GHOUSIA INSTITUTE OF TECHNOLOGY
FOR WOMEN

NEAR DAIRY CIRCLE, HOSUR ROAD, BENGALURU-560029, KARNATAKA
AFFILIATED TO VTU., BELAGAVI, RECOGNIZED BY GOVERNMENT OF KARNATAKA & AILC.T.E.,, NEW DELHI

N

- S

Dr. NAVEED
Assistant Professor
GITW-Bengaluru

GitHub is a web-based platform used primarily
for version control and collaborative software
development. It is built around Git, an open-
source version control system that tracks
changes in files and allows multiple people to
work on a project simultaneously without
interfering with each other's work.GitHub is
widely used by individual developers, teams,
and large organizations to collaborate on

projects, share code, and contribute to open- MORE INFORMATION
source software. www.github.com
Add Git Bash
THIRD SEMESTER to

Windows Terminal

B.E DEGREE 2024

®
%5 >

.
GHOUSIA INSTITUTE OF TECHNOLOGY
FOR WOMEN

Near Dairy Circle, Hosur Road, Bengaluru , Karnataka 560029
Affiliated to VTU., Belagavi, Recognized by Government of Karnataka & A.l.C.T.E., New Delhi

PROJECT MANAGEMENT WITH GIT

(BCS358C)
As per 2022 Scheme Syllabus Prescribed by V.T.U.

For
THIRD SEMESTER
COMPUTER SCIENCE & ENGINEERING / INFORMATION SCIENCE & ENGINEERING

(Bachelor of Engineering)

Dr.NAVEED wen. pro.

Assistant Professor

Department of Computer Science & Engineering

\
o

iy

gOUSIA INSTITUTE OF TECHNOLOGY FOR WOMEN

Near Dairy Circle, Hosur Road, Bengaluru-560029, KARNATAKA

\ V4 °
‘ T ' . . PROJECT MANAGEMENT WITH GIT/ BCS358C/THIRD SEMESTER / BACHELOR OF ENGINEERING
Y
A ' G
! o

\ Affiliated to VTU., Belagavi, Recognized by Government of Karnataka & A.1.C.T.E., New Delhi

PROJECT MANAGEMENT WITH GIT / BCS358C / THIRD SEMESTER / B.E DEGREE / 2024-25

CERTIFICATE

This is
USN

to certify

that Miss.

bearing

of

Branch completed the

academic requirements for the practical course work titled “PROJECT MANAGEMENT WITH GIT/

BCS358C”

of THIRD SEMESTER B.E, prescribed by Visvesvaraya Technological University ,

Belagavi, for the academic year 2024-25. The details of Mark’s obtained by the candidate is given below.

: Marks Page | Staff

SI.No Particulars (Etﬂiﬁémggﬁd) LA S Ng Sign

1 Expt-01 i:;l(;istitrl;p and Creation of a New 11

5 Expt-02 gzpa:sc:toeriADME.md file into the 15

3 Expt-03 | Creating and Managing Branches 19

4 Expt-04 II\3/Ir21rngcl;:g of Feature-Branch into the Master 5+5 %6

5 Expt-05 | Updating of files in the feature-branch < 28

6 Expt-06 | Light Weight and Annotated Tags i 34

7 Expt-07 | Analyzing GIT History 10 39

8 Expt-08 | GIT Cherry-pick and Revert 44

9 Expt-09 | Gitin VS Code 56

10 | Expt-10 | VS Code and Github (cloning of repository) 65

11 | Expt-11 ?gf)o(;;)t(cjﬁya;nd Github (creating of new 78

12 | Assignment Experiments 20+20 =40 86
Total Marks-A 150
Test Marks-B 100

[(A*30)/150] +

Final Internal Assessment Mark’s. (8*250;/0) R

Internal Assessment Marks Awarded in Words:
Signature of Staff Incharge with Date:

Dr.NAVEED / Assistant Professor / Department of Computer Science & Engineering / Ghousia Institute of Technolo')r

Bengaluru

158.09.2023

Template for Practical Course and if AEC is a practical Course ~ Annexure-V

Project Management with Git Semester 3
Course Code BCS358C CIE Marks 50
Teaching Hours/Week (L:T:P: S) 0:0:2:0 SEE Marks 50
Credits 01 Exam Marks 100
Examination type (SEE) Practical

Course objectives:

e .To familiar with basic command of Git

e To create and manage branches

e To understand how to collaborate and work with Remote Repositories

e To familiar with virion controlling commands

SI.NO

Experiments

1

Setting Up and Basic Commands

Initialize a new Git repository in a directory. Create a new file and add it to the staging area
and commit the changes with an appropriate commit message.

Creating and Managing Branches

Create a new branch named "feature-branch." Switch to the "master" branch. Merge the
"feature-branch" into "master."

Creating and Managing Branches

Write the commands to stash your changes, switch branches, and then apply the stashed
changes.

Collaboration and Remote Repositories

Clone a remote Git repository to your local machine.

Collaboration and Remote Repositories

Fetch the latest changes from a remote repository and rebase your local branch onto the
updated remote branch.

Collaboration and Remote Repositories

Write the command to merge "feature-branch" into "master" while providing a custom
commit message for the merge.

Git Tags and Releases

Write the command to create a lightweight Git tag named "v1.0" for a commit in your local
repository.

Advanced Git Operations

158.09.2023

Template for Practical Course and if AEC is a practical Course ~ Annexure-V

Write the command to cherry-pick a range of commits from "source-branch" to the current
branch.

Analysing and Changing Git History

Given a commit ID, how would you use Git to view the details of that specific commit,
including the author, date, and commit message?

10

Analysing and Changing Git History

Write the command to list all commits made by the author "JohnDoe" between "2023-01-01"
and "2023-12-31."

11

Analysing and Changing Git History

Write the command to display the last five commits in the repository's history.

12

Analysing and Changing Git History

Write the command to undo the changes introduced by the commit with the ID "abc123".

Course outcomes (Course Skill Set):
At the end of the course the student will be able to:

Use the basics commands related to git repository
Create and manage the branches
Apply commands related to Collaboration and Remote Repositories

Use the commands related to Git Tags, Releases and advanced git operations

Analyse and change the git history

: . . . 18.09.2023
Template for Practical Course and if AEC is a practical Course ~ Annexure-V

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.
The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the
SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be
deemed to have satisfied the academic requirements and earned the credits allotted to each subject/
course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE
(Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation (CIE):
CIE marks for the practical course are 50 Marks.
The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

e FEach experiment is to be evaluated for conduction with an observation sheet and record
write-up. Rubrics for the evaluation of the journal /write-up for hardware/software
experiments are designed by the faculty who is handling the laboratory session and are
made known to students at the beginning of the practical session.

e Record should contain all the specified experiments in the syllabus and each experiment
write-up will be evaluated for 10 marks.

o Total marks scored by the students are scaled down to 30 marks (60% of maximum
marks).

e Weightage to be given for neatness and submission of record/write-up on time.

o Department shall conduct a test of 100 marks after the completion of all the experiments
listed in the syllabus.

e In a test, test write-up, conduction of experiment, acceptable result, and procedural
knowledge will carry a weightage of 60% and the rest 40% for viva-voce.

e The suitable rubrics can be designed to evaluate each student’s performance and learning
ability.

e The marks scored shall be scaled down to 20 marks (40% of the maximum marks).
The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the
total CIE marks scored by the student.

Semester End Evaluation (SEE):
e SEE marks for the practical course are 50 Marks.

e SEE shall be conducted jointly by the two examiners of the same institute, examiners are
appointed by the Head of the Institute.

e The examination schedule and names of examiners are informed to the university before
the conduction of the examination. These practical examinations are to be conducted
between the schedule mentioned in the academic calendar of the University.

: . . . 18.09.2023
Template for Practical Course and if AEC is a practical Course ~ Annexure-V

All laboratory experiments are to be included for practical examination.

(Rubrics) Breakup of marks and the instructions printed on the cover page of the answer
script to be strictly adhered to by the examiners. OR based on the course requirement
evaluation rubrics shall be decided jointly by examiners.

e Students can pick one question (experiment) from the questions lot prepared by the
examiners jointly.

e Evaluation of test write-up/ conduction procedure and result/viva will be conducted
jointly by examiners.

General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure
and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated
for 100 marks and scored marks shall be scaled down to 50 marks (however, based on
course type, rubrics shall be decided by the examiners)

Change of experiment is allowed only once and 15% of Marks allotted to the procedure part
are to be made zero.
The minimum duration of SEE is 02 hours

Suggested Learning Resources:

e Version Control with Git, 3rd Edition, by Prem Kumar Ponuthorai, Jon Loeliger Released October 2022,
Publisher(s): O'Reilly Media, Inc.

e Pro Git book, written by Scott Chacon and Ben Straub and published by Apress, https://git-
scm.com/book/en/v2

e https://infyspringboard.onwingspan.com/web/en/a toc/lex auth 0130944433473699842782 shared
/overview

e https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01330134712177459211926_share
d/overview

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944433473699842782_shared/overview
https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944433473699842782_shared/overview

INRODUCTION TO GIT

Git is a distributed version control system designed to handle everything from small to very large
projects with speed and efficiency. It was created by Linus Torvalds in 2005 for the development
of the Linux kernel.

AboutVersionControl

Whatis‘““versioncontrol”,andwhyshouldyoucare?Versioncontrolisa system that
recordschangestoafileorsetoffilesovertimesothatyoucanrecallspecificversionslate
r.Fortheexamplesinthisbook,youwillusesoftwaresourcecodeasthefiles being
version
controlled,thoughinrealityyoucandothiswithnearlyanytypeoffileonacomputer.

Ifyouareagraphicorwebdesignerandwanttokeepeveryversionofanimageorlayout(
whichyou would most certainly want to), a Version Control System (VCS) is a

very wise thing to use.
Itallowsyoutorevertselectedfilesbacktoapreviousstate,reverttheentireprojectback
to

apreviousstate,comparechangesovertime,seewholastmodifiedsomethingthatmigh
tbecausingaproblem,whointroducedanissueandwhen,andmore.UsingaVCSalsog
enerallymeansthatifyou screw things up or lose files, you can easily recover. In
addition, you get all this for very littleoverhead.

LocalVersionControlSystems

Many people’s version-control method of choice is to copy files into another
directory (perhaps atime-stamped directory, if they’re clever). This approach is
very common because it is S0 simple,
butitisalsoincrediblyerrorprone.ltiseasytoforgetwhichdirectoryyou’reinandaccid
entallywritetothewrongfileorcopyoverfilesyoudon’tmeanto.

To deal with this issue, programmers long ago developed local VVCSs that had a simple
database thatkeptallthechangestofilesunderrevisioncontrol.

Local Computer

Checkout Version Database
w Version 3
|
Version 2
|
Version 1

Figurel.Localversioncontroldiagram

One of the most popular VCS tools was a system called RCS, which is still
distributed with manycomputers today. RCS works by keeping patch sets (that
is, the differences between files) in a specialformatondisk;itcanthenre-
createwhatanyfilelookedlikeatanypointintimebyaddingupallthepatches.

CentralizedVersionControlSystems

Thenextmajorissuethatpeopleencounteristhattheyneedtocollaboratewithdevelope
rsonothersystems. Todealwiththisproblem,CentralizedVersionControlSystems(C
VCSs)weredeveloped. These systems (such as CVS, Subversion, and Perforce)
have a single server that containsall the versioned files, and a number of clients
that check out files from that central place. For
manyyears,thishasbeenthestandardforversioncontrol.

shared
repository

Figure2.Centralizedversioncontroldiagram

This setup offers many advantages, especially over local VCSs. For example,
everyone knows to acertain degree what everyone else on the project is doing.
Administrators have fine-grained controlover who can do what, and it’s far
easier to administer a CVCS than it is to deal with local databasesoneveryclient.

However, this setup also has some serious downsides. The most obvious is the
single point of failurethat the centralized server represents. If that server goes

https://www.gnu.org/software/rcs/

down for an hour, then during that hournobody can collaborate at all or save
versioned changes to anything they’re working on. If the harddisk the central
database is on becomes corrupted, and proper backups haven’t been kept, you
loseabsolutely everything — the entire history of the project except whatever
single snapshots peoplehappens to have on their local machines. Local VCSs
suffer from this same problem — whenever
youhavetheentirehistoryoftheprojectinasingleplace,yourisklosingeverything.

DistributedVersionControlSystems

This is where Distributed Version Control Systems (DVCSs) step in. In a
DVCS (such as Git, Mercurialor Darcs), clients don’t just check out the latest
snapshot of the files; rather, they fully mirror
therepository,includingitsfullhistory. Thus,ifanyserverdies,andthesesystemswere
collaboratingvia that server, any of the client repositories can be copied back up
to the server to restore it. Everycloneisreallyafullbackupofallthedata.

Server Computer

Version Database

Version 3

Version 2

Version 1

Computer A Computer B
Version Database < > Version Database
Version 3 Version 3
| |
Version 2 Version 2
| |
Version 1 Version 1

Figure3.Distributedversioncontroldiagram
Furthermore, many of these systems deal pretty well with having several remote

repositories
theycanworkwith,soyoucancollaboratewithdifferentgroupsofpeopleindifferentw
ayssimultaneously within the same project. This allows you to set up several
types of workflows
thataren’tpossibleincentralizedsystems,suchashierarchicalmodels.

AShortHistoryofGit
Aswithmanygreatthingsinlife, Gitbeganwithabitofcreativedestructionandfierycontroversy.

The Linux kernel is an open-source software project of fairly large scope.
During the early years ofthe Linux kernel maintenance (1991-2002), changes to
the software were passed around as
patchesandarchivedfiles.In2002,theLinuxkernelprojectbeganusingaproprietary
DVCS calledBit Keeper.

In2005,therelationshipbetweenthecommunitythatdevelopedtheLinuxkernelandth
ecommercialcompanythatdevelopedBit Keeperbrokedown,andthetool’sfree-of-
chargestatuswasrevoked.ThispromptedtheLinuxdevelopmentcommunity(andinp
articularLinusTorvalds,thecreatorofLinux)todeveloptheirowntoolbasedonsomeo
fthelessonstheylearnedwhileusingBit
Keeper.Someofthegoalsofthenewsystemwereasfollows:

« Speed

Simpledesign

Strongsupportfornon-lineardevelopment(thousandsofparallelbranches)

Fullydistributed

AbletohandlelargeprojectsliketheLinuxkernelefficiently(speedanddatasize)

Since its birth in 2005, Git has evolved and matured to be easy to use and yet
retain these initialqualities.It’samazinglyfast,it’sveryefficientwithlargeprojects,
and it has an incrediblebranchingsystemfornon-
lineardevelopment(seeGitBranching).

WhatisGit?

So, what is Git in a nutshell? This is an important section to absorb, because if
you understand whatGit is and the fundamentals of how it works, then using Git
effectively will probably be much
easierforyou.AsyoulearnGit,trytoclearyourmindofthethingsyoumayknowaboutot
herVCSs,suchas CVS, Subversion or Perforce — doing so will help you avoid
subtle confusion when using the tool.Even though Git’s user interface is fairly
similar to these other VCSs, Git stores and thinks
aboutinformationinaverydifferentway,andunderstandingthesedifferenceswillhel
pyouavoidbecomingconfusedwhileusingit.

Snapshots,NotDifferences

ThemajordifferencebetweenGitandanyotherVVCS(Subversionandfriendsincluded)isthewa
yGit thinks about its data. Conceptually, most other systems store information as a list
of file-basedchanges. These other systems (CVS, Subversion, Perforce, and so on) think

4

of the information theystore as a set of files and the changes made to each file over time
(this is commonly described asdelta-basedversioncontrol).

Checkins Over Time

File A —» Al > A2
File B > A1 —> A2
File C —» A1l —» A2 > A3

Figure4.Storingdataaschangestoabaseversionofeachfile

Git doesn’t think of or store its data this way. Instead, Git thinks of its data
more like a series ofsnapshots of a miniature filesystem. With Git, every time
you commit, or save the state of yourproject, Git basically takes a picture of
what all your files look like at that moment and stores areference to that
snapshot. To be efficient, if files have not changed, Git doesn’t store the file
again,just a link to the previous identical file it has already stored. Git thinks

Checkins Over Time

File A Al Al A2 A2
L | I - [

File B B B B1 B2
- | I | | |

File C c1 c2 c2 C3

about its data more like astreamofsnapshots.

Figure5.Storingdataassnapshotsoftheprojectovertime

ThisisanimportantdistinctionbetweenGitandnearlyallotherVVCSs.ItmakesGitreco
nsideralmosteveryaspectofversioncontrolthatmostothersystemscopied from the
previousgeneration. This makes Git more like a mini filesystem with some
incredibly powerful tools built
ontopofit,ratherthansimplyaVCS.We’llexploresomeofthebenefitsyougainbythin
kingofyourdatathiswaywhenwecoverGitbranchinginGitBranching.

NearlyEveryOperationlsLocal

Most operations in Git need only local files and resources to operate —
generally no information isneeded from another computer on your network. If
you’re used to a CVCS where most
operationshavethatnetworklatencyoverhead,thisaspectofGitwillmakeyouthinkth
atthegodsofspeedhave blessed Git with unworldly powers. Because you have

the entire history of the project
rightthereonyourlocaldisk,mostoperationsseemalmostinstantaneous.

