

Fourth Semester B.E./B.Tech. Degree Examination, Dec. 2024/Jan.2025 Analysis and Design of Algorithms

Time: 3 hrs.

Max. Marks: 100

		A			
		Module - 1	M	L	C
Q.1	a.	Explain the various steps in algorithm design and analysis process with the flow diagram.	08	L1	CO1
	b.	Give formal and informal definitions of asymptotic notations.	06	L1	CO1
	c.	Explain the general plan of mathematical analysis of recursive algorithm with an example.	06	L1	CO1
		OR			
Q.2	a.	Design algorithm for tower of Hanoi problem and obtain time complexity.	10	L1	CO1
Q.2	b.	Write an algorithm to search an element in an array using sequential search.	10	L1	COI
		Discuss the best case, worst case and average case efficiency of this algorithm.		Li	COI
		Module – 2			
Q.3	a.	Write an algorithm to sort the numbers using insertion sort. Discuss its efficiency.	10	L2	CO2
	b.	Design quick sort algorithm and obtain its best, average and worst case efficiency.	10	L2	CO2
		OR			
Q.4	a.	Write merge sort algorithm and sort the list E X A M P L E.	08	L2	CO ₂
	b.	Apply the DFS based algorithm to solve the topological sorting problem for	06	L3	CO ₂
		Fig.Q4(b)		1	1
	c.	Write algorithm for pre-order, post order and in order traversals of a tree. Write pre-order, in-order and post order for the given tree.	06	L2	CO2
		Fig.Q4(c)			*

				ВС	S401
		Madala 2			
0.5	Г	Module – 3 Define AVI tree Construct AVI tree for the list 5 6 9 2 3 4 7	10	Т 2	CO2
Q.5	a.	Define AVL tree. Construct AVL tree for the list 5, 6, 8, 3, 2, 4, 7.	10	L3	CO3
	b.	Define heap. Sort the following lists by heapsort:	10	L3	CO ₃
		H E A P S O R T (in alphabetical order)			
0.6		OR OR	40	T 0	00.4
Q.6	a.	Write the algorithm for comparison counting sort. Discuss its efficiency.	10	L2	CO4
	b.	Design Horspools algorithm for string matching. Apply Horspools	10	L3	CO ₄
		algorithm to find the pattern BARBER on the stext			
		JIM_SAW_ME_IN_BARBERSHOP			
0.5		Module - 4	10	T 2	000
Q. 7	a.	Write Warshall's algorithm and apply the same to compute transitive	10	L3	CO ₃
		closure of a directed graph.			
		a b o d e			
		a[1 0 0 1 0]		100	
		b 0 1 0 0 0			
	1				
		d 1 0 0 0 0		-	
		e 0 1 0 0 1			
	b.	Construct minimum cost spanning tree using Kruskal's algorithm for the	10	L3	CO4
	J.	following graph, Fig.Q7(b).	10	LIS	C04
		60 G			
		40	_		
	- 1	10 70 20		- 1	
	-	(a) 19 (b) (c)	×		
		20 5 30			-
		80 (5)			3 - 2 -
	~	Fig.Q7(b)			i i
		OR		<u> </u>	-
Q.8	a.	Solve the following single source shortest path problem assuming vertex	10	L3	CO4
Q.0	4.	'5' as the source.	10		004
	>	45			
		15 0 20 XW			
		(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		,	() () () () () () () () () ()
		0 10 10 20			
		20 15 30 5			
		2 20 3 4			
	5 E	Fig.Q8(a)			
	b.	Write Huffman's algorithm. Construct Huffman tree and resulting code	10	L4	CO4
		word for the following:	8		
		Character A B C D E -			
		Probability 0.5 0.35 0.5 0.1 0.4 0.2			
		Encode the text DAD_CBE.			
17		Module – 5	-		
Q.9	a.	Explain the following with example: (i) P problem (ii) NP problem	06	L1	CO5
NY ATTE	b.	What is decision tree? Construct decision tree for the three element		L2	CO5
		insertion sort.			
	c.	Construct state space tree to solve 4 queens problem.	06	L3	CO5
			1		1 2 3 3
		2 of 3			

,					
				BC	S401
0.10	T	OR	40	T 0	601
Q.10	a.	What is backtracking? Apply back tracking to solve the below instance of sum of subset problem: $s = \{3, 5, 6, 7\}, d = 15$	10	L3	CO6
	b.	Solve the following instance of knapsack problem using branch and bound	10	L4	CO6
		technique knapsack capacity = 10.			
		Item Weight Value			
	ŀ	1 4 40 40 42			
		3 5 25			
		4 3 12			

					(IBRARY)	
USN						BCS402
0.51					WGALO	

Fourth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Microcontroller

Time: 3 hrs.

