
PCC-PEC-OEC (3 Credits) template 1

1

Programming in C Semester I/II

Course Code 1BEIT105/205 CIE Marks 50

Teaching Hours/Week (L:T:P:S) 3:0:0:0 SEE Marks 50
Total Hours of Pedagogy 40 Total Marks 100
Credits 03 Exam Hours 3
Examination type (SEE) Theory
Course outcome (Course Skill Set)

At the end of the course, the student will be able to:
CO1: Demonstrate fundamental concepts and language constructs of C programming.
CO2: Make use of control structures and arrays to solve basic computational problems.
CO3: Develop modular programs using user-defined functions for complex computational problems.

CO4: Construct user defined datatypes using structures, unions and enumerations to model simple real-

world scenarios.

CO5: Choose suitable datatypes and language constructs to solve a given computational or real-world

problem

Module-1

Introduction to Computing: Computer languages, Creating and Running Programs, System Development.

Overview of C: A Brief History of C, C Is a Middle-Level Language, C Is a Structured Language, C Is a
Programmer's Language, Compilers Vs. Interpreters, The Form of a C Program, The Library and Linking,
Separate Compilation, Compiling a C Program, C's Memory Map.

Expressions: The Basic Data Types, Modifying the Basic Types, Identifier Names, Variables, The Four C
Scopes, Type Qualifiers, Storage Class Specifiers, Variable Initializations, Constants, Operators, Expressions.

Textbook 2: Chapter 1: 1.3, 1.4, 1.5; Textbook 1: Chapter 1, 2
Number of Hours: 08

Module-2

Console I/O: Reading and Writing Characters, Reading and Writing Strings, Formatted Console I/O, printf(),
scanf().

Statements: True and False in C, Selection Statements, Iteration Statements, Jump Statements, Expression
Statements, Block Statements.

Textbook 1: Chapter 8, 3
Number of Hours: 08

Module-3

Arrays and Strings: Single-Dimension Arrays, Generating a Pointer to an Array, Passing Single-Dimension
Arrays to Functions, Strings, Two-Dimensional Arrays, Multidimensional Arrays, Array Initialization, Variable -
Length Arrays.

Pointers: What Are Pointers?, Pointer Variables, The Pointer Operators, Pointer Expressions, Pointers and
Arrays, Multiple Indirection, Initializing Pointers.

Textbook 1: Chapter 4, 5
Number of Hours: 08

Module-4

Functions: The General Form of a Function, Understanding the Scope of a Function, Function Arguments, argc

and argv—Arguments to main(), The return Statement, What Does main() Return?, Recursion, Function

Prototypes, Declaring Variable Length Parameter Declarations, The inline Keyword.

Pointers (Contd…): Pointers to Functions, C's Dynamic Allocation Functions.

PCC-PEC-OEC (3 Credits) template 2

2

Textbook 1: Chapter 5, Chapter 6
Number of Hours:08

Module-5

Structures, Unions, Enumerations, and typedef: Structures, Arrays of Structures, Passing Structure to
Functions, Structure Pointers, Arrays and Structures within Structures, Unions, Bit-Fields, Enumerations,
Using sizeof to Ensure Portability, typedef.

Textbook 1: Chapter 7

Number of Hours:08

Suggested Learning Resources:

Textbooks:

1. Schildt, Herbert. "C the complete reference", 4th Edition, Mc GrawHill.
2. Hassan Afyouni, Behrouz A. Forouzan. “A Structured Programming Approach in C”, 4th Edition,

Cengage.

Reference books:

1. Brian W. Kernighan and Dennis M. Ritchie, The ‘C’ Programming Language, 2nd Edition, Prentice Hall

of India.
2. Reema Thareja, Programming in C, 3rd Edition, Oxford University Press, 2023.

Web links and Video Lectures (e-Resources):

1. elearning.vtu.ac.in/econtent/courses/video/BS/15PCD23.html

2. Introduction to Programming in C [https://onlinecourses.nptel.ac.in/noc23_cs02/preview]

3. C for Everyone: Programming Fundamentals [https://www.coursera.org/learn/c-for-everyone]

4. Computer Programming Virtual Lab [https://cse02-iiith.vlabs.ac.in/exp/pointers/]

5. C Programming: The ultimate way to learn the fundamentals of the C language
[https://www.pdfdrive.com/c-programming-the-ultimate-way-to-learn-the-fundamentals-of-the-c-
language-e187584209.html]

6. C Programming: The Complete Reference [https://viden.io/knowledge/programming-in-c-
language/attachment/28313/c-the-complete-reference-herbert-schildt-4th-edition-pdf/preview]

7. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01384323703937433634517_s

hared/overview

8. C programming Tutorial: https://www.geeksforgeeks.org/c/c-programming-language/.

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-

learning process and facilitate the achievement of course outcomes.

