
Project Management
with Git-BCS358C
GitHub is a web-based platform used primarily
for version control and collaborative software
development. It is built around Git, an open-
source version control system that tracks
changes in files and allows multiple people to
work on a project simultaneously without
interfering with each other's work.GitHub is
widely used by individual developers, teams,
and large organizations to collaborate on
projects, share code, and contribute to open-
source software.

THIRD SEMESTER
B.E DEGREE 2024

Dr. NAVEED
Assistant Professor
GITW-Bengaluru

MORE INFORMATION
www.github.com

GHOUSIA INSTITUTE OF TECHNOLOGY
FOR WOMEN

NEAR DAIRY CIRCLE, HOSUR ROAD, BENGALURU-560029, KARNATAKA
AFFILIATED TO VTU., BELAGAVI, RECOGNIZED BY GOVERNMENT OF KARNATAKA & A.I.C.T.E., NEW DELHI

GHOUSIA INSTITUTE OF TECHNOLOGY

FOR WOMEN

Near Dairy Circle, Hosur Road, Bengaluru , Karnataka 560029

Affiliated to VTU., Belagavi, Recognized by Government of Karnataka & A.I.C.T.E., New Delhi

PROJECT MANAGEMENT WITH GIT

 (BCS358C)

As per 2022 Scheme Syllabus Prescribed by V.T.U.

For

 THIRD SEMESTER

COMPUTER SCIENCE & ENGINEERING / INFORMATION SCIENCE & ENGINEERING

(Bachelor of Engineering)

Dr.NAVEED M.Tech., PhD.

Assistant Professor

Department of Computer Science & Engineering

 PROJECT MANAGEMENT WITH GIT/ BCS358C/THIRD SEMESTER / BACHELOR OF ENGINEERING

Dr.NAVEED / Assistant Professor / Department of Computer Science & Engineering / Ghousia Institute of Technology for Women,
Bengaluru

GHOUSIA INSTITUTE OF TECHNOLOGY FOR WOMEN
Near Dairy Circle, Hosur Road, Bengaluru-560029, KARNATAKA

Affiliated to VTU., Belagavi, Recognized by Government of Karnataka & A.I.C.T.E., New Delhi

PROJECT MANAGEMENT WITH GIT / BCS358C / THIRD SEMESTER / B.E DEGREE / 2024-25

This is to certify that Miss._____________________________________bearing

USN________________________of __________________________________ Branch completed the

academic requirements for the practical course work titled “PROJECT MANAGEMENT WITH GIT/

BCS358C” of THIRD SEMESTER B.E, prescribed by Visvesvaraya Technological University ,

Belagavi, for the academic year 2024-25. The details of Mark’s obtained by the candidate is given below.

Sl.No Particulars Max.Marks
(Execution+Record)

Marks

Obtained

Page

No

Staff

Sign

1 Expt-01
Basic Setup and Creation of a New

Repository

5+5

 =

10

 11

2 Expt-02
To add README.md file into the

Repository
 15

3 Expt-03 Creating and Managing Branches 19

4 Expt-04
Merging of Feature-Branch into the Master

Branch
 26

5 Expt-05 Updating of files in the feature-branch 28

6 Expt-06 Light Weight and Annotated Tags 34

7 Expt-07 Analyzing GIT History 39

8 Expt-08 GIT Cherry-pick and Revert 44

9 Expt-09 Git in VS Code 56

10 Expt-10 VS Code and Github (cloning of repository) 65

11 Expt-11
VS Code and Github (creating of new

repository)
 78

12 Assignment Experiments 20+20 = 40 86

Total Marks-A 150

Test Marks-B 100

Final Internal Assessment Mark’s.

[(A*30)/150] +

(B*20%) =

50

Internal Assessment Marks Awarded in Words: __

Signature of Staff Incharge with Date:

Template for Practical Course and if AEC is a practical Course Annexure-V

 Project Management with Git Semester 3

Course Code BCS358C CIE Marks 50

Teaching Hours/Week (L:T:P: S) 0: 0 : 2: 0 SEE Marks 50

Credits 01 Exam Marks 100

Examination type (SEE) Practical

Course objectives:

● .To familiar with basic command of Git

● To create and manage branches

● To understand how to collaborate and work with Remote Repositories

● To familiar with virion controlling commands

Sl.NO Experiments

1 Setting Up and Basic Commands

Initialize a new Git repository in a directory. Create a new file and add it to the staging area

and commit the changes with an appropriate commit message.

2 Creating and Managing Branches

Create a new branch named "feature-branch." Switch to the "master" branch. Merge the

"feature-branch" into "master."

3 Creating and Managing Branches

Write the commands to stash your changes, switch branches, and then apply the stashed

changes.

4 Collaboration and Remote Repositories

Clone a remote Git repository to your local machine.

5 Collaboration and Remote Repositories

Fetch the latest changes from a remote repository and rebase your local branch onto the

updated remote branch.

6 Collaboration and Remote Repositories

Write the command to merge "feature-branch" into "master" while providing a custom

commit message for the merge.

7 Git Tags and Releases

Write the command to create a lightweight Git tag named "v1.0" for a commit in your local

repository.

8 Advanced Git Operations

14.09.202315.09.2023

Template for Practical Course and if AEC is a practical Course Annexure-V

Write the command to cherry-pick a range of commits from "source-branch" to the current

branch.

9 Analysing and Changing Git History

Given a commit ID, how would you use Git to view the details of that specific commit,

including the author, date, and commit message?

10 Analysing and Changing Git History

Write the command to list all commits made by the author "JohnDoe" between "2023-01-01"

and "2023-12-31."

11 Analysing and Changing Git History

Write the command to display the last five commits in the repository's history.

12 Analysing and Changing Git History

Write the command to undo the changes introduced by the commit with the ID "abc123".

Course outcomes (Course Skill Set):

At the end of the course the student will be able to:

● Use the basics commands related to git repository

● Create and manage the branches

● Apply commands related to Collaboration and Remote Repositories

● Use the commands related to Git Tags, Releases and advanced git operations

● Analyse and change the git history

14.09.202315.09.2023

Template for Practical Course and if AEC is a practical Course Annexure-V

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%.

The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the

SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be

deemed to have satisfied the academic requirements and earned the credits allotted to each subject/

course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE

(Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

Continuous Internal Evaluation (CIE):

CIE marks for the practical course are 50 Marks.

The split-up of CIE marks for record/ journal and test are in the ratio 60:40.

● Each experiment is to be evaluated for conduction with an observation sheet and record

write-up. Rubrics for the evaluation of the journal/write-up for hardware/software

experiments are designed by the faculty who is handling the laboratory session and are

made known to students at the beginning of the practical session.

● Record should contain all the specified experiments in the syllabus and each experiment

write-up will be evaluated for 10 marks.

● Total marks scored by the students are scaled down to 30 marks (60% of maximum

marks).

● Weightage to be given for neatness and submission of record/write-up on time.

● Department shall conduct a test of 100 marks after the completion of all the experiments

listed in the syllabus.

● In a test, test write-up, conduction of experiment, acceptable result, and procedural

knowledge will carry a weightage of 60% and the rest 40% for viva-voce.

● The suitable rubrics can be designed to evaluate each student’s performance and learning

ability.

● The marks scored shall be scaled down to 20 marks (40% of the maximum marks).

The Sum of scaled-down marks scored in the report write-up/journal and marks of a test is the

total CIE marks scored by the student.

Semester End Evaluation (SEE):

● SEE marks for the practical course are 50 Marks.

● SEE shall be conducted jointly by the two examiners of the same institute, examiners are

appointed by the Head of the Institute.