Max. Marks: 100

		Module - 1	M	L	С
Q.1	a.	Explain the purpose of various fields of current program status register with	05	L2	CO1
		a neat diagram.	14		
	b.	Explain the ARM design philosophy.	06	L2	CO1
	c.	Explain the core extensions of ARM processor with neat block diagram.	09	L2	CO ₁
		OR			
Q.2	a.	Explain Embedded systems hardware with a neat block diagram.	06	L2	CO ₁
	b.	What is pipelines in ARM? Illustrate with an example the pipeline stage of	09	L2	CO1
		ARM 9 and ARM 10.			
	c.	Describe the RISC design philosophy with 4 design rules.	05	L2	CO ₁
		Module – 2			
Q.3	a.	Explain the following with examples:	10	L2	CO ₂
		(i) RSC (ii) MLA (iii) STRH (iv) SWP			
	b.	Explain the different data processing instruction in ARM.	10	L2	CO ₂
		♦ OR			
Q.4	a.	Explain Barrel shifter instruction in ARM with suitable examples.	10	L2	CO ₂
	b.	Explain the different branch instruction of ARM processor.	05	L2	CO2
	c.	Explain co-processor instruction of ARM processor.	05	L2	CO2
		Module – 3			
Q.5	a.	Explain the different basic data types in C. Provide examples of how each	08	L2	CO3
		data type can be used in a C program.			
	b.	Discuss the concept of register allocation in compiler optimization.	07	L2	CO3
		Illustrate its significance with an example.			
	c.	Describe the process of a function call in C.	05	L2	CO3
		OR			
Q.6	a.	Discuss the common portability issues faced when writing C programs.	07	L2	CO3
		How can these issues be mitigated.			
	b.	Explain the concept of pointer aliasing with example.	07	L2	CO3
	c.	How are function calls handled efficiently in calling function in C?	06	L2	CO3
		Module – 4			
Q.7	a.	What are interrupts? Discuss interrupt vector table with diagram for ARM	06	L2	CO4
		processor.			
	b.	Describe the sequence of operations that occurs when an ARM processor	06	L2	CO4
		handles an IRQ exceptions.			
	c.	Discuss the priority system for exception in ARM processor.	08	L2	CO4
		OR			
Q.8	a.	Explain the role of the link register in ARM exception handling.	08	L2	CO4
	b.	Explain the design and implementation of an interrupt stack in a ARM-	08	L2	CO4
		based system. Explain the steps involved.			
	c.	What are the key differences between a boot loader and firmware?	04	L2	CO4

	1	Module – 5			
Q.9	a.	Explain the basic operation of a cache controller.	06	L2	CO
	b.	With a neat diagram, explain the basic architecture of a cache memory.	10	L2	CO
	c.	Mention any 4 relationship between cache and main memory.	04	L2	CO
0.40		OR			
Q.10	a.	Write a note on cache write policy both write back or write through.	10	L2	CC
	b.	Describe the allocation policy on a cache miss. Write a note on following:	04	L2	CC
	c.	(i) Write buffers	06	L2	CC
		(ii) Cache efficiency			

		·			
	A				
		2 - 62			
		2 of 2			
	4				
		V			

BCS403

Fourth Semester B.E./B.Tech. Degree Examination, Dec. 2024/Jan.2025 Database Management System

Time: 3 hrs.