Forexample,tobrowsethehistoryoftheproject,Gitdoesn’tneedtogoouttotheserv
ertogetthehistory and display it for you — it simply reads it directly from your
local database. This means yousee the project history almost instantly. If you
want to see the changes introduced between
thecurrentversionofafileandthefileamonthago,Gitcanlookupthefileamonthago
anddoalocaldifference calculation, instead of having to either ask a remote
server to do it or pull an
olderversionofthefilefromtheremoteservertodoitlocally.

This also means that there is very little you can’t do if you’re offline or off
VPN. If you get on
anairplaneoratrainandwanttodoalittlework,youcancommithappily(toyourlocal
copy,remember?) until you get to a network connection to upload. If you go
home and can’t get your VPNclient working properly, you can still work. In
many other systems, doing so is either impossible orpainful. In Perforce, for
example, you can’t do much when you aren’t connected to the server;
inSubversionandCVS,youcaneditfiles,butyoucan’tcommitchangestoyourdatabas
e(becauseyour database is offline). This may not seem like a huge deal, but you
may be surprised what a bigdifferenceitcanmake.

GitHaslIntegrity

Everything in Git is check summed before it is stored and is then referred to by
that checksum. Thismeans it’s impossible to change the contents of any file or
directory without Git knowing about it. This functionality is built into Git at the
lowest levels and is integral to its philosophy. You can’t
loseinformationintransitorgetfilecorruptionwithoutGitbeingabletodetectit.
mechanism that Git uses for this checksumming is called a SHA-1 hash. This is a 40-
characterstring composed of hexadecimal characters (0—9 and a—f) and calculated based
on the contents of afileordirectorystructureinGit. ASHA-1hashlookssomethinglikethis:

24b9da65522529872a493b5218696cd6d3b00373

Youwill seethesehash valuesall overtheplace in Git because it uses
themsomuch. Infact,
Gitstoreseverythinginitsdatabasenotbyfilenamebutbythehashvalueofitscontents.

Git GenerallyOnlyAdds Data

When you do actions in Git, nearly all of them only add data to the Git
database. It is hard to get thesystem to do anything that is not undoable or to

make it erase data in any way. As with any VCS,
youcanloseormessupchangesyouhaven’tcommittedyet,butafteryoucommitasnaps
hotintoGit,itisverydifficulttolose,especiallyifyouregularlypushyourdatabasetoan
otherrepository.

This makes using Git a joy because we know we can experiment without the

danger of severelyscrewingthingsup.Foramorein-
depthlookathowGitstoresitsdataandhowyoucanrecoverdatathatseemslost,see Und
oingThings.

TheThreeStates

Pay attention now — here is the main thing to remember about Git if you want
the rest of yourlearning process to go smoothly. Git has three main states that
your files can reside in: modified,staged,andcommitted:

« Modifiedmeansthatyouhavechangedthefilebuthavenotcommittedittoyourdatabaseyet.

« Stagedmeansthatyouhavemarkedamodifiedfileinitscurrentversiontogointoyo
urnextcommitsnapshot.

« Committedmeansthatthedataissafelystoredinyourlocaldatabase.

ThisleadsustothethreemainsectionsofaGitproject:theworkingtree,thestagingarea,
andtheGitdirectory.

.git directory
(Repository)

Working Staging
Directory Area

Checkout the project

Figure6.Workingtree, staging area, andGitdirectory

The working tree is a single checkout of one version of the project. These files
are pulled out of
thecompresseddatabaseintheGitdirectoryandplacedondiskforyoutouseormodify.

Thestagingareaisafile,generallycontainedinyourGitdirectory,thatstoresinformati
onaboutwhat will go into your next commit. Its technical name in Git parlance
is the “index”, but the phrase“stagingarea”worksjustaswell.

The Git directory is where Git stores the metadata and object database for your
project. This is themost important part of Git, and it is what is copied when
youclone a repository from anothercomputer.

ThebasicGitworkflowgoessomethinglikethis:

1. Youmodifyfilesinyourworkingtree.

2. Youselectivelystagejustthosechangesyouwanttobepartofyournextcommit,whichadds
onlythosechangestothestagingarea.

3. Youdoacommit,whichtakesthefilesastheyareinthestagingareaandstoresthatsn
apshotpermanentlytoyourGitdirectory.

IfaparticularversionofafileisintheGitdirectory,it’sconsideredcommitted.Ifithasbe
enmodified and was added to the staging area, it is staged. And if it was
changed since it was
checkedoutbuthasnotbeenstaged,itismodified.InGitBasics,you’lllearnmoreaboutt
hesestatesandhowyoucaneithertakeadvantageofthemorskipthestagedpartentirely.

Uses of Git

1. Collaboration.

Teams: Multiple developers can work on the same project simultaneously without conflicts.
Open Source: Git is popular in the open-source community, allowing developers from around
the world to contribute to a project.

2. Tracking Changes
History: Git maintains a history of changes, which can be reviewed and reverted if necessary.
Blame: Identify who made specific changes to the code and when they were made.

3. Branching and Merging
Feature Development: Developers can create separate branches for new features, bug fixes, or
experiments without affecting the main codebase.
Code Reviews: Changes can be reviewed in branches before merging them into the main
branch.

4. Backup and Restore
Local Repositories: Each user has a complete copy of the repository, providing a backup of
the project.
Remote Repositories: Remote repositories (like those hosted on GitHub, GitLab, or
Bitbucket) provide additional backups and a centralized place to push changes.

5. Continuous Integration/Continuous Deployment (CI/CD)
Automation: Git can be integrated with CI/CD pipelines to automate testing, building, and
deployment processes whenever changes are pushed to the repository.

6. Documentation

README Files: Git repositories often include README files that provide information
about the project, how to set it up, and how to contribute.
Wikis: Many Git hosting services provide integrated wikis for detailed documentation.

Git is a powerful tool that has become essential for modern software development, enabling
efficient collaboration, robust change tracking, and streamlined workflows.

InstallingGit

Before you start using Git, you have to make it available on your computer.
Even if it’s
alreadyinstalled,it’sprobablyagoodideatoupdatetothelatestversion. Y oucaneitheri
nstallitasapackageorviaanotherinstaller,ordownloadthesourcecodeandcompileity
ourself.

InstallingonWindows

Therearealsoafew ways to install Git on Windows.The most official build is
available fordownloadontheGitwebsite.Justgo tohttps://git-
scm.com/download/winand the download willstartautomatically.Notethatthisis a
project called Git for Windows, which is separate from
Gititself;formoreinformationonit,gotohttps://gitforwindows.org.

To get an automated installation you can use the Git Chocolatey package. Note
that the Chocolateypackageiscommunitymaintained.

OR to Download click below link

https://drive.qgoogle.com/file/d/1H9ZMW?21ZnaNngL v-
PTXSbUUXPas561Vw/view?usp=sharing

Go through the installation process by clicking Next for all the steps at the last click on Launch
GitBash

https://git-scm.com/download/win
https://git-scm.com/download/win
https://gitforwindows.org/
https://community.chocolatey.org/packages/git
https://drive.google.com/file/d/1H9ZMW2lZnqNngLv-PTXSbUUXPas56IVw/view?usp=sharing
https://drive.google.com/file/d/1H9ZMW2lZnqNngLv-PTXSbUUXPas56IVw/view?usp=sharing

&% Git 2.45.2 Setup

Completing the Git Setup Wizard

Setup has finished installing Git on your computer, The
application may be launched by selecting the installed
shortouts,

s Click Finish to exit Setup.
\ B Lzunch Git Bash:

B view Releaze Notes

Click on Finish.
% MINGW64:/c/Users/ADMIN

ADMIN@DESKTOP-2DFSJ3U MINGWe4
$ |

i~

10

no

EXPERIMENT-01 Basic Setup and Creation of a New Repository

Aim:

To create a new repository “1WT23CS000” under any disc drive such as Z drive and also a sub
repository “aboutMyself”.

To make the default branch as master branch in some systems it is main branch.

To launch the git and enter the user configurations like name, email ID.

First-TimeGitSetup

To make the background color white and to make the theme Kohlrausch.

Open 0 options " | Options *

Copy Ctrl+Ins ~Looks Looks in Terminal - Luuks Luwks in Terming

Paste Shift+Ins ~Text Colours - Text Colours

Keys Keys
Select All - Mouse Foreground... | \Background.. Cursor. .. Mouse Foreground... | Background... Cursor...
Save as Image - Selection - - Selection ==
<, Window Theme | kohlrausch irdow Theme v
Search Alt+F3 - Terminal Color Scheme Designer Store L. Terminal a ;:cﬂl:: ©
Reset Alt+F8 flat-ui
Transparency Transparen|gruvbox
Default Size Alt+F10 @ off OLow (OIMedium () High @ off helmholtz
« Scrollbar [Jopaque when focused < EI » [opaa

(Limts—

Full Screen Alt+F11 mintty

Flip 5 Alt+F12 Cursor =D monokai-dimmed

P ocreen = @) Line () Block (O Underscore @Line |nord
Status Line Blinking Blinking :.’E;aipw
CQptions... windows 10
@ s xterm
About... Save Cancel Apply About... Cancel Apply
Color X

m
1
@
o
o
=N
=]
=]

“Imind fnd 0

“Iudcd 00 1 -

. ,_ MINGWES:/ c/Users/ ADMIN

EFEEEEN

EEEEEE ADMIN@DESKTOP-2DFSJ3U MINGW64 ~
EEEEET N s |

Custom colors

Hue: Red:

Sat: EI Green:
Color|Solid o Blue:
Cancel Add to Custom Colors

NowthatyouhaveGitonyoursystem,you’llwanttodoafewthingstocustomizeyourGitenviro
nment. You should have to do these things only once on any given computer; they’ll
stickaroundbetweenupgrades.Youcanalsochangethematanytime by running through
thecommandsagain.

Yourldentity
ThefirstthingyoushoulddowhenyouinstallGitistosetyourusernameandemailaddress. Thisis
important because every Git commit uses this information, and it’s immutably baked
into thecommitsyoustartcreating:

Again,youneedtodothisonlyonceifyoupassthe--
globaloption,becausethenGitwillalwaysuse that information for anything you do on

$ git config ——global user.name "Dr.NAVEED"

$ git config —global user.email naveed. gce@gmail. com

that system. If you want to override this with
adifferentnameoremailaddressforspecificprojects,youcanrunthecommandwithoutthe-

11

-globaloptionwhenyou’reinthatproject.

ADMIN@DESKTOP-2DFSJ3U MINGW64 ~
$ git config --global user.name "Dr.NAVEED"

ADMIN@DESKTOP-2DFS5J3U MINGW64 ~
$ git config --global user.email naveed.gce@gmail.com

CheckingYourSettings
Ifyouwanttocheckyourconfigurationsettings,youcanusethegitconfig--
listcommandtolistallthesettingsGitcanfindatthatpoint:

ADMIN@DESKTOP-2DFSJ3U MINGW64 ~
$ git config --list
It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 -~

$ git config --1list
diff.astextplain.textconv=astextplain
filter.lfs.clean=git-1lfs clean -- %f
filter.lfs.smudge=git-1lfs smudge -- %f
filter.lfs.process=git-1fs filter-process
filter.lfs.required=true

http.sslbackend=openssl

http.sslcainfo=C:/Program Fileg/Git/mingwéd4/etc/ssl/certs/ca-bundle.crt
core.autocrlf=true

core.fscache=true

core.symlinks=false

pull.rebase=false

credential.helper=manager

credential .https://dev.azure.com.usehttppath=true
init.defaultbranch=master

user.name=Dr.NAVEED
uger.email=naveed.gce@gmail.com

It will show all details and at the end user name and email ID will be highlighted. If
only user nameis required then git config user.name will be used.

ADMIN@DESKTOP-2DFSJ3U MINGW64 ~
$ git config user.name
Dr.NAVEED

To check email of the user use git config user.email

ADMIN@DESKTOP-2DFSJ3U MINGW64 ~
$ git config user.email

naveed.gce@gmail.com

To clear the screen, use clear. Alternatively, you can use the keyboard shortcut Ctrl + L which
also clears the screen in most terminal emulators, including Git Bash.

ADMIN@DESKTOP-2DFSJ3U MINGW64 ~
S clear

12

To Create a New Repository (Folder): By name “1WT23CS000”.
First specify in which drive of your computer you want to create the new repository for Example
‘Z’ Drive

ADMIN@DESKTOP-2DFSJ3U MINGW64 -~
S cd /z
In the next line you can see that Z drive is highlighted.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=
$

To create a new repository by name 1WT23CS000

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=
$ mkdir 1WT23CsS000

To switch to the new repository

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z

S ed 1WT23CS000

You can see now

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CsS000
$

To create a sub folder “ aboutMyself” inside the main folder

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000
$ mkdir aboutMyself

To shift to the subfolder

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CsS000
$ cd aboutMyself

Now you can see

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself
3

Once the repository is created initialize the git:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself
$ git init

It will make master branch as default branch.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself
$ git init
Initialized empty Git repository in Z:/1WT23CS000/aboutMyself/.git/

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$

13

OUTPUT:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself

(master)
$ git config user.name
Dr.NAVEED
ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
$ git config user.email

naveed.gce@gmail.com

14

=

EXPERIMENT No: 02 To add README.md file into the Repository

Aim:

To add README.md file into the repository /z/1WT23CS000/aboutMyself under master branch.
To add the contents given below:

Title: Dr.

Full Name: Naveed

USN: 1WT23CS000

Semester: Third

Section: A

Subject Name: Project Management with GIT
Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

Email ID: naveed.gce@gmail.com

To commit with a message “Contents updated successfully”

First get back to the repository by using:

ADMIN@DESKTOP-2DFSJ3U0 MINGW64 -~
$ ed /z/1WT23CS000/aboutMyself

Now the repository is ready:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$

To Add README.md file inside the sub folder

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/abkoutMyself (master)
$ git add README.md

To check the file added:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
£ git 1ls-files
It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
$ git lz-files

README.md

Note:Some times if it shows some error like Z drive is unsafe directory then to make it safe use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
£ git config --global --add safe.directory z:/

If git add command shows some error, then use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ echo > README.md

This command creates a file named README.md but it will be untraced. To make it traced use

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/abkoutMyself (master)
$ git add README.md

15

mailto:naveed.gce@gmail.com

To open the README.md file.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ naneo README.md

An empty file will open. Type the below sample data:
MINGWES:/z/ TWT23CS000/aboutMyself

GNU nano 8.1 README.md

Title: Dr.

Full Name: Naveed

USN: 1WT23CS000

Semester: Third

Section: A

Subject Name: Project Management with GIT
Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

Email ID: naveed.gce@gmail.com

|

To save:Ctrl+S

To Exit: Ctrl+X

To check the contents of the README.md File

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ cat README.md

It will highlight the contents of the file

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
S cat README.md

Title: Dr.

Full Name: Naveed

USN: 1WT23Cs000

Semesgter: Third

Section: A

Subject Name: Project Management with GIT
Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

Email ID: naveed.gce@gmail.com

To edit or modify the contents of the README.md file the same above procedure may be
adopted.
The data will be updated. But it will not be committed in the git. If we check the status:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
5 git status

It will show changes to be committed with a new file README.md highlighted in green color.

16

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git status
On branch master

No commits yet
Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: README.md

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README.md

To commit the above with a message “Added README.md file with basic data successfully”

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git add .

And then use
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git commit -m "Added README.md file with basic data successfully"”

It will show you the message:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git commit -m "Added README.md file with basic data successfully"”

[master (root-commit) 4dda3ea] Added README.md file with basic data successfully
1 file changed, 11 insertions(+)

create mode 100644 README.md

If you want to check the status:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMy=self (master)
$ git status

It will show you nothing to commit, working tree clean:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git status

On branch master

nothing to commit, working tree clean

“git add ." is used in Git to stage all changes in the current directory and its subdirectories for the
next commit. When you make changes to files in your Git repository, these changes are initially
considered "unstaged"” or "untracked." Staging files with “git add .” prepares these changes to be
included in the next commit snapshot of your project.

Here’s a breakdown of what "git add .” does:

Staging Changes: It adds all modified (tracked) files and all new files (untracked) to the staging
area.

Recursive Operation: The "." represents the current directory and its subdirectories, so "git add .
recursively adds changes from all directories and subdirectories.

Efficiency: It's a convenient shortcut to stage multiple files and changes quickly without
specifying each file individually.

After staging changes with “git add .", you typically follow up with “git commit™ to permanently
store those changes in the Git repository history.

17

OUTPUT:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself
S cat README.md

Title: Dr.

Full Name: Naveed

USN: 1WT23CsS000

Semester: Third

Section: A

Subject Name: Project Management with GIT
Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

Email ID: naveed.gce@gmail.com

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself
$ git status

On branch master

nothing to commit, working tree clean

(master)

(masgter)

18

N

Experiment_03 Creating and Managing Branches

Aim:
To create a new branch named "feature-branch”.
To add a text file “aboutMyself.txt” into the repository /1WT23CS000/aboutMyself .
To add the contents into the text file given below:

e Title: Dr.

e Full Name: Naveed

e USN: 1WT23CS000

e Semester: Third

e Section: A

e Branch: Mechanical Engineering
e Year of Admission: 2023

e College Name: GITW
To commit a message “Added text file aboutMyself.txt successfully”.