● The examination schedule and names of examiners are informed to the university before

the conduction of the examination. These practical examinations are to be conducted

between the schedule mentioned in the academic calendar of the University.

14.09.202315.09.2023

Template for Practical Course and if AEC is a practical Course Annexure-V

● All laboratory experiments are to be included for practical examination.

● (Rubrics) Breakup of marks and the instructions printed on the cover page of the answer

script to be strictly adhered to by the examiners. OR based on the course requirement

evaluation rubrics shall be decided jointly by examiners.

● Students can pick one question (experiment) from the questions lot prepared by the

examiners jointly.

● Evaluation of test write-up/ conduction procedure and result/viva will be conducted

jointly by examiners.

● General rubrics suggested for SEE are mentioned here, writeup-20%, Conduction procedure

and result in -60%, Viva-voce 20% of maximum marks. SEE for practical shall be evaluated

for 100 marks and scored marks shall be scaled down to 50 marks (however, based on

course type, rubrics shall be decided by the examiners)

● Change of experiment is allowed only once and 15% of Marks allotted to the procedure part

are to be made zero.

The minimum duration of SEE is 02 hours

Suggested Learning Resources:

● Version Control with Git, 3rd Edition, by Prem Kumar Ponuthorai, Jon Loeliger Released October 2022,

Publisher(s): O'Reilly Media, Inc.

● Pro Git book, written by Scott Chacon and Ben Straub and published by Apress, https://git-

scm.com/book/en/v2

● https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944433473699842782_shared

/overview

● https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01330134712177459211926_share

d/overview

14.09.202315.09.2023

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944433473699842782_shared/overview
https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944433473699842782_shared/overview

1

 INRODUCTION TO GIT

Git is a distributed version control system designed to handle everything from small to very large

projects with speed and efficiency. It was created by Linus Torvalds in 2005 for the development

of the Linux kernel.

About Version Control

What is “version control”, and why should you care? Version control is a

system that records changes to a file or set of files over time so that you

can recall specific versions later. For the examples in this book, you will use

software source code as the files being version controlled, though in reality you

can do this with nearly any type of file on a computer.

If you are a graphic or web designer and want to keep every version of an

image or layout (which you would most certainly want to), a Version Control

System (VCS) is a very wise thing to use. It allows you to revert selected files

back to a previous state, revert the entire project back to a previous state,

compare changes over time, see who last modified something that might be

causing a problem, who introduced an issue and when, and more. Using a

VCS also generally means that if you screw things up or lose files, you can

easily recover. In addition, you get all this for very little overhead.

Local Version Control Systems

Many people’s version-control method of choice is to copy files into another

directory (perhaps a time-stamped directory, if they’re clever). This approach is

very common because it is so simple, but it is also incredibly error prone. It is

easy to forget which directory you’re in and accidentally write to the wrong

file or copy over files you don’t mean to.

To deal with this issue, programmers long ago developed local VCSs that had a simple

database that kept all the changes to files under revision control.

2

Figure1.Localversioncontroldiagram

One of the most popular VCS tools was a system called RCS, which is still

distributed with many computers today. RCS works by keeping patch sets (that

is, the differences between files) in a special format on disk; it can then re-

create what any file looked like at any point in time by adding up all the

patches.

Centralized Version Control Systems

The next major issue that people encounter is that they need to collaborate

with developers on other systems. To deal with this problem, Centralized

Version Control Systems (CVCSs) were developed. These systems (such as

CVS, Subversion, and Perforce) have a single server that contains all the

versioned files, and a number of clients that check out files from that central

place. For many years, this has been the standard for version control.

Figure2.Centralizedversioncontroldiagram

This setup offers many advantages, especially over local VCSs. For example,

everyone knows to a certain degree what everyone else on the project is doing.

Administrators have fine-grained control over who can do what, and it’s far

easier to administer a CVCS than it is to deal with local databases on every

client.

https://www.gnu.org/software/rcs/

3

However, this setup also has some serious downsides. The most obvious is the

single point of failure that the centralized server represents. If that server goes

down for an hour, then during that hour nobody can collaborate at all or save

versioned changes to anything they’re working on. If the hard disk the central

database is on becomes corrupted, and proper backups haven’t been kept, you

lose absolutely everything — the entire history of the project except whatever

single snapshots people happens to have on their local machines. Local VCSs

suffer from this same problem — whenever you have the entire history of the

project in a single place, you risk losing everything.

Distributed Version Control Systems

This is where Distributed Version Control Systems (DVCSs) step in. In a

DVCS (such as Git, Mercurial or Darcs), clients don’t just check out the latest

snapshot of the files; rather, they fully mirror the repository, including its full

history. Thus, if any server dies, and these systems were collaborating via that

server, any of the client repositories can be copied back up to the server to

restore it. Every clone is really a full backup of all the data.

Figure3.Distributedversioncontroldiagram

Furthermore, many of these systems deal pretty well with having several remote

repositories they can work with, so you can collaborate with different groups of

people in different ways simultaneously within the same project. This allows

you to set up several types of workflows that aren’t possible in centralized

systems, such as hierarchical models.

4

A Short History of Git

As with many great things in life, Git began with a bit of creative destruction and fiery

controversy.

The Linux kernel is an open-source software project of fairly large scope.

During the early years of the Linux kernel maintenance (1991–2002), changes

to the software were passed around as patches and archived files. In 2002, the

Linux kernel project began using a proprietary DVCS called Bit Keeper.

In 2005, the relationship between the community that developed the Linux

kernel and the commercial company that developed Bit Keeper broke down,

and the tool’s free-of-charge status was revoked. This prompted the Linux

development community (and in particular Linus Torvalds, the creator of

Linux) to develop their own tool based on some of the lessons they learned

while using Bit Keeper. Some of the goals of the new system were as follows:

• Speed

• Simple design

• Strong support for non-linear development (thousands of parallel branches)

• Fully distributed

• Able to handle large projects like the Linux kernel efficiently (speed and data size)

Since its birth in 2005, Git has evolved and matured to be easy to use and yet

retain these initial qualities. It’s amazingly fast, it’s very efficient with large

projects, and it has an incredible branching system for non-linear development

(see Git Branching).

What is Git?

So, what is Git in a nutshell? This is an important section to absorb, because if

you understand what Git is and the fundamentals of how it works, then using

Git effectively will probably be much easier for you. As you learn Git, try to

clear your mind of the things you may know about other VCSs, such as CVS,

Subversion or Perforce — doing so will help you avoid subtle confusion when

using the tool. Even though Git’s user interface is fairly similar to these other

VCSs, Git stores and thinks about information in a very different way, and

understanding these differences will help you avoid becoming confused while

using it.

Snapshots, Not Differences

The major difference between Git and any other VCS (Subversion and friends

included) is the way Git thinks about its data. Conceptually, most other systems store

information as a list of file-based changes. These other systems (CVS, Subversion,

5

Perforce, and so on) think of the information they store as a set of files and the changes

made to each file over time (this is commonly described as delta-based version control).

Figure4.Storingdataaschangestoabaseversionofeachfile

Git doesn’t think of or store its data this way. Instead, Git thinks of its data

more like a series of snapshots of a miniature filesystem. With Git, every time

you commit, or save the state of your project, Git basically takes a picture of

what all your files look like at that moment and stores a reference to that

snapshot. To be efficient, if files have not changed, Git doesn’t store the file

again, just a link to the previous identical file it has already stored. Git thinks

about its data more like a stream of snapshots.