Max. Marks: 100

		Module - 1	M	L	C
Q.1	a.	Define the following terms:	05	L1	CO1
		(i) Database (ii) Schema (iii) Entity			II
		(iv) DDL (v) Degree of a relationship			
	b.	Briefly explain characteristics of database approach.	05	L2	C01
	c.	List and explain advantages of using DBMS approach.	10	L2	CO1
			1		
		OR /			
Q.2	a.	Define the following terms:	05	L1	CO1
		(i) Cardinality (ii) Weak entity (iii) Program data independence			
		(iv) DML (v) Value sets			
	b.	Describe three-schema architecture. Why do we need mappings between	05	L2	CO1
		schema levels?			
	c.	Explain different types of attributes in ER model with suitable example for	10	L2	CO1
		each.			
		Module – 2			
Q.3	a.	With suitable example, explain the entity integrity and referential integrity	05	L2	CO2
		constraints. Why each is considered important?			
	b.	Discuss equijoin and natural join with suitable example using relational	05	L2	CO2
		algebra notation.			
	c.	Given the relational tables:	10	L3	CO ₂
		Employee: Department:			
		EID Name DepID Salary DeptID DeptName			
		1 Alice 10 5000 10 HR			
	12	2 Bob 20 6000 20 IT		9	
		3 Eve 20 6500 Sales			
	1	Project			
		PID Project Name DeptID			
		101 Project Alpha 10	ļ		
		102 Project Beta 20			
		103 Project Gamma 30			
		Write relational algebra expression for the following:			
		(i) Find the names and salaries of all employees in the 'IT' department.			
		(ii) Find the ID's and names of employees who are in the 'IT' department			
		and have a salary greater than 6000.			
		(iii) Find the ID's and names of employees who are either in the 'HR'	4		
		department or have a salary greater than 6000.			
		(iv) Find the names of employees who are not in the 'IT' department			
		(v) Find the names of employees along with their department names.			
1		1 of 3			

				ВС	S403
	1	OR			
Q.4	a.	Explain any two operations that change the state of relation in a database.	05	L2	CO2
		Provide suitable examples.			
	b.	Discuss the aggregation functions and grouping in relational algebra with	05	L2	CO ₂
		suitable examples.			
	c.	Given the relational tables: Student:	10	L3	CO2
		(v) Find the students who are enrolled in both the 'Alpha' and 'Beta'			
		projects.			
		projects.			
		Module – 3			
Q.5	a.	Explain Armstrong inference rules.	05	L2	CO4
	b.	What is the need for normalization? Explain 1NF, 2NF and 3NF with	05	L2	CO4
		examples.	10	T 2	604
	c.	What is functional dependency? Write an algorithm to find minimal cover for set of functional dependencies. Construct minimal cover M for set of functional dependencies which are: $E = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$	10	L3	CO4
0.6	2.1	OR III i cov	0.5	TA	604
Q.6	a.	Explain the types of update anomalies in SQL with an example.	05 05	L2 L2	CO4
	b.	Explain types of JBBC drivers. Consider the schema $R \neq ABCD$, subjected to FDs $F = \{A \rightarrow B, B \rightarrow C\}$,	10	L3	CO4
	c.	and the non-binary partition D1 = {ACD, AB, BC}. State whether D1 is a lossless decomposition? [give all steps in detail].	10		
	1	Module – 4	0.5	TA	007
Q.7	a.	Define transaction. Discuss ACID properties.	05	L2	CO5
	b.	With a neat diagram, explain transition diagram of a transaction.	05 10	L2 L3	CO5
	c.	Demonstrate working of assertion and triggers in SQL with example.	10	L	103
		OR			
Q.8	a.	Explain cursor and its properties in embedded SQL with suitable example.	05	L2	CO5
	b.	Determine if the following schedule is serializable and explain your reasoning: i) T1: R(X)W(X) T2: R(X)W(X) T1: COMMIT T2: COMMIT ii) T1: W(X)R(Y) T2: R(X)W(Y) T1: COMMIT T2: COMMIT	05	L2	CO5
		2 of 3			

()