Normally the default branch will be master branch or in some system it will be main branch.
During the development stage it is desirable to create a new branch with any name and add all
the required files in it and carry on the process. Whatever the files added into the master branch
it will be visible in the new branch.But if we create a new file in new branch such as feature-
branch it will not be highlighted in master branch. Even if we modify the content of the file of
master branch in the new feature-branch it will not be updated until merged.

To create a new branch “feature-branch’:

First open the repository by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /
S ecd /z/1WT23CS000/aboutMyself

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
By default, it will be master branch or in some case it will be main branch. To check out which
branch the current repository belongs use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git branch

It will show

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
$ git branch
* master

Though the type of branch will be normally highlighted under () in the drive itself.But still it is
required to checkout, the above can be used.
To create a new branch “feature-branch”:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
5 git branch feature-branch

Let us check whether the branch is created or not by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git branch

It will show:
19

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1lWT23CS000/aboutMyself (master)
S git branch

feature-branch
* master

Now we can see there are two branches.It will highlight the number of branches available with
the active branch shown in green color with * symbol

To shift to the new branch created:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
$ git checkout feature-branch

It will shift to the new branch

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$

If we check the number of files available in feature-branch by using
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git la-files

It shows:

ADMIN@EDESKTOP-2DFSJ3U0 MINGWE4 /=z/1WT23Cs5000/aboutMyself (feature-branch)
£ git la-files

README.md

It is shows README.md file which was created in master branch.If the check the contents of the

README.md file by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutlMyself (feature-branch)
$ cat README.md

It shows:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ cat README.md

Title: Dr.

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Sectiocn: A

Subject Name: Project Management with Git

Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

Email: naveed.gce@gmail.com

Therefore, whatever files that were created in master branch are also available in the feature-
branch with the same contents.

But if we modify the contents of README.md file in feature-branch, will it get reflected in

master branch?

/**********/

/* For Knowledge Purpose Not for Record Writing */

Let us checkout.
Remove Email ID from the file README.md available in feature-branch by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ nano README.md

It shows:

20

GNU nano 8.1 README.md
itle: Dr.

Full Name: NAVEED

USN: 1WT23CsS000

Semester: Third

Section: A

Subject Name: Project Management with Git

Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

Email: naveed.gce@gmail.com

Remove Email from the above and save the file.
Again, let us check the content by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ cat README.md

It shows:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ cat README.md

Title: Dr.

Full Name: NAVEED

UsSN: 1WT23Cs000

Semesgter: Third

Section: A

Subject Name: Project Management with Git
Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

Therefore, there is no Email present in the above content. Now if we check the status by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
'$ git status

It shows:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (feature-branch)
'$ git status

On branch feature-branch

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

It tells us to save it with committed message. Let us save by committing a message “Removed
Email Successfully from README.md”

21

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git add .

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)

$ git commit -m "Removed Email successfully from README.md file"
[feature-branch 7claf39] Removed Email successfully from README.md file
1 file changed, 1 insertion(+), 1 deletion(-)

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git status

On branch feature-branch

nothing to commit, working tree clean

Now let us switch back to the master branch and check the contents of the same file
README.md by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git checkout master

It will get switched to master branch

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
Now let us check the contents of README.md file by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ cat README.md

It shows:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ cat README.md

Title: Dr.

Full Name: NAVEED

USN: 1WT23CS5000

Semester: Third

Section: A

Subject Name: Project Management with Git
Subject Code: BCS358C

Academic Year: 2024-25

Mcbile No: 9620483405

Email: naveed.gce@gmail.com

We can see that the Email which was deleted in feature-branch is not deleted in master branch.
Therefore, if we want to update it into the master branch as well then git-merging will be used.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git merge feature-branch

It shows

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
$ git merge feature-branch
Updating d9068ac..7claf39
Fast-forward
README.md | 3 +--
1l file changed, 1 insertion(+), 2 deletions(-)

Now if we check the contents of README.md file in master branch by using

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
S cat README.md
It shows:

22

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMy=zelf (master)
S cat README.md

Title: Dr.

Full Name: NAVEED

USN: 1WT23CsS000

Semegter: Third

Section: A

Subject Name: Project Management with Git

Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

Now we can see that after merging the contents are updated and we don’t find Email in the above
content.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git add .

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WI23CS000/aboutMyself (master)

$ git commit -m "Merged feature-branch into the master branch with updated contents"
On branch master

nothing to commit, working tree clean

/*********/

To Create a new text file by name “aboutMyself.txt”

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (feature-branch)
$ git add aboutMyself.txt

It shows some error.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git add aboutMyself. txt

fatal: pathspec 'aboutMyself.txt' did not match any files

To solve the error, let us add an untraced file by using

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ echo > aboutMyself.txt

Then we will use

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git add aboutMyself.txt

It will show some warning related to operating system. Just ignore it.

Now if we check the number of files available:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git le-files

It shows two files available.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git lz-files

README .md

aboutMyself. txt

Add the contents by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (feature-branch)
$ nano aboutMyself.txt

A file will open, type the contents and save with Ctrl+S and exit by using Ctrl+X.
e Title: Dr.
e Full Name: Naveed

23

e USN: 1WT23CS000

e Semester: Third

e Section: A

e Branch: Mechanical Engineering
e Year of Admission: 2023

e College Name: GITW

GNU nano 8.1 aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN : 1WT23CS000

Semeagter: Third

Section: A

Branch: Mechanical Engineering
Year of Admissgsion: 2023
College Name: GITM

To check the contents of the file use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ cat aboutMyself.txt

It shows:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ cat aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Section: A

Branch : Mechanical Engineering
Year of Admission: 2023

College Name: GITW

Save the file by committing a message “Added aboutMyself.txt file successfully”

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)

5 git add .

warning: in the working copy of 'aboutMyself.txt', LF will be replaced by CRLF the next time Git
touches it

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git commit -m "Added aboutMyself.txt file successfully"
[feature-branch 75c036£f] Added aboutMyself.txt file successfully

1 file changed, 8 insertions(+)

create mode 100644 aboutMyself.txt

Now let us find whether the same file is added into the master branch with same contents.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git checkout master
Switched to branch 'master’

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git ls-files
README.md

Here we don’t find the file aboutMyself.txt which was created in feature-branch.

24

If we check the status,

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
S git status

It will show a message of working tree clean:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
5 git status

On branch master

nothing to commit, working tree clean

OUTPUT:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git branch

feature-branch
* master

OUTPUT:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git 1ls-files

README.md

aboutMyself. txt

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
$ cat aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Section: A

Branch : Mechanical Engineering

Year of Admission: 2023

College Name: GITW

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git status

On branch feature-branch

nothing to commit, working tree clean

25

Experiment-04: Merging of Feature-Branch into the Master Branch:
Aim:
To merge feature-branch into the master branch

Now let us find whether the same file is added into the master branch with same contents.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git checkout master
Switched to branch 'master’

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git ls-files
README.md

Here we don’t find the file aboutMyself.txt which was created in feature-branch.

To make the file aboutMyself.txt available in master branch git merging is used:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git merge feature-branch

It shows:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git merge feature-branch
Updating 7claf39..75<c036f
Fast-forward
aboutMyself.txt | 8 ++++++++
1 file changed, 8 insertions (+)
create mode 100644 aboutMyself.txt

Now if we check the files available in master branch by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git le-files
It shows two files.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1lWT23CS5000/aboutMyself (master)
S git ls-files=s

README.md

aboutMyself. txt

Now if we check the contents of aboutMyself.txt file by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMys=self (master)
$ cat aboutMyself.txt

It shows:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
5 cat aboutMyself.txt

Title: Dr

Full Name: NAVEED

TUSN: 1IWT23CS000

Semester: Third

Section: A

Branch : Mechanical Engineering

Year of Admission: 2023

College Name: GITW

Commit the above with a message by using:

26

ADNINGDESKTOP - 2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git add .

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git commit -m "Merged feature-branch into master branch and added aboutMyself.txt file successf
ully"

On branch master

nothing to commit, working tree clean

Merging feature branches into the main branch is a fundamental practice in modern software
development. It ensures that new features and improvements are regularly integrated, tested, and
made available to all team members, leading to a more robust and maintainable codebase. By
following best practices, teams can effectively manage their development process and deliver
high-quality software.

OUTPUT:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
$ git 1ls-files

README.md

aboutMyself. txt

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
5 cat aboutMyself. txt

Title: Dr

Full Name: NAVEED

USN: 1IWT23CS000

Semester: Third

Section: A

Branch : Mechanical Engineering

Year of Admission: 2023

College Name: GITW

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WI23CS000/aboutMyself (master)
$ git add .

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git commit -m "Merged feature-branch into master branch and added aboutMyself.txt file successf
ully"

On branch master

nothing to commit, working tree clean

27

N

SRR

Experiment-05: Updating of files in the Feature-Branch
Aim:
To add the Qualification Details given Below into the file “aboutMyself.txt” of the feature-
branch:
UG Degree: B.E — Mechanical Engineering
PG Degree:M.Tech — Manufacturing
PhD Degree: Materials Science
To commit the above with a message “Added Qualification Details Successfully”
To merge the feature-branch with the master branch and commit with a message “Merged the
feature-branch Successfully and updated the file with Qualification Details”.
To delete the feature-branch if no longer needed.
To get back the deleted feature-branch
Before proceeding checkout to the feature-branch from master branch by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
% git checkout feature-branch
It will get shifted to feature-branch

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)

Let us checkout the number of files available by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git le-files

It shows two files:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git ls-files

README.md

aboutMyself. txt

Now let us checkout the contents of the file “aboutMyself.txt ”” by using:
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ cat aboutMyself.txt
It shows:
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
S cat aboutMyself.txt
Title: Dr
Full Name: NAVEED
USN: 1WT23CS000
Semester: Third
Section: A
Branch : Mechanical Engineering
Year of Admission: 2023
College Name: GITW
To the above add the following data:
UG Degree: B.E — Mechanical Engineering
PG Degree:M.Tech — Manufacturing
PhD Degree: Materials Science
By using:
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ nano aboutMyself.txt

It will open a GNU file window as shown below:

28

GNU nano 8.1 aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Section: A

Branch : Mechanical Engineering
Year of Admission: 2023

College Name: GITW

Now type the above data. Save the data with Ctrl+S and exit the screen using Ctrl+X

Now let us check the data

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CsS000/aboutMyself (feature-branch)
$ cat aboutMyself.txt

It shows:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ cat aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Section: A

Branch : Mechanical Engineering

Year of Admission: 2023

College Name: GITW

UG Degree: Mechanical Engineering

PG Degree: Manufacturing Science & Engineering

PhD Degree: Materials Science

We can see the data is updated. If we check the status by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git status

It shows that the file is modified but it is not committed. added. To commit with a message. To
commit with a message use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git add

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)

$ git commit -m "Updated the contents of aboutMyself.txt file successful!
[feature-branch c3a5454] Updated the contents of aboutMyself.txt file su«
1 file changed, 3 insertions(+)

Now if we check the status:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
8 git status

On branch feature-branch

nothing to commit, working tree clean

The working tree is clean.

Now let us check whether in master branch the data is updated or not. We will shift to the master
branch and checkout the contents of the file aboutMyself.txt

29

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git checkout master
Switched to branch 'master’

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ cat aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN: 1WT23CS000

Semegter: Third

Section: A

Branch : Mechanical Engineering

Year of Admission: 2023

College Name: GITW

We can see that the contents of the file aboutMyself.txt are not updated in the master branch. To
update the contents git-merging will be used as shown below:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git merge feature-branch

It will merge the contents of the file aboutMyself.txt present in feature-branch. It shows:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git merge feature-branch
Updating 75¢c036f..c3a5454
Fast-forward
aboutMyself.txt | 3 +++
1 file changed, 3 insertions(+)

Now if we check the contents

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
£ cat aboutMyself.txt

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ cat aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN: 1WT23CsS000

Semester: Third

Section: A

Branch : Mechanical Engineering

Year of Admission: 2023

College Name: GITW

UG Degree: Mechanical Engineering

PG Degree: Manufacturing Science & Engineering
PhD Degree: Materials Science

Now we can see that the contents are now updated after merging.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CsS000/aboutMyself (master)
5 git add .

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)

5 git commit -m "Updated the contents by merging the file aboutMyself.txt into to the master b
ch puccessfully”

On branch master

nothing te commit, working tree clean

Note: If it shows some conflict resolve the issue and then proceed.

30

To delete feature-branch:
First, we will check no. of branches available by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git branch

feature-branch
* master

It shows two branches with master branch in active mode.
To delete we will use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git branch -d feature-branch

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git branch -d feature-branch
Deleted branch feature-branch (was <c3a5454).

If we check the number of branches available by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git branch

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git branch

* master

It shows only one branch i.e., master branch.
To get back the feature-branch:
To get back the deleted feature-branch use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
5 git checkout -b feature-branch

It will restore and get back to the feature-branch:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git checkout -b feature-branch
Switched to a new branch 'feature-branch®

Now if we check the number of branches available:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git branch
* feature-branch

master

It shows two branches. Now let us check the number of files available in feature-branch

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git lz-files

README.md

aboutMyself. txt

It shows the same two files that were available before deleting the branch. Let us check the
contents of aboutMysellf.txt file:

31

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ cat aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Section: A

Branch : Mechanical Engineering

Year of Admission: 2023

College Name: GITW

UG Degree: Mechanical Engineering

PG Degree: Manufacturing Science & Engineering
PhD Degree: Materials Science

It shows the same contents which were available before deleting.

Note: Always download the updated version of git bash. In some version it will show some
reference code when “git reflog” command is used. Then to restore the deleted branch “git
checkout -b feature-branch ref. code” command will be used.

OUTPUT:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ cat aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Section: A

Branch : Mechanical Engineering

Year of Admission: 2023

College Name: GITW

UG Degree: Mechanical Engineering

PG Degree: Manufacturing Science & Engineering
PhD Degree: Materials Science

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (feature-branch)
$ git status

On branch feature-branch

nothing to commit, working tree clean

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ cat aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN: 1WT23CsS000

Semester: Third

Section: A

Branch : Mechanical Engineering

Year of Admission: 2023

College Name: GITW

UG Degree: Mechanical Engineering

PG Degree: Manufacturing Science & Engineering
PhD Degree: Materials Science

32

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git add .

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)

$ git commit -m "Updated the contents by merging the file aboutMyself.txt into to the master b
ch successfully"

On branch master
nothing to commit, working tree clean

33

wn

=

Experiment-06: Light Weight and Annotated Tags

Aim:

To update the file “README.md” and add “Date of Joining to GITW: 1* Oct-2023" to it under
the repository /IWT23CS000/aboutMyself under master branch.

To commit with a message “My Date of Joining to GITW Updated successfully”

To add a light weight tag v1.0 into file “README.md”

To add an Annotated tag v2.0 with a message “My Date of Joining to GITW” into the same file

In Git, there are two main types of tags:

Lightweight Tags

Annotated Tags

Each type serves different purposes and has different characteristics.

1. Lightweight Tags

Lightweight tags are simple and act like a pointer to a specific commit. They are just a name
(like a branch) that points to a specific commit. Lightweight tags do not contain any additional
metadata such as the tagger name, date, or a tagging message.

Characteristics:

Simple and fast to create.

Do not store any additional information beyond the commit they point to.

Similar to a branch that doesn’t change.

Lightweight tags are useful when you just want to mark a specific point in your history, such as a
commit representing a release, without the need for additional metadata.

2. Annotated Tags

Annotated tags store additional metadata, including the tagger’s name, email, date, and a tagging
message. They are stored as full objects in the Git database, which makes them more robust and
verifiable.

Characteristics:

Include metadata (tagger name, email, date, and message).

Stored as full objects in the Git database.

Can be signed with GPG to verify authenticity.

Annotated tags are suitable for marking releases or other significant milestones where you want
to include detailed information about the tag.

Summary

Lightweight Tags: Simple, fast, and just a pointer to a commit. Created with git tag tagname.
Annotated Tags: Contain metadata, are stored as full objects, and can be signed. Created with
git tag -a tagname -m "message".

Use lightweight tags for simple markers and annotated tags when you need more information and
robustness.

First ensure that we are in master branch. Let us checkout the number of files available in master
branch by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git 1ls-files

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git ls-files

README.md

aboutMyself. txt

It shows two files. Let us checkout the contents of the README.md file by using:
34

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ cat README.md
It shows:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
S cat README.md

Title: Dr.

Full Name: NAVEED

USN: 1WT23CsS000

Semegter: Third

Section: A

Subject Name: Project Management with Git
Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

Now to the above we will add a content such as “My date of Joining to GITW” by using

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ nano README.md

It will open GNU screen. Add the data and save it and exit by using Ctrl+S and Ctrl+X.
Title: Dr.

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Section: A

Subject Name: Project Management with Git
Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 5620483405

My Date of Joining to GITW: 3rd Oct-2023

Now if we check the contents.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
5 cat README.md

Title: Dr.

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Section: A

Subject Name: Project Management with Git
Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

My Date of Joining to GITW: 3rd Oct-2023

We can see the contents are updated.
Now we will commit the above with a message “My Date of Joining to GITW
Updatedsuccessfully” by using:

35

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git add .