Figure5.Storingdataassnapshotsoftheprojectovertime

This is an important distinction between Git and nearly all other VCSs. It

makes Git reconsider almost every aspect of version control that most other

systems copied from the previous generation. This makes Git more like a mini

filesystem with some incredibly powerful tools built on top of it, rather than

simply a VCS. We’ll explore some of the benefits you gain by thinking of

your data this way when we cover Git branching in Git Branching.

Nearly Every Operation Is Local

Most operations in Git need only local files and resources to operate —

generally no information is needed from another computer on your network. If

you’re used to a CVCS where most operations have that network latency

overhead, this aspect of Git will make you think that the gods of speed have

blessed Git with unworldly powers. Because you have the entire history of the

6

project right there on your local disk, most operations seem almost

instantaneous.

For example, to browse the history of the project, Git doesn’t need to go out

to the server to get the history and display it for you — it simply reads it

directly from your local database. This means you see the project history

almost instantly. If you want to see the changes introduced between the

current version of a file and the file a month ago, Git can look up the file a

month ago and do a local difference calculation, instead of having to either

ask a remote server to do it or pull an older version of the file from the

remote server to do it locally.

This also means that there is very little you can’t do if you’re offline or off

VPN. If you get on an airplane or a train and want to do a little work, you can

commit happily (to your local copy, remember?) until you get to a network

connection to upload. If you go home and can’t get your VPN client working

properly, you can still work. In many other systems, doing so is either

impossible or painful. In Perforce, for example, you can’t do much when you

aren’t connected to the server; in Subversion and CVS, you can edit files, but

you can’t commit changes to your database (because your database is

offline). This may not seem like a huge deal, but you may be surprised what a

big difference it can make.

Git Has Integrity

Everything in Git is check summed before it is stored and is then referred to by

that checksum. This means it’s impossible to change the contents of any file or

directory without Git knowing about it. This functionality is built into Git at the

lowest levels and is integral to its philosophy. You can’t lose information in

transit or get file corruption without Git being able to detect it.

mechanism that Git uses for this check summing is called a SHA-1 hash. This is a 40-

character string composed of hexadecimal characters (0–9 and a–f) and calculated based

on the contents of a file or directory structure in Git. A SHA-1 hash looks something

like this:

You will see these hash values all over the place in Git because it uses them so

much. In fact, Git stores everything in its database not by file name but by the

hash value of its contents.

Git Generally Only Adds Data

When you do actions in Git, nearly all of them only add data to the Git

7

database. It is hard to get the system to do anything that is not undoable or to

make it erase data in any way. As with any VCS, you can lose or mess up

changes you haven’t committed yet, but after you commit a snapshot into Git,

it is very difficult to lose, especially if you regularly push your database to

another repository.

This makes using Git a joy because we know we can experiment without the

danger of severely screwing things up. For a more in-depth look at how Git

stores its data and how you can recover data that seems lost, see Undoing

Things.

The Three States

Pay attention now — here is the main thing to remember about Git if you want

the rest of your learning process to go smoothly. Git has three main states that

your files can reside in: modified, staged, and committed:

• Modified means that you have changed the file but have not committed it to your

database yet.

• Staged means that you have marked a modified file in its current version

to go into your next commit snapshot.

• Committed means that the data is safely stored in your local database.

This leads us to the three main sections of a Git project: the working tree, the

staging area, and the Git directory.

Figure6.Workingtree, staging area, and Git directory

The working tree is a single checkout of one version of the project. These files

are pulled out of the compressed database in the Git directory and placed on

disk for you to use or modify.

The staging area is a file, generally contained in your Git directory, that

stores information about what will go into your next commit. Its technical

8

name in Git parlance is the “index”, but the phrase “staging area” works just as

well.

The Git directory is where Git stores the metadata and object database for your

project. This is the most important part of Git, and it is what is copied when you

clone a repository from another computer.

The basic Git workflow goes something like this:

1. You modify files in your working tree.

2. You selectively stage just those changes you want to be part of your next commit,

which adds

only those changes to the staging area.

3. You do a commit, which takes the files as they are in the staging area and

stores that snapshot permanently to your Git directory.

If a particular version of a file is in the Git directory, it’s considered

committed. If it has been modified and was added to the staging area, it is

staged. And if it was changed since it was checked out but has not been

staged, it is modified. In Git Basics, you’ll learn more about these states and

how you can either take advantage of them or skip the staged part entirely.

Uses of Git

1. Collaboration.

 Teams: Multiple developers can work on the same project simultaneously without conflicts.

 Open Source: Git is popular in the open-source community, allowing developers from around

the world to contribute to a project.

2. Tracking Changes

 History: Git maintains a history of changes, which can be reviewed and reverted if necessary.

 Blame: Identify who made specific changes to the code and when they were made.

3. Branching and Merging

Feature Development: Developers can create separate branches for new features, bug fixes, or

experiments without affecting the main codebase.

Code Reviews: Changes can be reviewed in branches before merging them into the main

branch.

4. Backup and Restore

Local Repositories: Each user has a complete copy of the repository, providing a backup of

the project.

Remote Repositories: Remote repositories (like those hosted on GitHub, GitLab, or

Bitbucket) provide additional backups and a centralized place to push changes.

5. Continuous Integration/Continuous Deployment (CI/CD)

9

Automation: Git can be integrated with CI/CD pipelines to automate testing, building, and

deployment processes whenever changes are pushed to the repository.

6. Documentation

README Files: Git repositories often include README files that provide information

about the project, how to set it up, and how to contribute.

 Wikis: Many Git hosting services provide integrated wikis for detailed documentation.

Git is a powerful tool that has become essential for modern software development, enabling

efficient collaboration, robust change tracking, and streamlined workflows.

InstallingGit

Before you start using Git, you have to make it available on your computer.

Even if it’s already installed, it’s probably a good idea to update to the

latest version. You can either install it as a package or via another installer,

or download the source code and compile it yourself.

Installing on Windows

There are also a few ways to install Git on Windows. The most official build is

available for download on the Git website. Just go to https://git-

scm.com/download/win and the download will start automatically. Note that this

is a project called Git for Windows, which is separate from Git itself; for more

information on it, go to https://gitforwindows.org.

To get an automated installation you can use the Git Chocolatey package. Note

that the Chocolatey package is community maintained.

OR to Download click below link

https://drive.google.com/file/d/1H9ZMW2lZnqNngLv-

PTXSbUUXPas56IVw/view?usp=sharing

Go through the installation process by clicking Next for all the steps at the last click on Launch

GitBash

https://git-scm.com/download/win
https://git-scm.com/download/win
https://gitforwindows.org/
https://community.chocolatey.org/packages/git
https://drive.google.com/file/d/1H9ZMW2lZnqNngLv-PTXSbUUXPas56IVw/view?usp=sharing
https://drive.google.com/file/d/1H9ZMW2lZnqNngLv-PTXSbUUXPas56IVw/view?usp=sharing

Reference:

The above material is extracted from the Prescribed Textbook by the University as shown below.

10

Click on Finish.

11

$ git config --global user.name "Dr.NAVEED"

$ git config --global user.email naveed.gce@gmail.com

EXPERIMENT-01 Basic Setup and Creation of a New Repository

Aim:

1. To create a new repository “1WT23CS000” under any disc drive such as Z drive and also a sub

repository “aboutMyself”.

2. To make the default branch as master branch in some systems it is main branch.

3. To launch the git and enter the user configurations like name, email ID.

First-Time Git Setup

To make the background color white and to make the theme Kohlrausch.

Now that you have Git on your system, you’ll want to do a few things to customize your

Git environment. You should have to do these things only once on any given computer;

they’ll stick around between upgrades. You can also change them at any time by

running through the commands again.