X1				B
	c.	Consider the tables below: Sailors (sid: integer, sname: string, rating: integer, age: real) Boats (bid: integer, bname: string, color: string); Reserves (sid: integer, bid: integer, day: date) Write SOL guering for the following:	10	L3
		Write SQL queries for the following: (i) Write create table statement for reserves. (ii) Find all information of sailors who have reserved boat number 101. (iii) Find the names of sailors who have reserved at least one boat.		
	*	(iv) Find the names of sailors who have reserved a red boat.(v) Find the average age of sailors for each rating level.		
		Module – 5		
Q.9	a.	Explain the CAP theorem.	05	L2
	b.	What is NOSQL graph database? Explain Neo4j.	05	L2
	c.	Why concurrency control and recovery are needed in DBMS? Demonstrate with suitable examples types of problems that may occur when two simple transactions run concurrently.	10	L3
Q.10	a.	Explain basic operations CRUD in MongoDB.	05	L
Q.10	b.	Explain deadlock prevention protocols.	05	+
	c.	Briefly discuss the two-phase looking techniques f ₀ concurrency control.	10	L

	4			

BCS405B

USN

Fourth Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

Graph Theory

Time: 3 hrs.

Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	Define connected graph. Let $G = (V, E)$ be a connected graph, what is the largest possible value of $ V $, if $ E = 19$ and $deg(V) \ge 4$ for all $v \in V$?	06	L2	CO1
	b.	Define isomorphism of two graphs. Show that the two graphs are not isomorphic.	07	L2	CO1
		$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$			
	J	14 I in 25 h. Schrift and age after three States of the total and a second of the seco	61 I	2	
	c.	Show that in a graph G, the number of odd degree vertices is even.	07	L3	CO1
2017		OR			
Q.2	a.	Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$.	06	L3	CO1
134	1			d	
	b.	In the given graph, identify the different paths from V_1 to V_8 . How many of these path have length 5?		L2	CO1
913	c.	Show that a simple graph with n vertices and K components can have at $\frac{(n-K)(n-K+1)}{2}$ edges. Module -2	07	L3	CO1
Q.3	a.	Define Euler circuit. Find the Euler circuit in the graph below.	06	L2	CO2
*		Va Vio Vi			
f	b.	Prove that in a complete graph with n vertices, where $n \ge 3$, there are $\frac{(n-1)}{2}$ edge disjoint Hamiltonian cycles.	07	L3	CO2
	c.	Write a note on "Konigsberg bridge problem".	07	L3	CO
		1 of 3			

Q.4 a	OR Explain travelling salesman problem. Solve the travelling salesman			
Q.4 a				
	problem for the weighted graph shown in Fig.Q4(a).	06	L2	CO2
	D. 9 Fig.Q4(a)	0.7	T 2	600
	the complete graph with seven vertices? Also draw the graph to show these Hamilton cycle.	07	L3	CO2
	Define complete symmetric digraph with an example. Prove that in any digraph, the sum of indegree of all vertices is equal to sum of outdegree and this sum is equal to number of edges. Module – 3	07	L3	CO2
Q.5 a		06	L3	CO3
1	Name of the second seco	07	L3	CO3
		07	L3	CO3
	OR			
Q.6	Define binary tree. If a tree T has 4 vertices of degree 2, 1 vertex of degree 3, 2 vertices of degree 4 and 1 vertex of degree 5, find the number of leaves in T.	06	L2	CO3
	(ii) Find all the spanning tree of the below graph. (ii) Find the number of tree branches and chords in the following graph with 7 vertices and 14 edges.	07	L3	CO3
. 1	Define edge connectivity and vertex connectivity. Show that edge connectivity of graph G cannot exceed the degree of the vertex with the smallest degree in G.	07	L3	CO3
	Module - 4			
Q.7	Define: (i) Planar graph (ii) Complete bipartite graph (iii) Dual of a planar graph. Give one example for each.	06	L2	CO4
_ 8	Prove that in a connected planar graph G has n vertices, e edges and r regions then $n - e + r = 2$.	07	L3	CO4
	. Check the planarity of the given graph by method of elementary reduction.	07	L3	CO4
	OR			
	2 of 3			