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git commit -m "My Date of Joinining to GITW updated successfully"
[master 44fcdeb] My Date of Joinining to GITW updated successfully
1l file changed, 1 insertion(+), 1 deletion(-)

To add lightweight Tag v1.0 to the above committed message:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git tag vl1.0

It will add the tag by name v1.0. Now to check whether it is added or not use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git tag
It will show all the tags available

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
5 git tag

vl1.0

It shows one tag by name v1.0. Now let us check the contents of the tag v1.0 by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
£ git show v1.0

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git show v1.0

commit 44fcdcb8b4cbd09c285b662173c7cdb5eefclect (HEAD -> master, tag: v1.0)
Author: Dr.NAVEED <naveed.gce@gmail.com>

Date: Tue Aug 27 14:40:07 2024 +0500

My Date of Joinining to GITW updated successfully

diff --git a/README.md b/README.md
index 3add72c..4802edl 100644
--- a/README.md
+++ b/README.md
@@ -7,4 +7,4 @@ Subject Name: Project Management with Git
Subject Code: BCS358C
Academic Year: 2024-25
Mobile No: 9620483405

+My Date of Joining to GITW: 3rd Oct—2023l

We can see the committed message along with the contents added to the above file in last line
with green color.

Light wight tags will show only the committed message. It will not show the tagger name and its
details. For those Annotated tags are used as shown below:

To create Annotated tag v2.0 with a message “My Date of Joining to GITW”
Use the following code:

ADMIN@EDESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git tag -a v2.0 -m "My DAte of Joining to GITW"

36

It will add an annotated tag v2.0. To check the number of tags available use:
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git tag

v1l.0

v2.0

It shows two tags. To check the contents of tag v2.0 use:
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git show v2.0

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git show v2.0

tag v2.0
Tagger: Dr.NAVEED <naveed.gce@gmail.com>
Date: Tue Aug 27 14:47:25 2024 +0500

My DAte of Joining to GITW

commit 44fcdcb8b4cbhbd09c285b662173c7cdb5eefclecf (HEAD -> master, tag: v2.0, tag: v1.0)
Author: Dr.NAVEED <naveed.gce@gmail.com>
Date: Tue Aug 27 14:40:07 2024 +0500

My Date of Joinining to GITW updated successfully

diff --git a/README.md b/README.md
index 3add72c..4802edl 100644
--- a/README.md
+++ b/README.md
@@ -7,4 +7,4 @2 Subject Name: Project Management with Git
Subject Code: BCS358C
Academic Year: 2024-25
Mobile No: 9620483405

+My Date of Joining to GITW: 3rd Oct—2023l

It will show details with tagger name and its details:

OUTPUT:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git show v1.0

commit 44fcdcb8b4cbd09c285b662173c7cdb5eefclect (HEAD -> master, tag: v1.0)
Author: Dr.NAVEED <naveed.gce@gmail.com>

Date: Tue Aug 27 14:40:07 2024 +0500

My Date of Joinining to GITW updated successfully

diff --git a/README.md b/README.md
index 3add72c..4802edl 100644
--- a/README.md
+++ b/README.md
@@ -7,4 +7,4 @@ Subject Name: Project Management with Git
Subject Code: BCS358C
Academic Year: 2024-25
Mobile No: 9620483405

+My Date of Joining to GITW: 3rd Oct—2023l

37

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
5 git show v2.0

tag v2.0
Tagger: Dr.NAVEED <naveed.gce@gmail.com>
Date: Tue Aug 27 14:47:25 2024 +0500

My DAte of Joining to GITW

commit 44fcdcbBb4cbd09c285b662173c7cdb65eefclectf (HEAD -> master, tag: v2.0, tag: v1.0)
Author: Dr.NAVEED <naveed.gce@gmail.com>
Date: Tue Aug 27 14:40:07 2024 +0500

My Date of Joinining to GITW updated successfully

diff --git a/README.md b/README.md
index 3add72c..4802edl 100644
--- a/README.md
+++ b/README.md
@@ -7,4 +7,4 @@ Subject Name: Project Management with Git
Subject Code: BCS358C
Academic Year: 2024-25
Mobile No: 9620483405

+My Date of Joining to GITW: 3rd Oct-2023.

38

Experiment-07: Analyzing GIT History

Aim:

To view the details of specific commit, including the author, date, and commit messageforthe
givencommit ID.

To display the commits made in master branch

To obtain details of the commit with full details such as Author name, Email, date, timings,
committed messagefor the given ID 44fcdcbof master branch

To display the commits made in feature-branch

To obtain details of the commit with full details such as Author name, Email, date, timings,
committed message for the given IDc3a54540f feature-branch

To write the command to list all commits made by the author "Dr. NAVEED" between "2024-
01-01"and "2024-12-31."

To write the command to display the last five commits in the repository's history for master
branch as well feature-branch.

First find out how many branches are available or how many branches were created other than
the default master branch by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git branch

It will show the available branches with current branch in green color.
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git branch

feature-branch
* master

To display commits made in master branch use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git log master --oneline

It will show:
ADMIN@DESKTOP-2DFS5J3U MINGW64 /z/1WT23CS000/aboutMyself (master)
5 git log master --oneline

44fcdch (HEAD -> master, tag: v2.0, tag: v1l.0) My Date of Joinining to GITW updated successfully
c3ab5454 (feature-branch) Updated the contents of aboutMyself.txt file successfully

75c036f Added aboutMyself.txt file successfully

7claf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

acB80e2e Removed Email ID

dS068ac Added README.md file successfully

4dda3ea Added README.md file with basic data successfully

Note: Running the git log master --oneline command will show you a simplified, one-line-per-
commit log of the feature-branch. This is useful for quickly viewing the commit history in a
compact format.

To check committed details for the given 1D44fcdchb:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git show 44fcdch

It will show:

39

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git show 44fcdch

commit 44fcdcbhB8b4cbd09c285b662173c7cd65eefc0ect (HEAD -> master, tag: v2.0, tag: v1.0)
Author: Dr.NAVEED <naveed.gce@gmail.com>

Date: Tue Aug 27 14:40:07 2024 +0500

My Date of Joinining to GITW updated successfully

diff --git a/README.md b/README.md
index 3add72c..4802edl 100644
--- a/REARDME.md
+++ b/README.md
@@ -7,4 +7,4 @@ Subject Name: Project Management with Git
Subject Code: BCS358C
Academic Year: 2024-25
Mobile No: 9620483405

+My Date of Joining to GITW: 3rd Oct—2023.

Author name, Email, Date,timings and committed messages are shown.
Similarly for feature-branch:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
$ git log feature-branch --oneline
It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS8000/aboutMyself (master)

S git log feature-branch --oneline

c3a5454 (feature-branch) Updated the contents of akboutMyself.txt file successfully
75c036f Added aboutMyself.txt file successfully

7claf39 Removed Email successfully from README.md file

bé2acle Added Email Successfully

acB80e2e Removed Email ID

d9068Bac Added README.md file successfully

4dda3ea Added README.md file with basic data successfully

Now for the given ID c3a5454use:

ADMIN@DESKTOP-2DFSJ3U MINGW6E4 /z/1WT23CsS000/aboutMyself (master)
$ git show c3a5454

It will show.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMy=zelf (master)
5 git show <c3ab454

commit c3a5454237c4ch6faBlfa3Bs5409ceeBfa7e92dee (feature-branch)
Author: Dr.NAVEED <naveed.gce@gmail.com>

Date: Tue Aug 27 12:52:07 2024 +0500

Updated the contents of aboutMyself.txt file successfully

diff --git a/aboutMyself.txt b/aboutMyself.txt
index d608607..dace6ba 100644

--- a/aboutMyself.txt

+++ b/aboutMyself. txt
@@ -6,3 +6,6 @@ Section: A

Branch : Mechanical Engineering

Year of Admission: 2023

College Name: GITW

+UG Degree: Mechanical Engineering

+PG Degree: Manufacturing Science & Engineering
+PhD Degree: Materials Science

40

To list all commits made by the author ""Dr. NAVEED" between "2024-01-01"" and "'2024-
12-31.""

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log --author="Dr.NAVEED" --since="2024-08-21" --until="2024-08-29"

It should be “Year-Month-Day” format. It will show:

ADMIN@DESKTOP -2DFSJ3U MINGW64 /z/1WL23C28000/aboutMyself (master)

$ git log --author="Dr.NAVEED" --since="2024-08-21" --until="2024-08-25"

commit 44fcdcb8bd4cbdl%c285b662173cTcdbbeafclact (HEAD -> master, tag: v2.0, tag: v1.0)

Author: Dr.NAVEED <naveed.gce@gmail.com>
Date: Tue Aug 27 14:40:07 2024 40500

My Date of Jeinining te GITW updated successfully

commit ©3a5454237cd4c6fa81fa3895409cee8fa7e92dee (feature-branch)
Author: Dr.NAVEED <naveed.gce@gmail.com:>
Date: Tue Aug 27 12:52:07 2024 40500

Updated the contents of aboutMyself.txt file successfully

commit 75c036£3a0a8355b2ab703e7e6e5c315d48417219
Author: Dr.NAVEED <naveed.gce@gmail.com>
Date: Mon Aug 26 15:31:37 2024 +0500

Added aboutMyself.txt file successfully

commit 7c1af39%098223212fkb759¢c26bcd4cbcl41£938d5d
Author: Dr.NAVEED <naveed.gce@gmail.com>
Date: Mon Aug 26 14:46:57 2024 40500

Removed Email successfully from README.md file

commit b62aclebbel8bb2487633fd15fa%b686161272dd45
Author: Dr.NAVEED <naveed.gce@gmail.com>
Date: Mon Aug 26 14:33:47 2024 40500

Added Email Succesgssfully

commit ac80e2e8cfbh0d1466d757eb665becl5fbledbeTb
Author: Dr.NAVEED <naveed.gce@gmail.com:>
Date: Mon Aug 26 14:23:33 2024 40500

Remocved Email ID

commit d9068ac99cdf754c7309d7666a6dcbafdbddB84ed
Author: Dr.NAVEED <naveed.gce@gmail.coms>

Date: Mon Aug 26 14:13:41 2024 +0500

Note: Press Q to get back to coding.

If we require the details in brief just in one line then use:
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log --author="Dr.NAVEED" --since="2024-08-21" --until="2024-08-29" --oneline
It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log --author="Dr.NAVEED" --since="2024-08-21" --until="2024-08-29" --oneline

44fcdcb (HEAD -> master, tag: v2.0, tag: v1.0) My Date of Joinining to GITW updated successfully
c3ab5454 (feature-branch) Updated the contents of aboutMyself.txt file successfully

75c036f Added aboutMyself.txt file successfully

7claf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

acB80e2e Removed Email ID

d906B8ac Added README.md file successfully

4dda3ea Added README.md file with basic data successfully

41

To display the last five commits in the repository's history for master branch:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
$ git log master -n 5 --oneline

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log master -n 5 --oneline

44fcdch (HEAD -> master, tag: v2.0, tag: v1.0) My Date of Joinining to GITW updated successfully
c3a5454 (feature-branch) Updated the contents of aboutMyself.txt file successfully

75c036f Added aboutMyself.txt file successafully

T7elaf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

Note:To get full details avoid --oneline:

Similarly for feature-branch:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (master)
% git log feature-branch -n 5 --cneline

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log feature-branch -n 5 --oneline

c3a5454 (feature-branch) Updated the contents of aboutMyself.txt file successfully
75c036f Added aboutMyself.txt file successfully

7claf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

acB0eZ2e Removed Email ID

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
5 git log master --oneline

44fcdch (HEAD -> master, tag: v2.0, tag: v1l.0) My Date of Joinining to GITW updated successfully
c3ab5454 (feature-branch) Updated the contents of aboutMyself.txt file successfully

75c036f Added aboutMyself.txt file successfully

7claf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

acB0eZe Removed Email ID

d9068ac Added README.md file successfully

4dda3ea Added README.md file with basic data successfully

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log feature-branch --oneline

c3a5454 (feature-branch) Updated the contents of aboutMyself.txt file successfully
75c036f Added aboutMyself.txt file successfully

Tclaf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

acB0eZ2e Removed Email ID

d906Bac Added README.md file succesgsfully

4dda3ea Added README.md file with basic data successfully

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log --author="Dr .NAVEED" --since="2024-08-21" --until="2024-08-29" --cneline
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git log --author="Dr.NAVEED" --since="2024-08-21" --until="2024-08-29" --oneline

44fcdeb (HEAD -> master, tag: v2.0, tag: v1l.0) My Date of Joinining te GITW updated successfully
c3ab5454 (feature-branch) Updated the contents of aboutMyself.txt file successfully

75c036f Added aboutMyself.txt file successfully

7claf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

acB80e2e Removed Email ID

d906B8ac Added README.md file successfully

4dda3ea Added README.md file with basic data successfully

42

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log master -n 5 --oneline

44fcdch (HEAD -> master, tag: v2.0, tag: v1.0) My Date of Joinining to GITW updated successfully
c3a5454 (feature-branch) Updated the contents of aboutMyself.txt file successgfully

75c036f Added aboutMyself.txt file succesafully

7claf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log feature-branch -n 5 --oneline

c3a5454 (feature-branch) Updated the contents of aboutMyself.txt file sucecessfully
75c036f Added aboutMyself.txt file successfully

7claf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

ac80eZe Removed Email ID

43

Experiment-08: GIT Cherry-pick and Revert
Aim:

1. Create a new file “bugfile.txt” in feature-branch and obtain the details such as day and
time of this file from master branch without merging it

2. To check committed message with date and time by using the reference ID in any branch
such as feature-branch for the ID: ¢3a5454 by using cherry-pick command. Resolve the
error if it exist.

3. To write the command to undo the changes introduced by the commit with the ID
"b5b6caf" in master branch. Change the committed message from “Deleted datal.txt file
successfully” to Deleted datal.txt file successfully which was a dummy file for testing
purpose”. Resolve the error if it exist.

The git cherry-pick command is used to apply the changes introduced by an existing commit
onto the current branch. It allows you to select a specific commit from one branch and apply it to
another branch, without merging the entire branch history. For example, if you want to add some
committed message done in feature-branch into the master branch without merging the feature-
branch into the master branch then git cherry-pick is helpful. This can be useful in a variety of
situations, such as:

1. Porting Specific Changes: If you've made a specific fix or feature in one branch and
want to apply it to another branch without merging all other changes from the source
branch, you can use git cherry-pick to apply just that commit.

2. Selective Backporting: When you need to backport, a bug fixes from a development
branch to a stable branch without including all other changes.

3. Undoing Changes: You can also use git cherry-pick in combination with a revert
commit to undo specific changes made by a particular commit.

To create a new file “bugfile.txt”:
First, we will shift to feature-branch by using

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git checkout feature-branch
Switched to branch 'feature-branch'

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
To add a bugfile.txt in feature-branch use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git add bugfile.txt
It shows some error: We will use echo >bugfile.txt and then use git add

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ echo > bugfile.txt

It will add an untraced file bugfile.txt. To trace it and add it use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git add bugfile.txt
It will show:

44

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)

$ git add bugfile.txt

warning: in the working copy of 'bugfile.txt', LF will be replaced by CRLF the next
time Git touches it

Ignore the warning as it is related to type of operating system.Now if we check the number of
files.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git 1ls-files

README .md

aboutMyself. txt

bugfile. txt

We can see bugfile.txt is added. If we check the status:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git status
On branch feature-branch
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: bugfile.txt

It shows new file and it will ask to commit. To commit with a message "Added bugfile.txt
successfully with confidential information™ use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git add .

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git commit -m "Added bugfile.txt successfully with confidential information"

Now if we check the status

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git status

On branch feature-branch

nothing to commit, working tree clean

Everything is fine.Now to check this committed message in master branch without merging
feature-branch into master branch, we will shift to master branch.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git checkout master

Switched to branch 'master'

Let us find out the history of feature-branch to get the reference ID related to bugfile.txt by
using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git log feature-branch --oneline
It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git log feature-branch --oneline

fdoos05 (feature-branch) Added bugfile.txt successfully with confidential informat
n

c3a5454 Updated the contents of aboutMyself.txt file successfully
75c036f Added aboutMyself.txt file successfully

7claf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

ac80e2e Removed Email ID

d9068ac Added README.md file successfully

4dda3ea Added README.md file with basic data successfully

From the above we got the ID as: fd00805. By using
45

ADMIN@DESKTOP -2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git cherry-pick £d400805
We can get information about the time and date details of the bugfile.txt inserted into the feature-
branch. It shows
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git cherry-pick £d400805

[master bSbé6caf] Added bugfile.txt successfully with confidential information
Date: Fri Aug 30 15:05:33 2024 +0500

Now if we check the history of master branch

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log master -n 5 --oneline

bSbé6caf (HEAD -> master) Added bugfile.txt successfully with confidential informatio
n

47f6b3e Removed Email successfully from README.md file

b4b02l1la Updated the contents of aboutMyself.txt file successfully

44fcdchb (tag: v2.0, tag: v1.0) My Date of Joinining to GITW updated successfully
c3a5454 Updated the contents of aboutMyself.txt file successfully

We can see that the committed message added in feature-branch related to bugfile.txt is now
saved in master branch.