Your Identity

The first thing you should do when you install Git is to set your user name and email

address. This is important because every Git commit uses this information, and it’s

immutably baked into the commits you start creating:

Again, you need to do this only once if you pass the --global option, because then Git

will always use that information for anything you do on that system. If you want to

override this with a different name or email address for specific projects, you can

run the command without the --global option when you’re in that project.

12

Checking Your Settings

If you want to check your configuration settings, you can use the git config --list

command to list all the settings Git can find at that point:

 It will show:

It will show all details and at the end user name and email ID will be highlighted. If

only user name is required then git config user.name will be used.

To check email of the user use git config user.email

To clear the screen, use clear. Alternatively, you can use the keyboard shortcut Ctrl + L which

also clears the screen in most terminal emulators, including Git Bash.

13

To Create a New Repository (Folder): By name “1WT23CS000”.

First specify in which drive of your computer you want to create the new repository for Example

‘Z’ Drive

In the next line you can see that Z drive is highlighted.

 To create a new repository by name 1WT23CS000

To switch to the new repository

You can see now

To create a sub folder “ aboutMyself” inside the main folder

To shift to the subfolder

Now you can see

Once the repository is created initialize the git:

It will make master branch as default branch.

14

OUTPUT:

15

EXPERIMENT No: 02 To add README.md file into the Repository

Aim:

1. To add README.md file into the repository /z/1WT23CS000/aboutMyself under master branch.

2. To add the contents given below:

3. To commit with a message “Contents updated successfully”

First get back to the repository by using:

Now the repository is ready:

To Add README.md file inside the sub folder

To check the file added:

It will show:

Note: Some times if it shows some error like Z drive is unsafe directory then to make it safe use:

If git add command shows some error, then use:

This command creates a file named README.md but it will be untraced. To make it traced use

mailto:naveed.gce@gmail.com

16

To open the README.md file.

An empty file will open. Type the below sample data:

To save: Ctrl+S

To Exit: Ctrl+X

To check the contents of the README.md File

It will highlight the contents of the file

To edit or modify the contents of the README.md file the same above procedure may be

adopted.

The data will be updated. But it will not be committed in the git. If we check the status:

It will show changes to be committed with a new file README.md highlighted in green color.

17

 To commit the above with a message “Added README.md file with basic data successfully”

And then use

It will show you the message:

If you want to check the status:

It will show you nothing to commit, working tree clean:

`git add .` is used in Git to stage all changes in the current directory and its subdirectories for the

next commit. When you make changes to files in your Git repository, these changes are initially

considered "unstaged" or "untracked." Staging files with `git add .` prepares these changes to be

included in the next commit snapshot of your project.

Here’s a breakdown of what `git add .` does:

Staging Changes: It adds all modified (tracked) files and all new files (untracked) to the staging

area.

Recursive Operation: The `.` represents the current directory and its subdirectories, so `git add .`

recursively adds changes from all directories and subdirectories.

Efficiency: It's a convenient shortcut to stage multiple files and changes quickly without

specifying each file individually.

After staging changes with `git add .`, you typically follow up with `git commit` to permanently

store those changes in the Git repository history.

18

OUTPUT:

19

Experiment_03 Creating and Managing Branches

Aim:

1. To create a new branch named "feature-branch”.

2. To add a text file “aboutMyself.txt” into the repository /1WT23CS000/aboutMyself .

3. To add the contents into the text file given below:

•

•

•

•

•

•

•

•

4. To commit a message “Added text file aboutMyself.txt successfully”.

Normally the default branch will be master branch or in some system it will be main branch.

During the development stage it is desirable to create a new branch with any name and add all

the required files in it and carry on the process. Whatever the files added into the master branch

it will be visible in the new branch. But if we create a new file in new branch such as feature-

branch it will not be highlighted in master branch. Even if we modify the content of the file of

master branch in the new feature-branch it will not be updated until merged.

To create a new branch “feature-branch”:

First open the repository by using:

It will show:

By default, it will be master branch or in some case it will be main branch. To check out which

branch the current repository belongs use:

It will show

Though the type of branch will be normally highlighted under () in the drive itself. But still it is

required to checkout, the above can be used.

To create a new branch “feature-branch”:

Let us check whether the branch is created or not by using:

It will show:

20

Now we can see there are two branches. It will highlight the number of branches available with

the active branch shown in green color with * symbol

To shift to the new branch created:

It will shift to the new branch

If we check the number of files available in feature-branch by using

It shows:

It is shows README.md file which was created in master branch. If the check the contents of

the README.md file by using:

It shows:

Therefore, whatever files that were created in master branch are also available in the feature-

branch with the same contents.

But if we modify the contents of README.md file in feature-branch, will it get reflected in

master branch?

/**********/

/* For Knowledge Purpose Not for Record Writing */

 Let us checkout.

Remove Email ID from the file README.md available in feature-branch by using:

It shows:

21

Remove Email from the above and save the file.

Again, let us check the content by using:

It shows:

Therefore, there is no Email present in the above content. Now if we check the status by using:

It shows:

It tells us to save it with committed message. Let us save by committing a message “Removed

Email Successfully from README.md”

22

Now let us switch back to the master branch and check the contents of the same file

README.md by using:

It will get switched to master branch

Now let us check the contents of README.md file by using:

It shows:

We can see that the Email which was deleted in feature-branch is not deleted in master branch.

Therefore, if we want to update it into the master branch as well then git-merging will be used.

It shows

Now if we check the contents of README.md file in master branch by using

It shows:

23

Now we can see that after merging the contents are updated and we don’t find Email in the above

content.

/*********/

To Create a new text file by name “aboutMyself.txt”

It shows some error.

To solve the error, let us add an untraced file by using

Then we will use

It will show some warning related to operating system. Just ignore it.

Now if we check the number of files available:

It shows two files available.

Add the contents by using:

A file will open, type the contents and save with Ctrl+S and exit by using Ctrl+X.

•

•

24

•

•

•

•

•

•

To check the contents of the file use:

It shows:

Save the file by committing a message “Added aboutMyself.txt file successfully”

Now let us find whether the same file is added into the master branch with same contents.

Here we don’t find the file aboutMyself.txt which was created in feature-branch.

25

If we check the status,

It will show a message of working tree clean:

OUTPUT:

26

Experiment-04: Merging of Feature-Branch into the Master Branch:

Aim:

To merge feature-branch into the master branch

Now let us find whether the same file is added into the master branch with same contents.

Here we don’t find the file aboutMyself.txt which was created in feature-branch.

To make the file aboutMyself.txt available in master branch git merging is used:

It shows:

Now if we check the files available in master branch by using:

It shows two files.

Now if we check the contents of aboutMyself.txt file by using:

It shows:

Commit the above with a message by using:

27

Merging feature branches into the main branch is a fundamental practice in modern software

development. It ensures that new features and improvements are regularly integrated, tested, and

made available to all team members, leading to a more robust and maintainable codebase. By

following best practices, teams can effectively manage their development process and deliver

high-quality software.

OUTPUT:

28

Experiment-05: Updating of files in the Feature-Branch

Aim:

1. To add the Qualification Details given Below into the file “aboutMyself.txt” of the feature-

branch:

UG Degree: B.E – Mechanical Engineering

PG Degree: M.Tech – Manufacturing

PhD Degree: Materials Science

2. To commit the above with a message “Added Qualification Details Successfully”

3. To merge the feature-branch with the master branch and commit with a message “Merged the

feature-branch Successfully and updated the file with Qualification Details”.