1. Flipped Classroom

2. Problem-Based Learning (PBL)

3. Case-Based Teaching

4. Simulation and Virtual Labs

5. ICT-Enabled Teaching

https://onlinecourses.nptel.ac.in/noc23_cs02/preview
https://www.coursera.org/learn/c-for-everyone
https://cse02-iiith.vlabs.ac.in/exp/pointers/
https://www.pdfdrive.com/c-programming-the-ultimate-way-to-learn-the-fundamentals-of-the-c-language-e187584209.html
https://www.pdfdrive.com/c-programming-the-ultimate-way-to-learn-the-fundamentals-of-the-c-language-e187584209.html
https://viden.io/knowledge/programming-in-c-language/attachment/28313/c-the-complete-reference-herbert-schildt-4th-edition-pdf/preview
https://viden.io/knowledge/programming-in-c-language/attachment/28313/c-the-complete-reference-herbert-schildt-4th-edition-pdf/preview
https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01384323703937433634517_shared/overview
https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01384323703937433634517_shared/overview

PCC-PEC-OEC (3 Credits) template 3

3

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the

Semester End Examination (SEE), with each carrying 50% weightage.

• To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50

marks, i.e., 20 marks.

• To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.

• Notwithstanding the above, a student is considered to have passed the course, provided the

combined total of CIE and SEE is at least 40 out of 100 marks.

Continuous Comprehensive Assessments (CCA):

CCA will be conducted for a total of 25 marks. It is recommended to include a maximum of two learning

activities aimed at enhancing the holistic development of students. These activities should align with course

outcomes and promote higher-order thinking and application-based learning.

Learning Activity -1: Programming Assignment (Marks- 25)

INSTRUCTIONS:

1. Course instructor will refer to HackerRank/HackerEarth/LeetCode or any other platform to derive the

questions for problem-solving.

2. Course Instructor must identify programming problems from these sections: Statements (control), Arrays,

Strings, Structures & Unions and Functions.

3. Courser instructor will assign THREE questions from each section to the students for design of algorithm,

program and coding/execution.

4. Students must demonstrate the solutions to the course instructor and submit the record containing

algorithm, program, debugging/execution and results with observations.

5. Course instructor must evaluate the student performance as per the rubrics.

PCC-PEC-OEC (3 Credits) template 4

4

Rubrics for Learning Activity-1 (Programming Assignment):

Component

& CO-PO

Mapping

Outstanding
(5)

Exceeds
Expectations

(4)

Meets
Expectations

(3)

Needs
Improvement

(2)

Unsatisfactory
(1)

Clarity &

Simplicity of

algorithm/pr

ogram

[CO1]

[PO9]

Algorithm/Progra

ms are self-

explanatory,

specific, and well-

structured for the

intended activity;

no ambiguity is

present.

Programs are

clear and mostly

specific; minor

ambiguity is

present.

Programs are

somewhat clear

but could be

more specific;

moderate

ambiguity.

Programs are

vague and lack

clarity; high

ambiguity.

Programs are

unclear,

incomplete, or

irrelevant to the

activity.

Appropriate

Use of

language

constructs

and design of

algorithm/pr

ogram

[CO4, CO5]

[PO1, PO3]

Demonstrates

precise and

creative usage of

the language

construct and

structured

programming

Correctly applies

the language

construct with

minor gaps or

missed

opportunities.

Uses the

language

construct, but

with partial

understanding

or inconsistent

usage.

Limited

understanding

of the language

construct;

incorrect or

weak usage.

No evidence of

correct/relevant

language

construct use.

Compilation,

Debugging,

Analysis &

Comparison

of Results for

various cases.

[CO2, C03]

[PO2, PO4,

PO5]

Provides clear and

correct results

with analysis for

multiple cases;

comparisons

among cases

highlight key

strengths and

weaknesses.

Provides correct

results with

analysis for

multiple cases,

though slightly

less detailed.

Provides correct

results with

limited analysis;

comparisons are

present but

shallow.

Provides correct

results.

Minimal

analysis:

comparisons are

weak or

incomplete.

Results are

partially correct.

No meaningful

analysis or

comparison.

Creativity,

efficiency of

Problem-

Solving/prog

ram

[CO2, CO3]

[PO3, PO11]

Demonstrates

outstanding

creativity and

innovation in

writing programs,

especially for

problem-solving

or design tasks.

Demonstrates

creativity and

some innovation;

Program

solutions are

practical.

Shows moderate

creativity;

programs are

functional but

not innovative.

Minimal

creativity;

programs are

repetitive or

unimaginative.

No creativity or

problem-

solving/Program

ming is evident.

Documentati

on &

Reflection

[CO1, CO4,

CO5]

[PO8/PO9/P

O11]

Documentation is

complete, well-

organized, and

includes deep

reflection on

improvements

across iterations.

Documentation

is complete with

some reflection

on program

refinement.

Documentation

is present but

lacks detail or

depth in

reflection.

Incomplete

documentation;

reflection is

minimal.

No

documentation

or reflection

provided as per

schedule.