Therefore, date and time of the bugfile.txt is obtained successfully without merging feature-
branch into the master branch by using git cherry-pick.

To check committed message with date and time by using the reference ID in any branch
such as feature-branch in the above ID c3a5454by cherry-pick command:

Use git cherry-pick command for thegiven IDin feature-branch: as shown below

First, we will use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git log feature-branch --oneline

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log feature-branch --cneline

g3ab454 (feature-branch) Updated the contents of aboutMyself.txt file successfully
75c036f Added aboutMyself.txt file successfully

7claf39 Removed Email successfully from README.md file

b62acle Added Email Successfully

ac80e2e Removed Email ID

do068ac Added README.md file successfully

4dda3ea Added README.md file with basic data successfully

To check the details of the committed message with date and time for the above ID use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git cherry-pick c3a5454

It will show the details if no error found. If error found it will show the error.

46

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git cherry-pick c3a5454

The previous cherry-pick is now empty, possibly due to conflict resoclution.
If you wish to commit it anyway, use:

git commit --allow-empty

Otherwise, please use 'git cherry-pick --skip®
On branch master
You are currently cherry-picking commit c3a5454.

(all conflicts fixed: run "git cherry-pick --continue")
(use "git cherry-pick --skip" to skip this patch)
(use "git cherry-pick --abort" to cancel the cherry-pick operation}

nothing to commit, working tree clean

It tells that the cherry-pick is now empty due to conflict resolution. Follow the instruction given
above. We will use git commit --allow-empty. A window will open as shown below:

Updated the contents of aboutMyself.txt file successfully

o= s s s s s e 5

o=« s s s« S o s« S A s o

It loocks like you may be committing a cherry-pick.
If this is not correct, please run

git update-ref -d CHERRY PICK HEAD
and try again.

Please enter the commit message for your changes. Lines starting
with '"#' will be ignored, and an empty message aborts the commit.
Date: Tue Aug 27 12:52:07 2024 +0500

On branch master
You are currently cherry-picking commit c3a5454.

The committed message is shown in brown color. If you want to modify the message it can be
modified or else keep as such.

47

Updated the contents of aboutMyself.txt file successfully

#

It locks like you may be committing a cherry-pick.

If this is not correct, please run

git update-ref -d CHERRY PICK HEAD

and try again.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
#

Date: Tue Aug 27 12:52:07 2024 +0500

#

On branch master

You are currently cherry-picking commit c3a5454.

#

.git/COMMIT EDITMSG [unix] (09:42 30/08/2024)

To get back to the coding screen press Esc button and then type “:wq” at the footer as shown
above and then enter.
Now it will show the details of the commit.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master|CHERRY—PICKING}
$ git commit --allow-empty

[master b4b02la] Updated the contents of aboutMyself.txt file successfully
Date: Tue Aug 27 12:52:07 2024 +0500

We can see that the above committed message of feature-branch with the ID: c3a5454 is now
saved in master branch.
To check use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git log master -n 1 --oneline

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log master -n 1 --oneline

b4b021a Updated the contents of aboutMyself.txt file successfully file

We can see that the committed message of feature-branch is now added into the master branch
with a new ID b4b021a. This is helpful if we want to share some important commit of feature-
branch into the master branch without merging the entire feature-branch into the master branch.

Let us check some other ID such as 7c1af39 as shown below.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log feature-branch --cneline

c3ab454 (feature-branch) Updated the contents of aboutMyself.txt file successfully
75c036f Added aboutMyself.txt file successfully

7claf3io Removed Email successfully from README.md file

b62acle Added Email Successfully

ac80eZe Removed Email ID

do068ac Added README.md file successfully

4dda3ea Added README.md file with basic data successfully

Use the git cherry-pick command for the above ID.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git cherry-pick 7claf3s

48

It shows some error.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git cherry-pick 7claf39

Auto-merging README.md

CONFLICT (content): Merge conflict in README.md

error: could not apply 7claf39... Removed Email successfully from README.md file
hint: After resolving the conflicts, mark them with

hint: "git add/rm <pathspec>", then run

hint: "git cherry-pick --continue".

hint: You can instead skip this commit with "git cherry-pick --skip".
hint: To abort and get back to the state before "git cherry-pick",
hint: run "git cherry-pick --abort".

hint: Disable this message with "git config advice.mergeConflict false"

To open the file use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master‘CHERRY—PICKING)
$ vim README.md

It will open the file README.md.

MINGWB4: 2/ TWT23C5000/ aboutMyself

Title: Dr.

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Section: A

Subject Name: Project Management with Git
Subject Code: BCS358C

Academic Year: 2024-25

Mcbile No: 9620483405

<<<<<<< HEAD

My Date of Joining to GITW: 3rd 0Oct-2023

>>>>>>> 7claf39 (Removed Email successfully from README.md file)

Remove the conflicting text and edit the content as shown below. Keep the cursor at the text and
type “:wq” and then press enter.

MINGW64:/2/ WT23CSD00/aboutMyself

Title: Dr.

Full Name: NAVEED

USN: 1WT23CS000

Semester: Third

Section: A

Subject Name: Project Management with Git
Subject Code: BCS358C

Academic Year: 2024-25

Mobile No: 9620483405

Date of Joining TO GITW: 3rd Oct 2023

README.md [+] [dos] (10:14 30/08/2024)

1wWq

It will open an Attention file:

49

[F£325: ATTENTIO

Found a swap file by the name " .README.md.swp"
owned by: ADMIN dated: Fri Aug 30 10:02:46 2024
file name: /z/1WT23CS000/aboutMyself/README.md
modified: YES
user name: ADMIN host name: DESKTOP-2DFSJ3U
procass ID: 1818 (STILL RUNNING)
While opening file "README.md"
dated: Fri Aug 30 09:59:13 2024

(1) Another program may be editing the same file. TIf this is the casa,
be careful not to end up with two different instances of the same
file when making changes. Quit, or continue with caution.

(2) An edit session for this file crashed.
If this is the case, use ":recover" or "vim -r README.md"
to recover the changes (see ":help recovery").
If you did this already, delete the swap file " .README.md.swp"
to avoid this message.

Swap file ".README.md.swp" already exists!
[0] pen Read-Only, (R)ecover, (Q)uit, (A)bort:
Type E and the proceed.

Add the modified file and continue with the cherry-pick

ADMIN@DESKTOP-2DFSJ3U MINGW64 /=z/1WT23CS000/aboutMyself (maBter|CHERRY-PICKING)
$ git add README.md

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master‘CHERRY—PICKING)

$ git cherry-pick --continue

It will open the conflicting file

50

MINGWEL: 2/ TWT23CS000/ aboutMyself

Removed Email successfully from README.md file

#
#
#
#
#
#
#

— ¥ 3 I 3 I 3 I W I 3

Conflicts:
README.md

It locks like you may be committing a cherry-pick.
If this is not correct, please run

git update-ref -4 CHERRY PICK HEAD
and try again.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit
Date: Mon Aug 26 14:46:57 2024 +0500
On branch master
You are currently cherry-picking commit 7claf3S.
Changes to be committed:
modified: README.md
Untracked files:
.README.md. swo
.README.md. swp
ype “:wq” then enter

51

MINGWBE4:/z/ 1 WT23CS000/ aboutMyself
Removed Email successfully from README.md file

Conflicts:
README.md

It looks like you may be committing a cherry-pick.
If this is not correct, please run

git update-ref -d CHERRY PICK HEAD
and try again.

B S L S

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.

Date: Mon Aug 26 14:46:57 2024 +0500

On branch master
You are currently cherry-picking commit 7claf3s.

Changes to be committed:
modified: README.md

Untracked files:
.README.md. swo
.README.md. swp

I o A 3 H I I I I I I A I I

.git/COMMIT EDITMSG [unix] (10:23 30/08/2024)
:Wg

Now we got the committed message.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS5000/aboutMyself (master|CHERRY-PICKING)
$ git cherry-pick --continue

[master 47f6b3e] Removed Email successfully from README.md file

Date: Mon Aug 26 14:46:57 2024 +0500

1 file changed, 4 insertions(+), 1 deletion(-)

Now if we check the history of master branch for the last two commits
ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git log master -n 2 --oneline

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log master -n 2 --oneline

47f6b3e (HEAD -> master) Removed Email successfully from README.md file
b4b021la Updated the contents of aboutMyself.txt file successfully

We can see that the committed message of feature-branch is now added into the master branch
with a separate ID: 47f6b3e.

52

To undo the changes introduced by the commit with the ID "b5b6caf" in master branch.
First let us find out last 5 commits made in master branch by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git log master -n 5 --oneline

It will show:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log master -n 5 --oneline

b5bécaf (HEAD -> master) Added bugfile.txt successfully with confidential informatio
n

47f6b3e Removed Email successfully from README.md file

b4b021la Updated the contents of aboutMyself.txt file successfully

44fedeb (tag: v2.0, tag: v1.0) My Date of Joinining to GITW updated successfully
c3a5454 Updated the contents of aboutMyself.txt file successfully

Now to change the committed message for the refence ID bSb6caf to “Added bugfile.txt
successfully with very important information” use

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git revert bSbécaf
It will open the file as shown below.

MINGWES: 2/ TWT23CS5000/aboutMyself

Pevert "Added bugfile.txt succesgsfully with confidential information"

This reverts commit bS5bécaf8alb5a3c9e5507dfa332e4564ef8053ee.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
i

On branch master

Changes to be committed:

i deleted: .README . md . swo

deleted: .README.md. swp

i deleted: bugfile.txt

i

Edit the above file and change the content as to save and quiet type “:wq” as shown below:

53

MINGWES:/ 2/ TWT23C5000/aboutMyself
Added bugfile.txt successfully with important information

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
i

On branch master

Changes to be committed:

i deleted: .README.md. swo

i deleted: .README.md . swp

L deleted: bugfile.tx#

.git/COMMIT EDITMSG[+] [unix] (15:26 30/08/2024)

Now if we check the last two committed message in master branch by using:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
$ git log master -n 2 --oneline

It will show :

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log master -n 2 --oneline

37e84c2 (HEAD -> master) Added bugfile.txt successfully with important information T
his reverts commit bSbé6caf8albSa3c9e5507dfa332e4564ef8053ee.

b5bécaf Added bugfile.txt successfully with confidential information

We can see the change of committed message in the above.

OUTPUT:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
$ git 1s-files

README . md

aboutMyself. txt

bugfile.txt

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git cherry-pick £d400805

[master b5Sb6caf] Added bugfile.txt successfully with confidential information
Date: Fri Aug 30 15:05:33 2024 +0500

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git log master -n 2 --oneline

37e84c2 (HEAD -> master) Added bugfile.txt successfully with important information T
his reverts commit bSbécaf8albSalc9e5507dfa332e4564ef8053¢ce.

b5bé6caf Added bugfile.txt successfully with confidential information

54

GIT and VS Coding
Visual Studio Code (commonly referred to as VS Code) is a free, open-source code editor
developed by Microsoft. It is designed to be lightweight yet powerful, with a rich set of features
for developers. Here are some key aspects of VS Code. It is a versatile and powerful code editor
that balances a lightweight footprint with rich functionality, making it a popular choice among
developers of all kinds.

Key Features of VS Code:

1. Cross-Platform: Available on Windows, macOS, and Linux, making it accessible to a wide
range of developers.

2.Extensible: It has a vast ecosystem of extensions available through the Visual Studio Code
Marketplace. These extensions can enhance the editor with additional functionality, such as
language support, linters, debuggers, and more.

3. Integrated Git Support: VS Code provides built-in Git integration, allowing users to perform
Git operations like commits, branches, merges, and more directly from the editor.

4. Debugging: It has an integrated debugging tool that supports multiple programming languages
and can be extended through plugins.

5. IntelliSense: Offers smart code completions based on variable types, function definitions, and
imported modules, making it easier and faster to write code.

6.Customizable: Users can customize the editor's appearance and functionality through settings,
themes, and keybindings.

7.Terminal Integration: Includes an integrated terminal that supports various shells (e.g., Bash,
PowerShell), allowing developers to execute command-line operations within the editor.

8. Multi-Language Support: VS Code supports a wide range of programming languages out of
the box and can be extended to support more through extensions.

9. Code Navigation and Refactoring: Provides features for easy navigation through code, such as
"Go to Definition," "Peek Definition," and powerful refactoring tools.

10. Snippets and Emmet: Offers code snippets and Emmet support for faster coding.
Use Cases:

1.Software Development: Suitable for developing applications in various languages like
JavaScript, Python, Java, C++, and more.
2.Web Development: Popular among web developers for working with HTML, CSS, JavaScript,
and frameworks like React, Angular, and Vue.
3.Data Science: Can be used for data science tasks with extensions for Jupiter Notebooks,
Python, and data visualization tools.
4.DevOps and Cloud: Integrated terminal and extensions for Docker, Kubernetes, and Azure
make it useful for DevOps tasks.

55

5. Community and Ecosystem: VS Code has a large and active community contributing to its
extensions and core features. The Visual Studio Code Marketplace offers a wide range of
extensions that can significantly enhance the editor's functionality.

To download VS Code: Click the link given below:

https://drive.google.com/file/d/1g1zzTLY ELwFg2mS2wJZRn3gD1VOCRQ7/view?usp=drive |
ink

56

https://drive.google.com/file/d/1q1zzTLY_ELwFg2mS2wJZRn3gD1V0CRQ7/view?usp=drive_link
https://drive.google.com/file/d/1q1zzTLY_ELwFg2mS2wJZRn3gD1V0CRQ7/view?usp=drive_link

Experiment-09:
Aim:

Gitin VS Code

1. To clone the repository /z/1WT23CS000/aboutMyself from Git-Bash to VS code:
2. To add a new file vsFile.txt under VS code. Add the following data:

Vs File details:

e Version: 2.1

e Date of Installation: 30/07/2024
e Author Name: Dr.Naveed

and commit a message “Added VsFile.txt successfully”

Basic Setup after Installation:

To change the background Theme to white use Ctrl+K+T

’Q File Edit Selection Wiew Go Run
EXPLORER PR
~ ABOUTMYSELF
aboutMyself.ixt AD
(@ READMEmd $

@ B % v v |D

Select Color Theme (detect system color mode disabled)

[

Light Modern Default Light Madern
Light+ Default Light+
Quiet Light

Solarized Light

Abyss

Dark (Visual Studio) Visual Studic Dark
Dark Modern Default Dark Modern
Dark+ Default Dark-

Kirmbie Dark

Monokai

Shortcut for theme:
Ctrl+K+T

hMonokal Dimmed

Red

Solarized Dark

Tomarrow Might Elue

Dark High Contr

Select Light High Contrast as shown above.

<L

Under Extension search for GitHub and Install it.

57

¥) File Edit Selection View Go Run

EXTENSIONS 0 ---)Q Welcome X
Search Extensions in Mark.. T|
~ |INSTALLED 1
GitHub Pull Reque... = 156ms
‘ ' Pull Request and Issue Provi...
& GitHub &

Vis
E:? ’ extension icon Ed|
Start

To clone the repository from git bash to VS code platform:
First, we will shift to the required repository position by using:
MINGW64:/Z/1WT23CS000/aboutMyself

ADMIN@DESKTOP-2DFSJ3U MINGW64 ~
S ed /2

ADMIN@DESKTOP-2DFSJ3U MINGW64 /Z
S cd 1WT23CS000/aboutMyself

Now we are in the project repository. To clone this in VS Code use:

ADMIN@DESKTOP-2DFSJ3U MINGW64 /Z/1WT23CS000/aboutMyself
S code .

It will clone the repository in VS code and it will get operated as shown below:

(master)

58

] File Edit Selection View Go Run - 2 aboutMyself

#¥PLORER) welcome X

~ ABOUTMYSELF
aboutMyself.txt
(D README.md

Visual Studio Code
Editing evolved

Start

1 Mew File.

Open File...

Clone Git Repository...

i
= Open Folder...
o

Connect to..

We can see the repository aboutMyself inside which there are two files available.
aboutMyself.txt and README.md files.

We can see on left side the repository aboutMyself. The branch will be shown on left bottom
screen:

> OUTLINE
|ME|_|NE
Pmaster ® ®0A0 %o

"
L Type here to search 4’3

To operate git bash under VS code: Click on the Terminal then NewTerminal and then Git bash.
We can see the terminal screen below.

¥] File Edit Selection View Go Run .- £ aboutMyself
EXPLORER RS S s
~ ABOUTMYSELF HElp ’
aboutMyself.txt Run Task...

(i} README.md . .
- ’ Run Build Task... Ctrl+Shift+B

Run Active File

By default it will show powershell. Change it to git Bash as shown below:
59

Recent

‘You have no recent folders, open a folderto start. PowerShell
Command Prompt
JavaScript Debug Terminal

Split Terminal 2

Configure Terminal Settings
Select Default Profile
— Run Task...
[v/| Show welcome page on startup
Configure Tasks...
PROBLEMS OUTPUT DEBUG COMSOLE TERMINAL PORTS IEI' powershell —|— B |:|:|
PS Z:\1WT22C5008\zboutMyself> []

] File Edit Selection View Go -+ & P sboutMyself Do o - X

EXPLORER

&

~ ABOUTMYSELF

/C) E aboutMyself.txt
¥

©® READMEmd

>

o

®

Show All Commands +
Go to File [cwl]+[p]
Find in Files [Ctl]+[shift]+[F]
Toggle Full Screen | F11

Show Settings + D

+(e)

PROBLEMS ~ QUTBUT DE2UG COMSOLE |TERMINAL| PORTS b bash +~ (D W@ - @x

ADMIN@DESKTOP-2DFSJ3U MINGWG4 /z/1WT23CS000/aboutMyself (master)

To maximize the screen, click on ~ symbol.