4. To delete the feature-branch if no longer needed.

5. To get back the deleted feature-branch

Before proceeding checkout to the feature-branch from master branch by using:

It will get shifted to feature-branch

Let us checkout the number of files available by using:

It shows two files:

 Now let us checkout the contents of the file “aboutMyself.txt ” by using:

It shows:

To the above add the following data:

UG Degree: B.E – Mechanical Engineering

PG Degree: M.Tech – Manufacturing

PhD Degree: Materials Science

By using:

It will open a GNU file window as shown below:

29

Now type the above data. Save the data with Ctrl+S and exit the screen using Ctrl+X

Now let us check the data

It shows:

We can see the data is updated. If we check the status by using:

It shows that the file is modified but it is not committed. added. To commit with a message. To

commit with a message use:

Now if we check the status:

The working tree is clean.

Now let us check whether in master branch the data is updated or not. We will shift to the master

branch and checkout the contents of the file aboutMyself.txt

30

We can see that the contents of the file aboutMyself.txt are not updated in the master branch. To

update the contents git-merging will be used as shown below:

It will merge the contents of the file aboutMyself.txt present in feature-branch. It shows:

Now if we check the contents

It will show:

Now we can see that the contents are now updated after merging.

Note: If it shows some conflict resolve the issue and then proceed.

31

To delete feature-branch:

First, we will check no. of branches available by using:

It shows two branches with master branch in active mode.

To delete we will use:

It will show:

If we check the number of branches available by using:

It will show:

It shows only one branch i.e., master branch.

To get back the feature-branch:

To get back the deleted feature-branch use:

It will restore and get back to the feature-branch:

Now if we check the number of branches available:

It shows two branches. Now let us check the number of files available in feature-branch

It shows the same two files that were available before deleting the branch. Let us check the

contents of aboutMysellf.txt file:

32

It shows the same contents which were available before deleting.

Note: Always download the updated version of git bash. In some version it will show some

reference code when “git reflog” command is used. Then to restore the deleted branch “git

checkout -b feature-branch ref. code” command will be used.

OUTPUT:

33

34

Experiment-06: Light Weight and Annotated Tags

Aim:

1. To update the file “README.md” and add “Date of Joining to GITW: 1st Oct-2023” to it under

the repository /1WT23CS000/aboutMyself under master branch.

2. To commit with a message “My Date of Joining to GITW Updated successfully”

3. To add a light wight tag v1.0 into file “README.md”

4. To add an Annotated tag v2.0 with a message “My Date of Joining to GITW” into the same file

In Git, there are two main types of tags:

1. Lightweight Tags

2. Annotated Tags

Each type serves different purposes and has different characteristics.

1. Lightweight Tags

Lightweight tags are simple and act like a pointer to a specific commit. They are just a name

(like a branch) that points to a specific commit. Lightweight tags do not contain any additional

metadata such as the tagger name, date, or a tagging message.

Characteristics:

• Simple and fast to create.

• Do not store any additional information beyond the commit they point to.

• Similar to a branch that doesn’t change.

Lightweight tags are useful when you just want to mark a specific point in your history, such as a

commit representing a release, without the need for additional metadata.

2. Annotated Tags

Annotated tags store additional metadata, including the tagger’s name, email, date, and a tagging

message. They are stored as full objects in the Git database, which makes them more robust and

verifiable.

Characteristics:

• Include metadata (tagger name, email, date, and message).

• Stored as full objects in the Git database.

• Can be signed with GPG to verify authenticity.

Annotated tags are suitable for marking releases or other significant milestones where you want

to include detailed information about the tag.

Summary

• Lightweight Tags: Simple, fast, and just a pointer to a commit. Created with git tag tagname.

• Annotated Tags: Contain metadata, are stored as full objects, and can be signed. Created with

git tag -a tagname -m "message".

Use lightweight tags for simple markers and annotated tags when you need more information and

robustness.

First ensure that we are in master branch. Let us checkout the number of files available in master

branch by using:

It will show:

It shows two files. Let us checkout the contents of the README.md file by using:

35

It shows:

Now to the above we will add a content such as “My date of Joining to GITW” by using

It will open GNU screen. Add the data and save it and exit by using Ctrl+S and Ctrl+X.

Now if we check the contents.

We can see the contents are updated.

Now we will commit the above with a message “My Date of Joining to GITW Updated

successfully” by using:

36

To add lightweight Tag v1.0 to the above committed message:

It will add the tag by name v1.0. Now to check whether it is added or not use:

It will show all the tags available

It shows one tag by name v1.0. Now let us check the contents of the tag v1.0 by using:

It will show:

We can see the committed message along with the contents added to the above file in last line

with green color.

Light wight tags will show only the committed message. It will not show the tagger name and its

details. For those Annotated tags are used as shown below:

To create Annotated tag v2.0 with a message “My Date of Joining to GITW”

Use the following code:

37

It will add an annotated tag v2.0. To check the number of tags available use:

It shows two tags. To check the contents of tag v2.0 use:

It will show:

It will show details with tagger name and its details:

OUTPUT:

38

39

Experiment-07: Analyzing GIT History

Aim:

1. To view the details of specific commit, including the author, date, and commit message for the

given commit ID.

2. To display the commits made in master branch

3. To obtain details of the commit with full details such as Author name, Email, date, timings,

committed message for the given ID 44fcdcb of master branch

4. To display the commits made in feature-branch

5. To obtain details of the commit with full details such as Author name, Email, date, timings,

committed message for the given ID c3a5454 of feature-branch

6. To write the command to list all commits made by the author "Dr. NAVEED" between "2024-

01-01" and "2024-12-31."

7. To write the command to display the last five commits in the repository's history for master

branch as well feature-branch.

First find out how many branches are available or how many branches were created other than

the default master branch by using:

It will show the available branches with current branch in green color.

To display commits made in master branch use:

It will show:

Note: Running the git log master --oneline command will show you a simplified, one-line-per-

commit log of the feature-branch. This is useful for quickly viewing the commit history in a

compact format.

To check committed details for the given ID 44fcdcb:

It will show:

40

Author name, Email, Date, timings and committed messages are shown.

Similarly for feature-branch:

It will show:

Now for the given ID c3a5454 use:

It will show.

41

To list all commits made by the author "Dr. NAVEED" between "2024-01-01" and "2024-

12-31."

It should be “Year-Month-Day” format. It will show:

Note: Press Q to get back to coding.

If we require the details in brief just in one line then use:

It will show:

42

To display the last five commits in the repository's history for master branch:

It will show:

Note: To get full details avoid --oneline:

Similarly for feature-branch:

It will show:

OUTPUT:

43

44

 Experiment-08: GIT Cherry-pick and Revert

Aim:

1. Create a new file “bugfile.txt” in feature-branch and obtain the details such as day and

time of this file from master branch without merging it

2. To check committed message with date and time by using the reference ID in any branch

such as feature-branch for the ID: c3a5454 by using cherry-pick command. Resolve the

error if it exist.

3. To write the command to undo the changes introduced by the commit with the ID "

b5b6caf " in master branch. Change the committed message from “Deleted data1.txt file

successfully” to Deleted data1.txt file successfully which was a dummy file for testing

purpose”. Resolve the error if it exist.

The git cherry-pick command is used to apply the changes introduced by an existing commit

onto the current branch. It allows you to select a specific commit from one branch and apply it to

another branch, without merging the entire branch history. For example, if you want to add some

committed message done in feature-branch into the master branch without merging the feature-

branch into the master branch then git cherry-pick is helpful. This can be useful in a variety of

situations, such as:

1. Porting Specific Changes: If you've made a specific fix or feature in one branch and

want to apply it to another branch without merging all other changes from the source

branch, you can use git cherry-pick to apply just that commit.

2. Selective Backporting: When you need to backport, a bug fixes from a development

branch to a stable branch without including all other changes.

