal

$ cat README.md

//To check the current status

$ git status

EXPERIMENT-03

//To check the current branch as well to check out number

 of branches available

$ git branch

// To create a new branch such as feature-branch

$ git branch feature-branch

// To shift the directory to the new branch such as feature-branch

$ git checkout feature-branch

// To shift back the directory to the default master branch

$ git checkout master

// To checkout number of files available in the repository

$ git ls-files

90

EXPERIMENT-04

// To merge feature-branch into master branch which will add all

 files of feature-branch into master branch

$ git merge feature-branch

EXPERIMENT-05

// To delete a branch such as feature-branch

$ git branch -d feature-branch

// To get reference code of deleted branch

$ git reflog

// To restore the deleted branch such as feature-branch with

 the given ref.code

$ git checkout -b feature-branch ref.code

(in updated version ref.code is not needed)

EXPERIMENT-06

// To add a light weight tag such as v1.0

$ git tag v1.0

// To check the number of tags available

$ git tag

// To check a particular tag such as v1.0

$ git show v1.0

// To add an annotated tag such as v2.0

$ git tag -a v2.0 -m “committed message”

EXPERIMENT-07

// To check the committed messages in master branch with full details

$ git log master

// To check the committed messages in master branch in brief with just one line

$ git log master --oneline

91

//To check committed message of a particular task with the given reference code ID

$ git show ref.code ID

// To check commits of a particular author from date to desired date with full details

$ git log --author=”authorName” --since=”YEAR-MONTH-DAY” until=”YEAR-MONTH-DAY”

// To check commits of a particular author from date to desired date in brief with just one line

$ git log --author=”authorName” --since=”YEAR-MONTH-DAY” until=”YEAR-MONTH-DAY” --oneline

// To check last 5 commits made in master branch with complete details

$ git log master -n 5

// To check last 5 commits made in master branch in brief with just one line.

$ git log master -n 5 --oneline

Note: Press Q to get back to the coding.

EXPERIMENT-08

// To check the committed messages in feature- branch

$ git log feature-branch --oneline

// To check committed message of feature-branch with ref.ID in master branch

$ git cherry-pick ref.ID

// To open the conflicting file such as aboutMyself.txt

$ vim aboutMyself.txt

//To delete a file such as data1.txt

$ git rm data1.txt

//To modify the committed message with Ref.ID

$ git revert Ref.ID

//To display the committed message with Ref.ID

$ git show Ref.ID

92

EXPERIMENT-09

// To get back to the current repository in Z drive such as 1WT23CS000/aboutMyself

$ cd /z/1WT23CS000/aboutMyself
// To clone the above repository in VS code after getting back to the current repository

$ code .

EXPERIMENT-10

// To clone repository in Z drive such as 1WT23CS000/aboutMyself into the GitHub account

$ git remote add origin URLcodeOfGitHubRepository

//To push the repository into the GitHub account if it is master branch

$ git push -u origin master

//To push the repository into the GitHub account if it is main branch

$ git push -u origin main

//To add a new branch such as feature-branch into GitHub account

$ git push -u origin feature-branch

Contact

B.E Programs Offered

9986343109 / 9845954481
080 – 25536527

www.gitw.in

Computer Science & Engineering
Information Science & Engineering
Electronics & Communication
Engineering.

GHOUSIA INSTITUTE OF TECHNOLOGY
FOR WOMEN

Near Dairy Circle, Hosur Road, Bengaluru-560029, KARNATAKA
Affiliated to VTU., Belagavi, Recognized by Government of Karnataka & A.I.C.T.E., New Delhi

It was established in the year 2023,
affiliated with Visvesvaraya Technological
University (VTU), Belagavi, Karnataka.
Recognized by AICTE, New Delhi, and the
Government of Karnataka. It is one among
the two engineering colleges for women in
the state. The college provides hostel
facilities and organizes diverse programs
enhancing students' overall personality.