®] File Edit Selection View Go - & - [£ abouthyselt) Domo -

EXPLORER e PROBLEMS QUTPUT DEBUG CONSOLE TERMINAL PORTS hash +~ 0 @ - v

~ ABOUTMYSELF

/C) E aboutMyself.txt
© READMEmd
2_9 ADMINADESKTOP-2DFSJ3U MINGWE4 /z/1IWT23CS000/aboutMyself (master)

o
B

C))
Note: To Zoom In and Zoom OUT use Ctrl+ and Ctrl -

60

¢ File Edit Selection < = | £ aboutMyself

J

0D -

EXPLORER PROBLEMS

OUTPUT TERMINAL

()

bash +\« D] '@[e N

~ ABOUTMYSELF
B aboutMyself.txt
© READMEmd 51

Jo
%

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

All the basic git commands which were used in GITBash can be used over here as shown below:

EXPLORER e PROBLEMS OUTPUT DEBUG CONSOLE

~ ABOUTMYSELF

TERMINAL

PORTS

B aboutMyself.txt
© READMEmd

e $ git branch
feature-branch
* master

ADMINGIDESKTOP-2DFSJI3U MINGWGL
e 3 git 1s-files

README . md

aboutMyself.txt

ADMIN@DESKTOP-2DFSJI3U MINGWGL
e 3 cat aboutMyself.txt

Title: Dr

Full Name: NAVEED

USN: 1WT23CSe0e

Semester: Third

Section: A

Branch : Mechanical Engineering

Year of Admission: 20823

College Name: GITW

@ 0B ¥ v v |

PhD Degree: Materials Sclence

) |

Note: If (master) is not highlighted then use git init command.

UG Degree: Mechanical Englneering
PG Degree: Manufacturing Science & Engineering

EXPLORER PROBLEMS CUTPUT DEBUG CONSOLE

TERMINAL

~ ABOUTMYSELF

PORTS

ADMIN@DESKTOP-2DFSJI3U MINGW64 /z/1WT23CS000/aboutMyself (master)

/2z/1WT23C5000/aboutMyself (master)

/z/1WT23CS000/aboutMyself (master)

ADMINGDESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

E aboutMyself.txt
B bugfile.txt
©® README.md

e 3 git checkout feature-branch
Switched to branch 'feature-branch’

e % git 1s-files
README . md
aboutMyself.txt
bugfile.txt

s i

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

Now all the commands that were used in git bash can be used over here as shown above.

ADMIN@DESKTOP-2DFSI3U MINGWA4 /z/1WT23CS000/aboutMyself (feature-branch)

ADMIN@DESKTOP-2DFSI13U MINGWA4 /z/1WT23CS000/aboutMyself (feature-branch)

61

To add a new file “vsfile.txt” apart from the commands we can directly use:

@ EXPLORER PROBLEMS QuUTPUT DEBUG CONSOLE TERMINAL PORTS
~ ABOUT.A(M/ES U &
/O 8 NewFile.. JEOX ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)
5 bugfile.txt N |
EE © READMEmd

Add the data: Vs File details: Here we can copy and paste it. This was not available in gitbash.
Version: 2.1

Date of Installation: 30/07/2024

Author Name: Dr.Naveed

U- shows it is untracked. The white dot symbol shows it is not saved. Use Ctrl+S to save. The

white dot will disappear.

@ EXPLORER B vsFiletxt U (:]

s ABOUTMYSELF B vsFiletxt

& aboutMyself txt 1 Version: 2.1

5 bugfile.txt 2 Date of Installation: 38/067/2024
® README.md 3 Author Name: Dr.Naveed
A

|

E wsFiletxt

>

If we check the status:

ADMIN@QDESKTOP-2DFSJI3U MINGWe4 /z/1WT23CS000/aboutMyself (feature-branch)
e % git status
It shows untracked file without commit.

¢

~ ABOUTMYSELF

p £ aboutMyself.ixt
B bugfileixt

ADMIN@DESKTOP-2DFSJI3U MINGWG4 /z/1WT23CS000/aboutMyself (feature-branch)

© README.md .
%) ® % git status
& vsFiletxt u On branch feature-branch
Changes to be committed:
P> (use "git restore --staged <file>..." to unstage)
v
deleted: .README .md . swo
deleted: .README .md . swp

Untracked files:
(use "git add <file>..." to include in what will be committed)

sy
@ vsFile.txt

To track the file and get added use:

62

@ B % v v b

EXPLORER

~ ABOUTMYSELF
B aboutMyself.txt
B bugfile.txt
©® README.md
E wsFile.txt

PROBLEMS COUTPUT DEBUG COMNSOLE TERMINAL PORTS

ADMIN@DESKTOP-2DFSJ3U MINGWe4 /z/1WT23CS000/aboutMyself (feature-branch)
®$ git add .

ADMIN@QDESKTOP-2DFSI3U MINGW64 /z/1WT23CS5000/aboutMyself (feature-branch)
® % git commit -m "Added vsFile.txt successfully"”

[feature-branch @cdbf80] Added vsFile.txt successfully

3 files changed, 3 insertions(+)

delete mode 100644 .README.md.swo

delete mode 100644 .README.md.swp

create mode 100644 wsFile.txt

ADMINADESKTOP-2DFS13U MINGW64 /z/1WT23CS000/aboutMyself (feature-branch)

i1

Now there is no symbol U. If we check the status:
ADMIN@IDESKTOP-2DFSJ13U MINGW6e4 /z/1WT23C5000/aboutMyself (feature-branch)
e % git status
On branch feature-branch
nothing to commit, working tree clean

Everything is fine.

OUTPUT:
File Edit Selection View Go -+ « = [/OaboutMyseIf]

3

EXPLORER

~ ABOUTMYSELF
E aboutMyself.txt
B bugfile.txt
B github.txt
© READMEmd
E vsFile.txt

PROBLEMS QUTPUT DEBUG COMNSOLE TERMINAL PORTS

Total 5§ (delta 2), reused @ (delta @), pack-reused @ (from @)
3

ADMIN@DESKTOP-2DFSJI3U MINGW&4 /z/1WT23CS000/aboutMyself (master)
® % cat vsFile.txt

Version: 2.1

Date of Installation: 30/07/2024

Author Name: Dr.Naveed

ADMINRDESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)

e} |

63

Introduction to GIT-HUB

GitHub is a web-based platform for version control and collaboration, primarily used for code. It
leverages Git, a distributed version control system, to manage and track changes in source code
during software development. GitHub offers both free and paid plans and provides a wide range
of features that facilitate collaborative coding, project management, and more.

GitHub is a powerful platform that combines the functionalities of Git version control with
additional tools for collaboration, project management, and automation. Its widespread adoption
in the software development community makes it an essential tool for developers, teams, and
organizations.

Key Features of GitHub

1. Repository Hosting:
- GitHub allows users to host repositories, which can be either public or private. Repositories
contain all the files, history, and metadata for a project.

2. Version Control with Git:
- GitHub uses Git to track changes in code. This includes features like branching, merging, pull
requests, and commit history.

3. Collaboration:
- Multiple developers can work on the same project simultaneously. GitHub provides tools for
managing contributions, reviewing code, and discussing changes.

4. Pull Requests:

- A pull request is a feature that allows developers to propose changes to a repository. Other
team members can review, discuss, and approve or reject these changes before they are merged
into the main codebase.

5. Issues and Project Management:
- GitHub provides an issue tracking system to manage bugs, feature requests, and other tasks. It
also offers project boards and task management features to help organize and prioritize work.

6. Actions and Continuous Integration/Continuous Deployment (CI1/CD):
- GitHub Actions allow users to automate workflows, such as running tests, building projects,
and deploying applications, directly from their repositories.

7. Documentation and Wikis:
- Users can create and maintain documentation for their projects using Markdown files within
the repository or GitHub's wiki feature.

8. Social Networking for Developers:
- GitHub has social features like following users, starring repositories, and forking projects,
which help foster community and collaboration.

9. Security Features:
- GitHub offers various security features, such as vulnerability alerts, Dependabot for
dependency management, and security advisories.

64

10. Integration with Other Tools:
- GitHub integrates with a wide range of third-party tools and services, including IDEs, project
management tools, CI/CD systems, and more.

Applications:

1.0pen-Source Projects: Many open-source projects are hosted on GitHub, allowing contributors
from around the world to collaborate.
2.Private Projects: Companies and organizations use GitHub for private projects, taking
advantage of its tools for collaboration, code review, and CI/CD.
3.Personal Projects and Portfolios: Developers often use GitHub to showcase their work and
build a portfolio.
4.Learning and Experimentation: GitHub is a valuable resource for learning new technologies, as
many projects and tutorials are hosted there.

To Sign-up and create an account in the git-hub refer the following link and follow the
steps to create an account.

https://github.com/

Explore the latest in Al, DevEx, security: Get 20% off your tickets to GitHub Universe, only until September 3. X

O Product Solutions Resources Open Source Enterprise Pricing Q Sign in ‘ Sign up ‘

65

https://github.com/

Experiment-10 VS Code and Github
Aim:

1. To clone the repository /z/IWT23CS000/aboutMyself from VS code to your github
account for both master branch and feature-branch.

2. To create a new file github.txt in VS code add the following data: Push to the github
account with committed message “Added github.txt file successfully” into the master
branch.

e githublID: naveedgce
e Version: 2.1
e Date of installation: 01/08/2024

First open the VS code and initialise the repository and configure the author name and Email
address as shown below:

@ EXPLORER PROBLEMS OUTPUT DEBUG COMSOLE TERMIMAL PORTS

~ ABOUTMYSELF
p & aboutMyself.txt

@ README.md
ADMIN@DESKTOP-2DFSJI3U MINGW64 /z/1WT23CS000/aboutMyself (master)

Eﬁ ®3% git init

Reinitialized existing Git repository in Z:/1WT23CS000/aboutMyself/.git/

ﬁb ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
® % git config --global user.name "Dr.NAVEED"
B:I? ADMINRDESKTOP-2DFSJI3U MINGW64 /z/1WT23CS000/aboutMyself (master)
® 3 git config --global user.email naveed.gce@gmail.com
@ ADMIN@DESKTOP-2DFSJ3U MINGW6&4 /z/1WT23CSO00/aboutMyself (master)
s i

Sign in to your github account:My github account is naveedgce. You can type your own github
account with your USN as ID.
Click on + sign to add New repository

= O naveedgce Q Type (7] to search @O a8

] Cverview] Repositories 12 B Projects) Packages T¥ Stars H New repository
E+ Import repositery

Fill up all the details as shown below. Give the repository name as 1WT23CS000.Make it public
so that everybody can access.

Donot activate README.md file as there is already README.md file available in our
repository.

66

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Required fields are marked with an asterisk [*).

Owner * Repository name *
KA naveedgce ~ [/ 1WT23CS000

& 1WT23C5000 is available.

Great repository names are short and memorable. Need inspiration? How about animated-spork ?

Description (optional)

[My First Repository with Git Bash V5 Code

o [:_] Public

Anyone on the internet can see this repository. You choose who can commit.

~ [E] Private

You choose who can see and commit to this repository.

Initialize this repository with:

Add a README file

This is where you can write a long description for your project. Learn more about READMES.

Add .gitignore
.gitignore template: None ~

Choose which files not to track from a list of templates. Learn more about ignoring files.

Choose a license

License: None

A license tells others what they can and can't do with your code. Learn more about licenses.

Now we can see that a new repository by “1WT23CS000” is created as shown below:

67

) x
(0 Home

() lssues

Il Pull requests

B Projects

LJ) Discussions

& Codespaces

& Explore

5 Marketplace

Repositories Q
naveedgce/myFirstProject

naveedgce/mySecondProject

< naveedgceﬂWTEﬂCSﬂD

naveedgce/weatherAppModejs

Click on the repository name and copy the URL of the repository created by referring:

Quick setup — if you've done this kind of thing before
[g] Set up in Desktop or HTTPS SSH https://github.com/naveedgce/1WT23C50008.git

Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.

Use the below code in VS coding screen git remote add origin < paste the copied URL of github
repository >:

@ EXPLORER PROBLEMS OUTPUT DEBUG CONSCOLE TERMINAL PORTS

~ ABOUTMYSELF

/C) E aboutMyself.txt

© README.md
ADMIN@DESKTOP-2DFSJI3U MINGWG4 /z/1WT23CS000/aboutMyself (master)
3-9 ® % git remote add origin https://github.com/naveedgce/1WT23CS000.git

After this use the below code to push your repository into your GitHub account:

ADMIN@DESKTOP-2DFSJI3U MINGW64 /z/1WT23CS000/aboutMyself (master)
3 git push -u origin master

68

It will ask for Authentication by signing into your GitHub account:

T

' Connect to GitHub X

"l

| GitHub g

: Sign in

Browssr/Device Token

Sign in with your browser

Sign in with a code

Don't have an account? Sign up

Once you log in into your GitHub account successfully it will show:

Q-

Authentication Succeeded

You may now close this tab and return to the application.

Now we can find all the files copied into our GitHub repository;

69

=1 TWT23CS000 public S? Pin | ® Unwatch

Y master ~ F © Q Gotofile t +

Dr.NAVEED Added bugfile.txt successfully withi... &8 37e84c2 - yesterday {9 12 Commits

] README.md Removed Email successfully from ... yesterday

[aboutMyself.txt Updated the contents of aboutMy... 4 days ago

00 README Z

Title: Dr. Full Name: NAVEED USN: 1WT23CS000 Semester: Third Section: A
Subject Name: Project Management with Git Subject Code: BCS358C Academic
Year: 2024-25 Mobile No: 9620483405 Date of Joining TO GITW: 3rd Oct 2023

It shows 12 commits done so far. If we click on it:

70

Commits

P master - B Allusers = B Altime -

& Commits on Aug 30, 2024

Added bugfile.txt successfully with impertant information =2
Dr.MAVEED commitbed yester

sesac: (D ¢

terday

Added bugfiletxt successfully with confidential information .
mhbGeaf LI‘:I £y
Dr.NAVEED committed yesterday

Removed Email successfully from README.md file

arisbze (O £
D MAVEED comemitbed yesterday &

Updated the contents of aboutMyself.txt file successfully

sapazia () ¢
D MAWEED comenitbed

sterday
< Commits on Aug 27, 2024

My Date of Joinining to GITW updated successfully

4afcdck LI‘:I £
DrNAVEED committed 4 days ago

Updated the contents of aboutMyself.txt file successfully

caasass [4>
DrMAVEED committed 4 days aga

- Commits on Aug 26, 2024

Added aboutMyself.txt file successfully

rscazaf (@ 43
D NAWEED commitbed oy =

Removed Email successfully from README.md file

EISETEL I
Dr.MAVEED committed 5 A0 &

Added Email Successfully

bEzacle (0 <>
DrMAVEED committer

Removed Email ID
acgeeze [<>
DrMAWEED commitbed

Added README.md file successfully

dsesgac [<>
D NAWEED commitbed

o Commits on Aug 23, 2024

Added README.md file with basic data successfully

agdazea [<>
Dr.MAVEED committed last week

To push feature-branch:

ADMIN@DESKTOP-2DFSJI3U MINGW6&4 /z/1WT23CS000/aboutMyself (master)
e % git push -u origin feature-branch

It will add into the GitHub account and it will ask to compare and pull the request as shown
below:

P feature-branch had recent pushes 30 minutes ago

Compare & pull request
F master ~ ¥ 2 Branches > 0 Tags Q Gotofile t Add file ~

Click on compare & Pull request:

71

Add a title

Featurs branch

Add a description

Write Preview H B T = < &

Added feture-branch successfull}l

CIO Markdown is supported [2-] Paste, drop, or click to add files

@ Remember, contributions to this repositary should follow our GitHuls Community Guidelines.

Click on Create pull request:

Create pull request
e—

P Require approval from specific reviewers before merging

f@ Continuous integration has not been set up

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Rulesets ensure specific pecple approve pull requests before they're merged.

Add rule b4

GitHub Actions and several other apps can be used to automatically catch bugs and enforce style.

Merge pull request You can also open this in GitHub Desktop or view command line instructions.

Click on Merge Pull Request.

Merge pull request #1 from naveedgce/feature-branch

Feature branch

This commit will be authored by 107602693 +naveedgee@users.noreply.github.com

{ Confirm merge Cancel

It will ask for Confirm merge. Click on it.

72

Pull request successfully merged and closed

Delete branch
You're all set—the feature-branch branch can be safely deleted.

It shows a message of successfully merged and closed. Now if we click on the branches, it will
show two branches.