3. Undoing Changes: You can also use git cherry-pick in combination with a revert

commit to undo specific changes made by a particular commit.

To create a new file “bugfile.txt”:

First, we will shift to feature-branch by using

To add a bugfile.txt in feature-branch use:

It shows some error: We will use echo > bugfile.txt and then use git add

It will add an untraced file bugfile.txt. To trace it and add it use:

It will show:

45

Ignore the warning as it is related to type of operating system. Now if we check the number of

files.

We can see bugfile.txt is added. If we check the status:

It shows new file and it will ask to commit. To commit with a message "Added bugfile.txt

successfully with confidential information" use:

Now if we check the status

Everything is fine. Now to check this committed message in master branch without merging

feature-branch into master branch, we will shift to master branch.

Let us find out the history of feature-branch to get the reference ID related to bugfile.txt by

using:

It will show:

From the above we got the ID as: fd00805. By using

46

We can get information about the time and date details of the bugfile.txt inserted into the feature-

branch. It shows

Now if we check the history of master branch

We can see that the committed message added in feature-branch related to bugfile.txt is now

saved in master branch.

Therefore, date and time of the bugfile.txt is obtained successfully without merging feature-

branch into the master branch by using git cherry-pick.

To check committed message with date and time by using the reference ID in any branch

such as feature-branch in the above ID c3a5454 by cherry-pick command:

Use git cherry-pick command for the given ID in feature-branch: as shown below

First, we will use:

To check the details of the committed message with date and time for the above ID use:

It will show the details if no error found. If error found it will show the error.

47

It tells that the cherry-pick is now empty due to conflict resolution. Follow the instruction given

above. We will use git commit --allow-empty. A window will open as shown below:

The committed message is shown in brown color. If you want to modify the message it can be

modified or else keep as such.

48

To get back to the coding screen keep the cursor at the above message and type “:wq” as shown

above and then enter.

Now it will show the details of the commit.

We can see that the above committed message of feature-branch with the ID: c3a5454 is now

saved in master branch.

To check use:

We can see that the committed message of feature-branch is now added into the master branch

with a new ID b4b021a. This is helpful if we want to share some important commit of feature-

branch into the master branch without merging the entire feature-branch into the master branch.

Let us check some other ID such as 7c1af39 as shown below.

Use the git cherry-pick command for the above ID.

49

It shows some error.

To open the file use:

It will open the file README.md.

Remove the conflicting text and edit the content as shown below. Keep the cursor at the text and

type “:wq” and then press enter.

It will open an Attention file:

50

Type E and the proceed.

Add the modified file and continue with the cherry-pick

It will open the conflicting file

51

Type “:wq” then enter

52

Now we got the committed message.

Now if we check the history of master branch for the last two commits

It will show:

We can see that the committed message of feature-branch is now added into the master branch

with a separate ID: 47f6b3e.

53

To undo the changes introduced by the commit with the ID " b5b6caf " in master branch.

First let us find out last 5 commits made in master branch by using:

It will show:

Now to change the committed message for the refence ID b5b6caf to “Added bugfile.txt

successfully with very important information” use

It will open the file as shown below.

Edit the above file and change the content as to save and quiet type “:wq” as shown below:

54

Now if we check the last two committed message in master branch by using:

It will show :

We can see the change of committed message in the above.

OUTPUT:

55

GIT and VS Coding
Visual Studio Code (commonly referred to as VS Code) is a free, open-source code editor

developed by Microsoft. It is designed to be lightweight yet powerful, with a rich set of features

for developers. Here are some key aspects of VS Code. It is a versatile and powerful code editor

that balances a lightweight footprint with rich functionality, making it a popular choice among

developers of all kinds.

Key Features of VS Code:

1. Cross-Platform: Available on Windows, macOS, and Linux, making it accessible to a wide

range of developers.

2.Extensible: It has a vast ecosystem of extensions available through the Visual Studio Code

Marketplace. These extensions can enhance the editor with additional functionality, such as

language support, linters, debuggers, and more.

3. Integrated Git Support: VS Code provides built-in Git integration, allowing users to perform

Git operations like commits, branches, merges, and more directly from the editor.

4. Debugging: It has an integrated debugging tool that supports multiple programming languages

and can be extended through plugins.

5. IntelliSense: Offers smart code completions based on variable types, function definitions, and

imported modules, making it easier and faster to write code.

6.Customizable: Users can customize the editor's appearance and functionality through settings,

themes, and key bindings.

7.Terminal Integration: Includes an integrated terminal that supports various shells (e.g., Bash,

PowerShell), allowing developers to execute command-line operations within the editor.

8. Multi-Language Support: VS Code supports a wide range of programming languages out of

the box and can be extended to support more through extensions.

9. Code Navigation and Refactoring: Provides features for easy navigation through code, such as

"Go to Definition," "Peek Definition," and powerful refactoring tools.

10. Snippets and Emmet: Offers code snippets and Emmet support for faster coding.

Use Cases:

1.Software Development: Suitable for developing applications in various languages like

JavaScript, Python, Java, C++, and more.

2.Web Development: Popular among web developers for working with HTML, CSS, JavaScript,

and frameworks like React, Angular, and Vue.

3.Data Science: Can be used for data science tasks with extensions for Jupiter Notebooks,

Python, and data visualization tools.

4.DevOps and Cloud: Integrated terminal and extensions for Docker, Kubernetes, and Azure

make it useful for DevOps tasks.

56

5. Community and Ecosystem: VS Code has a large and active community contributing to its

extensions and core features. The Visual Studio Code Marketplace offers a wide range of

extensions that can significantly enhance the editor's functionality.

To download VS Code: Click the link given below:

https://drive.google.com/file/d/1q1zzTLY_ELwFg2mS2wJZRn3gD1V0CRQ7/view?usp=drive_l

ink

https://drive.google.com/file/d/1q1zzTLY_ELwFg2mS2wJZRn3gD1V0CRQ7/view?usp=drive_link
https://drive.google.com/file/d/1q1zzTLY_ELwFg2mS2wJZRn3gD1V0CRQ7/view?usp=drive_link

57

Experiment-09: Git in VS Code

Aim:

1. To clone the repository /z/1WT23CS000/aboutMyself from Git-Bash to VS code:

2. To add a new file vsFile.txt under VS code. Add the following data:

Vs File details:

• Version: 2.1

• Date of Installation: 30/07/2024

• Author Name: Dr.Naveed

and commit a message “Added vsFile.txt successfully”

Basic Setup after Installation:

To change the background Theme to white use Ctrl+K+T

Select Light High Contrast as shown above.

Under Extension search for GitHub and Install it.

58

To clone the repository from git bash to VS code platform:

First, we will shift to the required repository position by using:

Now we are in the project repository. To clone this in VS Code use:

It will clone the repository in VS code and it will get operated as shown below:

59

We can see the repository aboutMyself inside which there are two files available.

aboutMyself.txt and README.md files.

We can see on left side the repository aboutMyself. The branch will be shown on left bottom

screen:

To operate git bash under VS code: Click on the Terminal then New Terminal and then Git bash.

We can see the terminal screen below.

By default it will show powershell. Change it to git Bash as shown below:

60

To maximize the screen, click on ^ symbol.

Note: To Zoom In and Zoom OUT use Ctrl + and Ctrl -

61

All the basic git commands which were used in GITBash can be used over here as shown below:

Note: If (master) is not highlighted then use git init command.

Now all the commands that were used in git bash can be used over here as shown above.

62

To add a new file “vsfile.txt” apart from the commands we can directly use:

Add the data: Vs File details: Here we can copy and paste it. This was not available in gitbash.