¥ master - ¥ 2 Branches (> 0 Tags Q Gotofile t Add file =

Switch branches/tags be
edges/feature-branch @@ 1d01985 - 31 minutes ago &) 15 Commits
[Q. Find or create a branch...
Removed Email successfully from READMEmd file yesterday
Branches Tags)
Updated the contents of aboutMyself.txt file successfully 4 days ago
+ master default
Added bugfile.txt successfully with confidential information yesterday
feature-branch
Added vsFile.txt successfully 38 minutes ago

View all branches

If we click on the feature-branch:

¥ feature-branch ~ ¥ 2 Branches 0 Tags Q Gotofile - Add file ~

This branch is 6 commits behind master . 1% Contribute =

DrLNAVEED Added vsFile.txt successfully 0cdbfE0 . 39 minutes ago ¥5) 9 Commits
[READMEmd Removed Email successfully from README.md file 5 days ago
(Y aboutMyself txt Updated the contents of aboutMyself.tx file successfully 4 days ago
(3 bugfilet« Added bugfile.txt successfully with confidential information yesterday
[wvsFilext Added wsFile.tet successfully 39 minutes ago

It shows all the files that are available in feature-branch along with the 9 commits.

73

To add a new file github.txt into the VS code and then to push into the GitHub account Use:
Click on New file and enter the data into it and save it.

)Q File Edit Selection View Go -+ — = [2 aboutMyself
@ EXPLORER B PROBLEMS QUTPUT DEBUG COMSOLE TERMIMAL PORTS
v ABOUT.AGJES U &
p & |github.oxt
E aboutMyself.txt
©® README.md ADMIN@QDESKTOP-2DFSJI3U MINGW64 /z/1WT23CS000/aboutMyself (master)
ko | s [
®) File Edit Selection View Go - & > | O aboutMyself
@ EXPLORER 5 githubixt U @
~ ABOUTMYSELF B github.txt
/C) & aboutMyself.txt 1 githubID: naveedgce
& github.txt U 2 Version: 2.1
©® README.md 3 Date of installation: ©1/08/2024
') s |
If we check the status:
)O File Edit Selection View Go - i L /QaboutMyseIf J
@ EXPLORER PROBLEMS ~ OUTPUT DEBUG CONSOLE |TERMINAL| PORTS
~ ABOUTMYSELF
p & aboutMyself.txt
B github.tx‘t 1] ADMINQDESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
®$ git status
gﬁ © READMEmd Oon branch master
Your branch is up to date with 'origin/master’.
f?> Untracked files:
(use "git add <file>..." to include in what will be committed)
github.txt

g5

@ ADMINGDESKTOP-2DFSJI3U MINGW64 /z/1WT23CS000/aboutMyself (master)
s

It shows untracked file with symbol U. To track it and to commit use:

nothing added to commit but untracked files present (use "git add" to track)

74

)Q File Edit Selection View Go -+ “— = [2 aboutMyself

EXPLORER v PROBLEMS QUTPUT DEBUG COMNSCLE TERMIMNAL PORTS

~ ABOUTMYSELF
B aboutMyself.txt

E github.bxt - ' ')
ADMINADESKTOP-2DFSJ3U MINGWA&4 /z/1WT23CS000/aboutMyself (master)
©® README.md e git add

ADMIN@DESKTOP-2DFSJI3U MINGW64 /z/1WT23CS000/aboutMyself (master)
e 3 git commit -m "Added github.txt file successfully”
[master cl477e9] Added github.txt file successfully
1 file changed, 3 insertions(+)
create mode 100644 github.txt

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
e $ git status
0On branch master
Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)

@ R ¥ v oD

nothing to commit, working tree clean

Check the GitHub account:

4 TWT23CS000 Public 57 Pin | | @ Unwatch 1
F master ~ ¥ 2 Branches 0 Tags Q Gotofile t Add file ~
kA naveedgce Merge pull request #1 from naveedgee/feature-branch & 1401985 - 2 days ago ¥L) 15 Commits
(3 READMEmd Remaoved Email successfully from README.md file 3 days ago
[aboutMyselfitxt Updated the contents of abouthysalf.ta file successfully last week
[bugfiletd Added bugfile.txt successfully with confidential information 3 days ago
(3 vsFilet:t Added vsFiletxt successfully 2 days ago
[README i

There is no file added into GitHub account.

To push into GitHub account use:

] File Edit Selection View Go - « = [£ aboutMyself

EXPLORER PROBLEMS OUTPUT DEBUG COMNSOLE TERMINAL PORTS

~ ABOUTMYSELF
& aboutMyself.txt

© O D)

bugfile.txt
S .g ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
B github.txt ®$ git push -u origin master
© README.md
E vsFiletxt

v

75

It shows some error:

To https://github.com/naveedgce/1IWT23CS000.git

I [rejected] master -> master (fetch first)
error: failed to push some refs to 'https://github.com/naveedgce/1WT23CS5000.git’
hint: Updates were rejected because the remote contains work that you do not
hint: have locally. This is usually caused by another repository pushing to
hint: the same ref. If you want to integrate the remote changes, use
hint: 'git pull' before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

There might be some conflict. To resolve use:
® ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS5000/aboutMyself (master)
% g1t pull origin master

A screen will open showing the conflict message. Keep it as such or it can be modified as well.
To save and quit type “:wq” as shown below and enter.

) File Edit Selection View Go - & > | O aboutMyseif]

EXPLORER e PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

~ ABOUTMYSELF

.
/O E aboutMyself.txt

E bugfiletxt 14, A Merge branch 'master' of https://github.com/naveedgce/1WT23CS000
& github.txt ## Please enter a commit message to explailn why this merge 1s necessary,
- #f especially if it merges an updated upstream into a topilc branch.
© README.md i
B vsFiletxt 1A A # Lines starting with '#° will be ignored, and an empty message aborts
ﬂb # the commit.
ﬁ} > QUTLINE N
> TIMELINE { ;wa!
-_gp master+ 3111 @odo 0
It shows:

® ADMIN@DESKTOP-2DFSJI3U MINGW64 /z/1WT23CS000/aboutMyself (master)

$ git pull origin master

From https://github.com/naveedgce/1WT23C5000

#* branch master -> FETCH_HEAD
Merge made by the ‘ort' strategy.

bugfile.txt | 1 +

vsFile.txt | 3 +++

2 files changed, 4 insertions(+)

create mode 100644 bugfile.txt

create mode 100644 vsFile.txt

Then use the following to commit with a message.

76

ADMINQDESKTOP-2DFSJI3U MINGW64 /z/1WT23CS000/aboutMyself (master)
e % git add

ADMIN@DESKTOP-2DFSJI3U MINGW64 /z/1WT23CS000/aboutMyself (master)
®$ git commit -m "Resolved the conflict successfully"”
On branch master
Your branch is ahead of 'origin/master' by 2 commits.
(use "git push" to publish your local commits)

nothing to commit, working tree clean
Now let us use the previous code to push the file into the GitHub account.

ADMIN@DESKTOP-2DFSJ3U MINGW64 /z/1WT23CS000/aboutMyself (master)
e % git push -u origin master
Now it shows a successful message.

ADMINDDESKTOP-2DFS]3U MINGWG4 /z/1WT23CS000/aboutMyself (master)
® 3% git push -u origin master
Enumerating objects: 7, done.
Counting objects: 100% (7/7), done.
Delta compression using up to 2 threads
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 598 bytes | 119.00 KiB/s, done.
Total 5 (delta 2), reused 0 (delta @), pack-reused @ (from @)
remote: Resolving deltas: 100% (2/2), completed with 1 local object.
To https://github.com/naveedgce/1IWT23CS000.git
1d@1985. .bc@42d6é master -> master
branch 'master' set up to track 'origin/master’.

Now if we check our GitHub account:

4 TWT23CS000 Puoiic 5 pin | | @ Unwatch 1
F master - ¥ 2 Branches > 0 Tags Q Gotofile t Add file -
DrNAVEED Merge branch ‘'master of hitps://github.com/naveedgce/ TWT23CS000 bc042d6 - @ minutes ago ¥L) 17 Commits
[READMEmd Remaoved Email successfully from README.md file 3 days ago
[aboutMyselftxt Updated the contents of aboutMyself.bud file successfully last week
Y bugfiletxt Added bugfile.xt successfully with confidential information 3 days ago
Y github.bxt Added github.txt file successfully 30 minutes ago
(3 vsFiletxt Added vsFiledxt successfully 2 days ago

We can see the github.txt file added into it.

Note: If there is some conflict due to multi users . To remove the user logged into the account
refer the following.

77

Manage your credentials

View and delete your saved logon information for websites, connected applications and networks.

Web Credentials

Back up Credentials Restore Credentials

Windows Credentials Add a Windows credential

No Windows credentials.

Certificate-Based Credentials Add a certificate-based credential

No certificates.

Add a generic credential

Modified: 8/31/2024 (~)

git:https://github.com

Internet or network address: git:https://github.com
User name: naveedgce
Password: sescssee

Persistence: Local computer

Edit | Remove

virtualapp/didlogical Modified: 10/30/2024 I"\:/:")
SSO_POP_Device Modified: Today r_/)
OUTPUT:
4 TWT23CS000 Public 57 Pin & Unwatch 1
+ master ~ ¥ 2 Branches 0 Tags Q. Gotofile t Add file -
Dr.NAVEED Merge branch ‘master’ of hitps://github.com/naveedgce/1WT23CS000 bc042d6 - 8 minutes ago ¥ 17 Commiits
[READMEmd Removed Email successfully from README.md file 3 days ago
[aboutMyselftxt Updated the contents of aboutMyself.bd file successfully last week
3 budfiletxt Added bugfile.txt successfully with confidential information 3 days ago
(3 github.txt Added github.tz file successfully 30 minutes ago
[vsFiletxt Added vsFiledxt successfully 2 days ago

78

Experiment-11 VS code and Github
Aim:
1. To create a new repository “githubRepository” from the GitHubaccount. Add README.md

file
2. To clone the repository into the VS code. To add the following data into README.md file

e First Name:

e Last Name:

e Email ID

e GitHub ID:

e Mobile Number:

3. To push the repository into the GitHub account

First login into your GitHub account. Go to the home page and then click on add a new
repository as shown below:

= O Dashboard Q. Type(J) to search @ oln a8
B New repository
- _ ——
Home send feedback = (&0 Latest changes G} Import repository
Top repositories
- 3 days ago
|~ Trending repositories - See more L .
k= grep = Add repository| & New codespace

Find a repository...

@ sickcodes/Docker-0SX organizationral

V¢ star | - Mo mict
Type the repository name and check for the availability. Each repository is unique and cannot be
of the same name. You can type your last three digits of your USN along with this name.
Provide a brief description about it. My first GitHub repository. Add a README.md file which
can be later filled.

79

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repositorny.

Required fields are marked with an asterisk ™).

Owner * Repository name *

¥4 naveedgce - /" githubRepository

@ githubRepository is available.
Great repository names are short and memaorable. Need inspiration? How about studious-invention 7

Description (optional)

[My first github repositury{]

o [q Public

Anyone on the internet can see this repository. You choose who can commit.

(:) & Private

You choose who can see and commit to this repository.

Initialize this repository with:

Add a README file
This is where you can write a long description for your project. Learn rmore about READMEs,

Add .gitignore
.gitignore template: None «

Choose which files not to track from a list of templates, Learn mare about ignoring files,

Choose a license

License: None

A license tells others what they can and can't do with your code, Learn more about licenses,

This will set F'main as the default branch. Change the default name in your settings.

(@ You are creating a public repository in your personal account.

Click on Create repository.

We can see that the new repository is created in our GitHub account as shown below.

80

= O naveedgee / githubRepository Q. Type(/] to search

<> Code (@ Issues I Pullrequests (& Actions [Projects [0 wiki @ Security |~ Insights 83 Settings

githubRepository) Pubiic 2 Pin || @ Unwatch

F main - ¥ 1Branch > 0Tags Q Gotofile t Add file -
naveedgce Initial commit 18be33c . 29 minutes ago ¥%) 1 Commit
Initial commit 29 minutes ago
0 README rd
githubRepository

My first github repository

To clone this repository into the local server through VS coding platform there are two options:
Option-01:
Close the vs code editor if previous repository is in active state. Go the home page with
Welcome file. Click on Clone Git Repository. '

] File Edit Selection View Go - « = |

O (R]

Visual Studio Code

Editing evolved

7 ¥ O

&5
Start

@ (3 New File..
LTE Qpen File...
= Open Folder...

? Clone Git Repository...

> Connect to..

It will ask for the GitHubrepository URL.

81

] File Edit Selection View (

[Provide repository URL or pick a repository source.

@ @ Clone from GitHub
Jo
o

Visual Studio Code

> .
& Editing evolved
(]
5
Start
Click on code and then click on copy option of the URL as shown below:
githubRepository Public 57 Pin | | & Unwatch 1
¥ main - F 1Branch $ 0 Tags Q, Gotofile t Add file - @
Local Codespaces
naveedgce Initial commit
(4] Clone)]
(Y READMEmd Initial commit

HTTPS S5H GitHub CLI

[README https://github. com/naveedgce/githubrepasitory.¢

Clone using the web URL.
githubRepository

¥ Open with GitHub Desktap

My first github repository m oad
il Download ZIP

Now go to the VS code page and add the above URL
»J File Edit Selection View (

@ ¢ Welcome X

Jo

It will ask for the folder. Select any drive such as Z drive.
Now we can see our repository is created in VS code platform

‘ https://github.com/naveedgce/githubReposito ry.giﬂ

Clone from URL https://github.com/naveedgce/githubRepaos
@ Clone from GitHub

82

arODE

’a File Edit Selection View Go - < - | S githubRepository

@ EXPLORER PROBLEMS QUTPUT DEBUG CONSOLE TERMINAL PORTS

vGITHUB.. [(5 U @
p © README.md

ADMIN@DESKTOP-2DFSJ3U MINGWE4L /z/githubRepository (main)
£ d
&>
a5

Now the project is ready to be worked.

Option-02

We can also do in the other way as well. In the previous project screen: Get back to Z drive by
using:

*J File Edit Selection View Go - « = | 5 githubRepaository

@ EXPLORER PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

~ GITHUBREPOSITORY

/O © READMEmd

ADMINADESKTOP-2DFSJI3U MINGW64 /z/githubRepository (main)

iﬁ' ®3 cd ..

" ADMINADESKTOP-2DFSI3U MINGW64 /z

It will get shifted to Z drive. Now we can use a code such as “git clone <paste the URL of
GitHub repository>" as shown below:

ADMIN@QDESKTOP-2DFSJI3U MINGW6E4 /z
$ git clone httpi:;";’github.comfnaveedgcefgithubRepOSitnry.gitl

The above https://........ was copied from the GitHub account.

To add the data:

Open the README.md file and add the following data and save it:
First Name:

Last Name:

Email ID

GitHub ID:

Mobile Number:

83

https://........was/

®J File Edit Selection View Go - «— = [5 githubRepository

@ EXPLORER © READMEmd X
 GITHUBREPOSITORY © READMEmd
p © READMEmd 17 First Name: Dr

Last Mame: NAVEED

Email ID: naveed.gcefgmail.com
Github ID:naveedgce

Mobile Number: 9620483485

5
>

AR

oo oW

To push the updated file into the GitHub account:
First, we have to commit the task with a message. If we check the status.

ADMINQIDESKTOP-2DFSJ13U MINGWG&4 /z/egithubRepository (main)
® 3% git status

On branch main

Your branch is up to date with 'origin/main'.

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README .md

no changes added to commit (use "git add" and/or "git commit -a")
Therefore, to commit use the following:

ADMIN@DESKTOP-2DFSJ13U MINGW64 /z/githubRepository (main)
% git add

ADMIN@DDESKTOP-2DFSJI3U MINGW64 /z/githubRepository (main)
% git commit -m "Updated README.md file successfully"”
[main 2fde9fd] Updated README.md file successfully
1 file changed, 6 insertions(+), 2 deletions(-)

ADMIN@DDESKTOP-2DFSJI3U MINGW64 /z/githubRepository (main)
e % git status
On branch main
Your branch is ahead of 'origin/main' by 1 commit.
(use "git push" to publish your local commits)

nothing to commit, working tree clean

To push the above into the GitHub repository: Remember the repository that was created in the
GitHub account shows main branch not master.

84

14 githubRepository Pubiic £ Pin | © Unwatch 1

F 1Branch © 0Tags Q Gotofile - Add file =

¥4 naveedgce Initial commit 18be33c - 53 minutes ago ¥L) 1 Commit

[READMEmd Initial commit 53 minutes ago

We cannot use master here for coding;

ADMIN@DESKTOP-2DFSJI3U MINGW64 /z/githubRepository (main)
e % git push -u origin main
If no conflict exists then it will show a successful message.

ADMIN@DESKTOP-2DFSJI3U MINGW64 /z/githubRepository (main)
e % git push -u origin main
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 2 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 361 bytes | 361.00 KiB/s, done.
Total 3 (delta @), reused 0 (delta @), pack-reused @ (from @)
To https://github.com/naveedgce/githubRepository.git
18be33c..2fde9fd main -> main
branch 'main' set up to track 'origin/main’'.

Now let us check the GitHub account.