Version: 2.1

Date of Installation: 30/07/2024

Author Name: Dr.Naveed

U- shows it is untracked. The white dot symbol shows it is not saved. Use Ctrl+S to save. The

white dot will disappear.

If we check the status:

It shows untracked file without commit.

To track the file and get added use:

63

Now there is no symbol U. If we check the status:

Everything is fine.

OUTPUT:

64

 Introduction to GIT-HUB

GitHub is a web-based platform for version control and collaboration, primarily used for code. It

leverages Git, a distributed version control system, to manage and track changes in source code

during software development. GitHub offers both free and paid plans and provides a wide range

of features that facilitate collaborative coding, project management, and more.

GitHub is a powerful platform that combines the functionalities of Git version control with

additional tools for collaboration, project management, and automation. Its widespread adoption

in the software development community makes it an essential tool for developers, teams, and

organizations.

Key Features of GitHub

1. Repository Hosting:

 - GitHub allows users to host repositories, which can be either public or private. Repositories

contain all the files, history, and metadata for a project.

2. Version Control with Git:

 - GitHub uses Git to track changes in code. This includes features like branching, merging, pull

requests, and commit history.

3. Collaboration:

 - Multiple developers can work on the same project simultaneously. GitHub provides tools for

managing contributions, reviewing code, and discussing changes.

4. Pull Requests:

 - A pull request is a feature that allows developers to propose changes to a repository. Other

team members can review, discuss, and approve or reject these changes before they are merged

into the main codebase.

5. Issues and Project Management:

 - GitHub provides an issue tracking system to manage bugs, feature requests, and other tasks. It

also offers project boards and task management features to help organize and prioritize work.

6. Actions and Continuous Integration/Continuous Deployment (CI/CD):

 - GitHub Actions allow users to automate workflows, such as running tests, building projects,

and deploying applications, directly from their repositories.

7. Documentation and Wikis:

 - Users can create and maintain documentation for their projects using Markdown files within

the repository or GitHub's wiki feature.

8. Social Networking for Developers:

 - GitHub has social features like following users, starring repositories, and forking projects,

which help foster community and collaboration.

9. Security Features:

 - GitHub offers various security features, such as vulnerability alerts, Dependabot for

dependency management, and security advisories.

65

10. Integration with Other Tools:

 - GitHub integrates with a wide range of third-party tools and services, including IDEs, project

management tools, CI/CD systems, and more.

Applications:

1.Open-Source Projects: Many open-source projects are hosted on GitHub, allowing contributors

from around the world to collaborate.

2.Private Projects: Companies and organizations use GitHub for private projects, taking

advantage of its tools for collaboration, code review, and CI/CD.

3.Personal Projects and Portfolios: Developers often use GitHub to showcase their work and

build a portfolio.

4.Learning and Experimentation: GitHub is a valuable resource for learning new technologies, as

many projects and tutorials are hosted there.

 To Sign-up and create an account in the git-hub refer the following link and follow the

steps to create an account.

https://github.com/

https://github.com/

66

Experiment-10 VS Code and Github

Aim:

1. To clone the repository /z/1WT23CS000/aboutMyself from VS code to your github

account for both master branch and feature-branch.

2. To create a new file github.txt in VS code add the following data: Push to the github

account with committed message “Added github.txt file successfully” into the master

branch.

• githubID: naveedgce

• Version: 2.1

• Date of installation: 01/08/2024

First open the VS code and initialise the repository and configure the author name and Email

address as shown below:

Sign in to your github account:My github account is naveedgce. You can type your own github

account with your USN as ID.

Click on + sign to add New repository

Fill up all the details as shown below. Give the repository name as 1WT23CS000.Make it public

so that everybody can access.

Donot activate README.md file as there is already README.md file available in our

repository.

67

Now we can see that a new repository by “1WT23CS000 ” is created as shown below:

68

Click on the repository name and copy the URL of the repository created by referring:

Use the below code in VS coding screen git remote add origin < paste the copied URL of github

repository >:

After this use the below code to push your repository into your GitHub account:

69

It will ask for Authentication by signing into your GitHub account:

Once you log in into your GitHub account successfully it will show:

Now we can find all the files copied into our GitHub repository;

70

It shows 12 commits done so far. If we click on it:

71

To push feature-branch:

It will add into the GitHub account and it will ask to compare and pull the request as shown

below:

Click on compare & Pull request:

72

Click on Create pull request:

Click on Merge Pull Request.

It will ask for Confirm merge. Click on it.

73

It shows a message of successfully merged and closed. Now if we click on the branches, it will

show two branches.

If we click on the feature-branch:

It shows all the files that are available in feature-branch along with the 9 commits.

74

To add a new file github.txt into the VS code and then to push into the GitHub account Use:

Click on New file and enter the data into it and save it.

If we check the status:

It shows untracked file with symbol U. To track it and to commit use:

75

Check the GitHub account:

There is no file added into GitHub account.

To push into GitHub account use:

76

It shows some error:

There might be some conflict. To resolve use:

A screen will open showing the conflict message. Keep it as such or it can be modified as well.

To save and quit type “:wq” as shown below and enter.

It shows:

Then use the following to commit with a message.

77

Now let us use the previous code to push the file into the GitHub account.

Now it shows a successful message.

Now if we check our GitHub account:

We can see the github.txt file added into it.

78

OUTPUT:

79

Experiment-11 VS code and Github

Aim:

1. To create a new repository “githubRepository” from the GitHub account. Add README.md

file

2. To clone the repository into the VS code. To add the following data into README.md file

• First Name:

• Last Name:

• Email ID

• GitHub ID:

• Mobile Number:

3. To push the repository into the GitHub account

First login into your GitHub account. Go to the home page and then click on add a new

repository as shown below:

Type the repository name and check for the availability. Each repository is unique and cannot be

of the same name. You can type your last three digits of your USN along with this name.

Provide a brief description about it. My first GitHub repository. Add a README.md file which

can be later filled.

80

Click on Create repository.

We can see that the new repository is created in our GitHub account as shown below.

81

To clone this repository into the local server through VS coding platform there are two options:

Option-01:

Close the vs code editor if previous repository is in active state. Go the home page with

Welcome file. Click on Clone Git Repository.

It will ask for the GitHub repository URL.

82

Click on code and then click on copy option of the URL as shown below:

Now go to the VS code page and add the above URL

It will ask for the folder. Select any drive such as Z drive.

Now we can see our repository is created in VS code platform

83

Now the project is ready to be worked.

Option-02

We can also do in the other way as well. In the previous project screen: Get back to Z drive by

using:

It will get shifted to Z drive. Now we can use a code such as “git clone <paste the URL of

GitHub repository>” as shown below:

The above https://........was copied from the GitHub account.

To add the data:

Open the README.md file and add the following data and save it:

1. First Name:

2. Last Name:

3. Email ID

4. GitHub ID:

5. Mobile Number:

https://........was/

84

To push the updated file into the GitHub account:

First, we have to commit the task with a message. If we check the status.

Therefore, to commit use the following:

To push the above into the GitHub repository: Remember the repository that was created in the

GitHub account shows main branch not master.

85

We cannot use master here for coding;

If no conflict exists then it will show a successful message.

Now let us check the GitHub account.

We can see the information is updated. Earlier README.md file was empty. Now it shows the

data.

86

OUTPUT:

86

ASSIGNMENT

Q1. (EXP-01) Basic Setup and Creation of a New Repository

Aim:

1. To create a new repository “1WT23CS000” under any disc drive such as Z drive and also

a sub repository “aboutMyCollege”.