K4 grthu bRestitory Public 57 Pin & Unwatch
¥ main ~ F 1Branch 0 Tags Q Gotofile - Add file ~
DrNAVEED Updated README.md file successfully Zfdedfd - 5 minutes ago L) 2 Commits
(3 READMEmd Updated README.md file successfully 5 minutes ago
[0 README &

First Name: Dr Last Name: NAVEED Email ID: naveed.gce@gmail.com Github ID:naveedgce Mobile Number:
9620483405

We can see the information is updated. Earlier README.md file was empty. Now it shows the
data.

85

OUTPUT:

)

File Edit Selection

View Go - «— = [£ githubRepository

EXPLORER

~ GITHUBREPQSITORY

PROBLEMS QUTPUT DEBUG CONSOLE TERMINAL PORTS

© README.md

ADMINADESKTOP-2DFSJ13U MINGWA4 /z/githubRepository (main)
e % cat README.md

First Name: Dr

Last MName: NAVEED

Email ID: naveed.gceagmalil.com

Github ID:naveedgce

Mobile Number: 9620483485

ADMIN@DESKTOP-2DFSJI3U MINGWe4 /z/githubRepository (main)
s 1

86

10.

11.

12.

VIVA-VOCE

What is Git?

Git is a distributed version control
system used to manage project code
and track changes over time.

Who developed Git and why?
Linus Torvalds developed Git in
2005 for managing Linux kernel
development after the community
stopped using BitKeeper.

What are the three states in Git?
Modified, Staged, and Committed —
representing a file's current
workflow stage.

What is a repository in Git?

A repository is a project directory
tracked by Git, containing all version
history and files.

How do you initialize a Git
repository?

By using the command git init inside
the project folder.

What is a staging area in Git?

A temporary area where changes are
prepared (staged) before committing
to the repository.

What is a commit in Git?

A commit saves the current staged
changes to the Git repository
permanently with a message.

What command is used to set user
identity in Git?

git config --global user.name
"Name" and git config --global
user.email "email@example.com"
What is the command to view
current Git configuration?

git config --list

How to clear the Git Bash screen?
Use clear or press Ctrl + L.

What does git add . do?

It stages all the modified and new
files in the current directory for the
next commit.

How to create a new file and add
content?

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Use nano filename or touch
filename, then edit and save.

. What is the purpose of a

README.md file?

It provides basic documentation and
information about the repository.
How to check the status of your
working directory?

git status shows changes, untracked
files, and staged files.

How do you create a new branch?
git branch feature-branch creates a
new branch named “feature-branch”.
How to switch branches in Git?
Use git checkout branch-name.
What is merging in Git?

Merging combines changes from one
branch into another.

How to merge a feature branch
into master?

First switch to master using git
checkout master, then use git merge
feature-branch.

What happens if you modify a file
in a feature branch?

Changes remain local to that branch
until merged into master.

How do you delete a branch?

Use git branch -d branch-name.

What are Git tags?

Tags mark specific points in Git
history, often used for releases.
Difference between lightweight
and annotated tags?

Lightweight tags are simple pointers;
annotated tags store metadata like
author and date.

How to create a lightweight tag?
git tag v1.0

How to create an annotated tag?
git tag -a v2.0 -m "Tag message"
How to list all tags in a repository?
Use git tag

87

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Can tags be pushed to remote
repositories?

Yes, using git push origin tagname
Can you delete a tag?

Yes, use git tag -d tagname

How to view details of an
annotated tag?

Use git show tagname

Are tags part of branches?

No, tags are separate and point to
commits, not branches.

Why use tags in Git?

To mark release versions or
important milestones in the
codebase.

What is git log used for?

To view the commit history with
author, date, and message.

How to see commits by a specific
author?

git log --author="Author Name"
How to view commit logs in brief?
git log --oneline

How to view commits between
dates?

git log --author="Name" --
since="YYYY-MM-DD" --
until="YYYY-MM-DD"

How to view a specific commit
using ID?

Use git show commit-ID

What does git diff do?

Shows the difference between files
or commits.

Can Git log be used to see changes
across branches?

Yes, using options like git log
branch-name.

How to view the last 5 commits?
gitlog-n5

Can we search commit messages?
Yes, with git log --grep="message"
What is git blame used for?

To find who last modified a
particular line of code.

What is git cherry-pick?
It applies a specific commit from

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54,

another branch into the current
branch.

Use case of cherry-pick?

Useful when you want only specific
changes from a feature branch.
How to undo a commit?

Use git revert commit-1D

How to amend a previous commit
message?

Use git commit --amend

What is git reflog?

It records updates to the tip of
branches, helping you recover lost
commits.

Can git cherry-pick cause
conflicts?

Yes, conflicts may arise if the same
content was modified.

How to resolve cherry-pick
conflicts?

Edit the file, resolve the conflict,
then commit.

How to change a commit message
in history?

Use git rebase -i and modify
messages carefully.

How to check file history using
Git?

Use git log filename

What is git revert vs git reset?

git revert creates a new commit that
undoes changes; git reset changes
commit history.

What is GitHub?

A platform for hosting Git
repositories and collaborating on
projects online.

How to clone a GitHub repository
to VS Code?

Use git clone URL and open itin VS
Code.

How to push local changes to
GitHub?

Use git push origin branch-name
What is git remote add origin?

It links the local repository to a
remote GitHub repo.

88

55.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

How to configure Git in VS Code?
Set Git path in settings and enable
Git extension.

What is a pull request?

A request to merge changes from one
branch to another in GitHub.

How to create a GitHub
repository?

Click on “New” in GitHub, name the
repository, and set options.

How to view commit history in
GitHub?

Navigate to the “Commits” tab in the
repository.

What is GitHub Actions?

A CI/CD feature to automate
workflows in GitHub.

What are forks in GitHub?

A personal copy of someone else's
repository to contribute.

How to rename a file in Git?

git mv oldname newname

How to remove a file from Git?
git rm filename

What is .gitignore?

A file that specifies which files Git
should ignore.

How to list all branches?

git branch

What is HEAD in Git?

It refers to the current commit your
working directory is based on.
What is a detached HEAD state?
When HEAD points directly to a
commit, not a branch.

Can Git track empty directories?
No, Git only tracks files.

How to revert to a previous
commit?

Use git checkout commit-1D

How to reset staging area?

git reset unstages files.

How to discard changes in
working directory?

git checkout -- filename

Why use branches in projects?
To work on features independently
without affecting the main codebase.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

When should you use tags in a
project?

During stable releases or version
marking.

Why is Git preferred in large
projects?

Due to its distributed architecture,
speed, and branching efficiency.
What is the role of commits in
collaboration?

They provide checkpoints for
tracking changes and debugging.
How does Git help in team
development?

Enables parallel development,
tracking contributions, and resolving
conflicts.

How often should you commit
changes?

Frequently, with meaningful commit
messages.

Why commit messages are
important?

They describe changes clearly for
future reference.

How can Git help in backups?
Local and remote repositories serve
as backups.

Why use Git over traditional file
copy methods?

Git provides version control, history,
and collaboration support.

What is the advantage of using VS
Code with Git?

Integrated terminal, Git GUI, and
ease of code editing.

What is version control?

A system for tracking changes in
files over time.

Difference between Git and
GitHub?

Git is the version control system;
GitHub is a hosting platform for Git
repositories.

What is a commit hash?

A unique ID for each commit, used
to reference it.

89

84.

85.

86.

87.

88.

89.

90.

Why is Git distributed?

Each user has a complete copy of the
repository.

Can you work offline with Git?
Yes, most operations are local and
can sync later.

Why use git init?

To start tracking a new project with
Git.

Is Git case-sensitive?

Yes, file names in Git are case-
sensitive on case-sensitive systems.
What happens when two users edit
the same file?

Git highlights conflicts during
merge.

What is a conflict in Git?

When Git cannot automatically
resolve differences between changes.
How to resolve conflicts?

Manually edit the file and commit
resolved version.

91.

92.

93.

94.

95.

96.

What is the use of .md files in
GitHub?

Markdown files for documentation
and project info.

What command is used to edit files
in terminal?

nano filename

How to stage only specific files?
git add filenamel filename2

What is the role of git push?
Uploads local commits to the remote
repository.

What command sets the default
branch name in newer Git
versions?

git config --global init.defaultBranch
main

What is the importance of lab
record in Git course?

Essential for tracking learning
progress, assessed during CIE.

90

Reference:

The theory part of the material from page number 8 to 16 is extracted from the Prescribed
Textbook by the University as shown below.

SECOND EDITION

Pro

Git

EVERYTHING YOU NEED TO
KNOW ABOUT GIT

Scott Chacon and Ben Straub

Apress

ASSIGNMENT

Q1.(EXP-01)BasicSetupandCreationofaNewRepository Aim:
1. Tocreateanewrepository“1 WT23CS000’under anydiscdrivesuch asZ drive andalso a sub
repository “aboutMyCollege”.
2. Tomakethe defaultbranch as masterbranchin some systemsit is main branch.
3. Tolaunchthegit andentertheuserconfigurationslikename,emailID.

(EXP-02)Toadd README.mdfileintotheRepository

Aim:
1. ToaddREADME.mdfileintotherepository/z/1WT23CS000/aboutMyCollegeunder
master branch.
2. Toaddthe contentsgiven below:
Title: GITW
Full Name: Ghousia Institute of Technology for Women
College Code: WT
Affiliation: VTU, Belagavi
Year of Establishment: 2023
No. of Branches: 03
Departments: CS, IS and EC
Mobile No: 080-25536527
Email ID: principalgitw@gmail.com
Address: DRC post, near Dairy Circle Hosur Road Bangalore-
560029
3. Tocommitwithamessage*“Contentsupdatedsuccessfully”

(Exp-03)Creating andManagingBranches

Aim:
1. Tocreateanewbranchnamed "feature-branch”.
2. To add a text file “aboutMyCollege.txt” into the repository
/AIWT23CS000/aboutMyCollege.
3. Toaddthe contentsinto thetext filegiven below:
Title: GITW
Full Name: Ghousia Institute of Technology for Women
College Code: WT
Affiliation: VTU, Belagavi
Year of Establishment: 2023
No. of Branches: 03
Departments: CS, IS and EC
Mobile No: 080-25536527
Email ID: principalgitw@gmail.com
Address: DRC post, near Dairy Circle Hosur Road Bangalore-
560029
4. Tocommitamessage‘AddedtextfileaboutMyCollege.txt successfully”.

92

(Exp-04)MergingofFeature-BranchintotheMasterBranch: Aim:
Tomergefeature-branchintothemasterbranch
Experiment-05: UpdatingoffilesintheFeature-Branch
Aim:
1. ToaddtheBriefReviewofGITWinthefile“aboutMyCollege.txt”ofthefeature- branch:

GITW was established in the year 2023, affiliated with Visvesvaraya Technological University
(VTU), Belagavi, Karnataka. Recognized by AICTE, New Delhi, and the Government of
Karnataka, ranking first in women's minority education in the state. The college provides hostel
facilities and organizes diverse programs enhancing students' overall personality. It offers B.E
Programs in:

e ComputerScience&Engineering

e InformationScience&Engineering

e Electronics&CommunicationEngineering

Tocommit theabovewitha message“AddedbriefreviewofGITW Successfully”
Tomergethefeature-branchwiththemasterbranchandcommitwithamessage “Mergedthe feature-
branch Successfully and updated the file with review Details”.

Q. 5(Exp 06)LightWeightandAnnotatedTags Aim:
To update the file “README.md” and add “Date of Joining to GITW: 1¥ Oct-2023"
to it under the repository /IWT23CS000/aboutMyCollege under master branch.
2. Tocommitwith amessage“My Date ofJoining to GITWUpdatedsuccessfully”
3. Toadd alight wighttag v1.0 into file“README.md”
4. ToaddanAnnotatedtag v2.0withamessage“My DateofJoiningtoGITW”intothe same
file
Q.6(Exp-09)GitinVSCode Aim:
1. Toclonetherepository/z/IWT23CS000/aboutMyCollege fromGit-BashtoVS
code:
2. ToaddanewfilevsFile.txtunderVScode.Addthefollowingdata: Vs
File details:
e Version:2.1
e Dateoflnstallation: 30/07/2024
e AuthorName:Dr.Naveed
andcommitamessage “AddedvsFile.txt successfully”

93

SUMMARY OF CODING

EXPERIMENT-01

// To start the git and to make master branch as default branch

$ git init

// To register your name (author name) and Email address for the
new project

$ git config ——global user.name “Dr.NAVEED”

$ git config ——global user. email naveed. gce@gmail. com

// To check the author name , email address and other data:

$ git config —list

// To check author name of the project

$ git config user.name

// To check email address of the author

$ git config user.email

// To clear the screen of the terminal (Ctrl+L)

$ clear

// T get into the Z drive of the computer hard disk. It can be
any symbol

$ cd /z

// To create a repository “1WT23CS000”

$ mkdir IWT23CS000

// To get back to the repository

$ cd 1WT23CS000

// To create another sub-repository “aboutMyself”

$ mkdir aboutMyself

// To get back to aboutMyself

$ cd aboutMyself

// To get back in single shot

$ cd /z/1WT23CS000/aboutMyself

88

mailto:naveed.gce@gmail.com

EXPERIMENT-02

//To make any drive like z drive as a safe directory

$ git config ——global ——add safe. directory z:/

// To add a new file like README.md as untracked file

$ echo > README. md

// To track the file like README.md

$ git add .

//To commit with a message like Added README.md file successfully
$ git commit —m “committed message”

// To edit the file like README.md in an open screen

$ nano README. md

// To read the contents of a file like README.md under terminal
$ cat README. md

//To check the current status

$ git status

EXPERIMENT-03
//To check the current branch as well to check out number

of branches available
$ git branch
// To create a new branch such as feature-branch
$ git branch feature—branch
// To shift the directory to the new branch such as feature—branch

$ git checkout feature—branch

// To shift back the directory to the default master branch
$ git checkout master

// To checkout number of files available in the repository

$ git ls—files

89

EXPERIMENT-04
// To merge feature-branch into master branch which will add all

files of feature—-branch into master branch

$ git merge feature-branch
EXPERIMENT-05

// To delete a branch such as feature-branch

$ git branch —-d feature—branch

// To get reference code of deleted branch

$ git reflog

// To restore the deleted branch such as feature—-branch with
the given ref. code

$ git checkout —b feature-branch ref. code

(in updated version ref.code is not needed)

EXPERIMENT-06

// To add a light weight tag such as v1.0
$ git tag v1.0
// To check the number of tags available

$ git tag

// To check a particular tag such as v1.0

$ git show v1.0

// To add an annotated tag such as v2.0

$ git tag —a v2.0 -m “committed message”
EXPERIMENT-07

// To check the committed messages in master branch with full details
$ git log master

// To check the committed messages in master branch in brief with just one line

$ git log master ——oneline

90

//To check committed message of a particular task with the given reference code ID

$ git

show ref.code ID

// To check commits of a particular author from date to desired date with full details

$ git

log ——author="authorName” ——since="YEAR-MONTH-DAY” until="YEAR-MONTH-DAY”

// To check commits of a particular author from date to desired date in brief with just one line

$ git log ——author="authorName” ——since="YEAR-MONTH-DAY” until="YEAR-MONTH-DAY” —-oneline
// To check last 5 commits made in master branch with complete details

$ git

log master —n 5

// To check last 5 commits made in master branch in brief with just one line.

$ git

log master —-n 5 ——oneline

Note: Press Q to get back to the coding.

// To
$ git
// To
$ git
// To

$ vim

EXPERIMENT-08

check the committed messages in feature— branch

log feature—branch ——oneline

check committed message of feature—branch with ref.ID in master branch
cherry-pick ref. ID

open the conflicting file such as aboutMyself. txt

aboutMyself. txt

//To delete a file such as datal. txt

$ git rm datal. txt

//To modify the committed message with Ref. ID

$ git revert Ref.ID

//To display the committed message with Ref. ID

$ git

show Ref. ID

91

EXPERIMENT-09

// To get back to the current repository in Z drive such as 1WT23CS000/aboutMyself
$ cd /z/1WT23CS000/aboutMyself

// To clone the above repository in VS code after getting back to the current repository

$ code .

EXPERIMENT-10

// To clone repository in Z drive such as 1WT23CS000/aboutMyself into the GitHub account
$ git remote add origin URLcodeOfGitHubRepository

//To push the repository into the GitHub account if it is master branch

$ git push —u origin master

//To push the repository into the GitHub account if it is main branch

$ git push —u origin main

//To add a new branch such as feature—branch into GitHub account

$ git push —u origin feature-branch

92

GHOUSIA INSTITUTE OF TECHNOLOGY

FOR WOMLEN

Near Dairy Circle, Hosur Road, Bengaluru-560029, KARNATAKA
Affiliated to VTU., Belagavi, Recognized by Government of Karnataka & A.I.C.T.E., New Delhi

O00O0

9986343109 / 9845954481
080 - 25536527 G

@

www.gitw.in

2

=

=
o

] 210 o0 c] 0
O ‘-. O O g, g ... 4
€ =“.¢ O AL O
Recog ed by A C e ANC
. C & . d A LA d . O . 9
& 0 o1Nee 0" colleges 1o OIMNE
C At€ C ollege provide OSteE
C d org eS d1VeE DYOY
0 ae OVE DEerso

O00O0