2. To make the default branch as master branch in some systems it is main branch.

3. To launch the git and enter the user configurations like name, email ID.

Q.2 (EXP- 02) To add README.md file into the Repository

Aim:

1. To add README.md file into the repository /z/1WT23CS000/aboutMyCollege

under master branch.

2. To add the contents given below:

3. To commit with a message “Contents updated successfully”

Q.3 (Exp-03) Creating and Managing Branches

Aim:

1. To create a new branch named "feature-branch”.

2. To add a text file “aboutMyCollege.txt” into the repository

/1WT23CS000/aboutMyCollege .

3. To add the contents into the text file given below:

4. To commit a message “Added text file aboutMyCollege.txt successfully”.

mailto:principalgitw@gmail.com
mailto:principalgitw@gmail.com

87

Q.4 (Exp-04) Merging of Feature-Branch into the Master Branch:

Aim:

To merge feature-branch into the master branch

Experiment-05: Updating of files in the Feature-Branch

Aim:

1. To add the Brief Review of GITW in the file “aboutMyCollege.txt” of the feature-

branch:

GITW was established in the year 2023, affiliated with Visvesvaraya Technological University

(VTU), Belagavi, Karnataka. Recognized by AICTE, New Delhi, and the Government of

Karnataka, ranking first in women's minority education in the state. The college provides hostel

facilities and organizes diverse programs enhancing students' overall personality. It offers B.E

Programs in:

• Computer Science & Engineering

• Information Science & Engineering

• Electronics & Communication Engineering

 To commit the above with a message “Added brief review of GITW Successfully”

To merge the feature-branch with the master branch and commit with a message “Merged the

feature-branch Successfully and updated the file with review Details”.

Q.5(Exp-06) Light Weight and Annotated Tags

Aim:

1. To update the file “README.md” and add “Date of Joining to GITW: 1st Oct-2023”

to it under the repository /1WT23CS000/aboutMyCollege under master branch.

2. To commit with a message “My Date of Joining to GITW Updated successfully”

3. To add a light wight tag v1.0 into file “README.md”

4. To add an Annotated tag v2.0 with a message “My Date of Joining to GITW” into the

same file

Q.6 (Exp-09) Git in VS Code

Aim:

1. To clone the repository /z/1WT23CS000/aboutMyCollege from Git-Bash to VS

code:

2. To add a new file vsFile.txt under VS code. Add the following data:

Vs File details:

• Version: 2.1

• Date of Installation: 30/07/2024

• Author Name: Dr.Naveed

and commit a message “Added vsFile.txt successfully”

88

SUMMARY OF CODING

EXPERIMENT-01

// To start the git and to make master branch as default branch

$ git init

// To register your name (author name) and Email address for the

 new project

$ git config --global user.name “Dr.NAVEED”

$ git config --global user.email naveed.gce@gmail.com

// To check the author name , email address and other data:

$ git config --list

// To check author name of the project

$ git config user.name

// To check email address of the author

$ git config user.email

// To clear the screen of the terminal (Ctrl+L)

$ clear

// T get into the Z drive of the computer hard disk. It can be

 any symbol

$ cd /z

// To create a repository “1WT23CS000”

$ mkdir 1WT23CS000

// To get back to the repository

$ cd 1WT23CS000

// To create another sub-repository “aboutMyself”

$ mkdir aboutMyself

// To get back to aboutMyself

$ cd aboutMyself

// To get back in single shot

$ cd /z/1WT23CS000/aboutMyself

mailto:naveed.gce@gmail.com

89

EXPERIMENT-02

//To make any drive like z drive as a safe directory

$ git config --global --add safe.directory z:/

// To add a new file like README.md as untracked file

$ echo > README.md

// To track the file like README.md

$ git add .

//To commit with a message like Added README.md file successfully

$ git commit -m “committed message”

// To edit the file like README.md in an open screen

$ nano README.md

// To read the contents of a file like README.md under terminal

$ cat README.md

//To check the current status

$ git status

EXPERIMENT-03

//To check the current branch as well to check out number

 of branches available

$ git branch

// To create a new branch such as feature-branch

$ git branch feature-branch

// To shift the directory to the new branch such as feature-branch

$ git checkout feature-branch

// To shift back the directory to the default master branch

$ git checkout master

// To checkout number of files available in the repository

$ git ls-files

90

EXPERIMENT-04

// To merge feature-branch into master branch which will add all

 files of feature-branch into master branch

$ git merge feature-branch

EXPERIMENT-05

// To delete a branch such as feature-branch

$ git branch -d feature-branch

// To get reference code of deleted branch

$ git reflog

// To restore the deleted branch such as feature-branch with

 the given ref.code

$ git checkout -b feature-branch ref.code

(in updated version ref.code is not needed)

EXPERIMENT-06

// To add a light weight tag such as v1.0

$ git tag v1.0

// To check the number of tags available

$ git tag

// To check a particular tag such as v1.0

$ git show v1.0

// To add an annotated tag such as v2.0

$ git tag -a v2.0 -m “committed message”

EXPERIMENT-07

// To check the committed messages in master branch with full details

$ git log master

// To check the committed messages in master branch in brief with just one line

$ git log master --oneline

91

//To check committed message of a particular task with the given reference code ID

$ git show ref.code ID

// To check commits of a particular author from date to desired date with full details

$ git log --author=”authorName” --since=”YEAR-MONTH-DAY” until=”YEAR-MONTH-DAY”

// To check commits of a particular author from date to desired date in brief with just one line

$ git log --author=”authorName” --since=”YEAR-MONTH-DAY” until=”YEAR-MONTH-DAY” --oneline

// To check last 5 commits made in master branch with complete details

$ git log master -n 5

// To check last 5 commits made in master branch in brief with just one line.

$ git log master -n 5 --oneline

Note: Press Q to get back to the coding.

EXPERIMENT-08

// To check the committed messages in feature- branch

$ git log feature-branch --oneline

// To check committed message of feature-branch with ref.ID in master branch

$ git cherry-pick ref.ID

// To open the conflicting file such as aboutMyself.txt

$ vim aboutMyself.txt

//To delete a file such as data1.txt

$ git rm data1.txt

//To modify the committed message with Ref.ID

$ git revert Ref.ID

//To display the committed message with Ref.ID

$ git show Ref.ID

92

EXPERIMENT-09

// To get back to the current repository in Z drive such as 1WT23CS000/aboutMyself

$ cd /z/1WT23CS000/aboutMyself
// To clone the above repository in VS code after getting back to the current repository

$ code .

EXPERIMENT-10

// To clone repository in Z drive such as 1WT23CS000/aboutMyself into the GitHub account

$ git remote add origin URLcodeOfGitHubRepository

//To push the repository into the GitHub account if it is master branch

$ git push -u origin master

//To push the repository into the GitHub account if it is main branch

$ git push -u origin main

//To add a new branch such as feature-branch into GitHub account

$ git push -u origin feature-branch

Contact

B.E Programs Offered

9986343109 / 9845954481
080 – 25536527

www.gitw.in

Computer Science & Engineering
Information Science & Engineering
Electronics & Communication
Engineering.

GHOUSIA INSTITUTE OF TECHNOLOGY
FOR WOMEN

Near Dairy Circle, Hosur Road, Bengaluru-560029, KARNATAKA
Affiliated to VTU., Belagavi, Recognized by Government of Karnataka & A.I.C.T.E., New Delhi

It was established in the year 2023,
affiliated with Visvesvaraya Technological
University (VTU), Belagavi, Karnataka.
Recognized by AICTE, New Delhi, and the
Government of Karnataka. It is one among
the two engineering colleges for women in
the state. The college provides hostel
facilities and organizes diverse programs
enhancing students' overall personality.