				nac	40.55
				BCS	405E
Q.8	a.	Define complete graph with an example. Show that Peterson graph is non-planar.	06	L3	CO
	b.	Draw the geometric dual of the given graph:	07	L2	CO
	c.	Define adjacency matrix and incidence matrix. Write down the adjacency matrix for the given graph G.	07	L3	CO ₄
		Module – 5			
Q.9	a.	Define chromatic polynomial of a graph. Find the chromatic polynomial of the graph.	06	L2	CO
	b.	Prove that a graph with atleast one edge is 2-chromatic iff it has no circuits of odd length.	07	L3	CO
	c.	Define complete matching. Obtain 3 complete matching from the given graph.	07	L3	CO
Q.10		OR	0.6		
Q.10	a.	Prove that a graph with atleast one edge is 2-chromatic if and only if it has no circuits of odd length.	06	L2	CO
	b.	Define covering of a graph. Obtain two minimal coverings of the graph.		L3	CO
	c.	Prove that a covering of a graph is minimal if and only if g contains no paths of lengths three or more.	07	L3	CO

1/1/12

BCS401

USN

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Analysis and Design of Algorithms

Time: 3 hrs.

Max. Marks: 100

		Module - 1	M	L	C
Q.1	a.	What is an algorithm? Explain the fundamentals of algorithmic problem solving.	10	L2	CO1
	b.	Develop an algorithm to search an element in an array using sequential search. Calculate the best case, worst case and average case efficiency of this algorithm.	10	L3	C01
		OR			
Q.2	a.	Explain asymptotic notations with example.	10	L2	CO1
	b.	Give the general plan for analyzing the efficiency of the recursive algorithm. Develop recursive algorithm for computing factorial of a positive number. Calculate the efficiency in terms of order of growth.	10	L3	CO1
		Module – 2	i		
Q.3	a.	Explain Strassen's matrix multiplication approach with example and derive its time complexity.	10	L3	CO2
	b.	What is divide and conquer? Develop the quick sort algorithm and write its best case. Make use of this algorithm to sort the list of characters: E, X, A, M, P, L, E.	10	L2	CO2
		OR		-1	
Q.4	a.	Distinguish between decrease & conquer and divide & conquer algorithm design techniques with block diagram. Develop insertion sort algorithm to sort a list of integers and estimate the efficiency.	10	L3	CO2
	b.	Define topological sorting. List the two approaches of topological sorting and illustrate with examples.	10	L2	CO2
315		Module – 3	7.1		
Q.5	a.	Define AVL tree with an example. Give worst case efficiency of operations on AVL tree. Construct an AVL tree of the list of keys: 5, 6, 8, 3, 2, 4, 7 indicating each step of key insertion and rotation.	10	L3	CO3
	b.	Define Heap. Explain the bottom-up heap construction algorithm. Apply heap sort to sort the list of numbers 2, 9, 7, 6, 5, 8 in ascending order using array representation.	10	L3	CO3
	7	Ø OR			
Q.6	a.	Define 2-3 tree. Give the worst case efficiency of operations on 2-3 tree. Build 2-3 tree for the list of keys 9, 5, 8, 3, 2, 4, 7 by indicating each step of key insertion and node splits.	10	L3	CO3
37	b.	Design Horspool algorithm for string matching. Apply this algorithm to find the pattern BARBER in the text: JIM SAW ME IN A BARBERSHOP	10	L3	CO3
		Module – 4		1	-
Q.7	a.	Apply Dijkstra's algorithm to find the single source shortest path for given graph [Fig.Q7(a)] by considering 's' as source vertex. Illustrate each step.	10	L3	CO4
		1 of 2			
		A VA			

A. Participan				ВС	CS401
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ž		
	b.	Fig.Q7(a) Define transitive closure. Write Warshall's algorithm to compute transitive closure. Illustrate using the following directed graph.	10	L3	CO4
			i. Vi		
	1	Fig.Q7(b) OR		d	
Q.8	a.	Define minimum spanning tree. Write Kruskal's algorithm to find minimum spanning tree. Illustrate with the following undirected graph.	10	L3	CO4
	Kennek Line I	(a) 5 (d) 2 (e) 8 (Fig O8(c))	21.		C Q
	b.	Fig.Q8(a) Construct Huffman Tree and resulting code for the following: Character A B C D - Probability 0.4 0.1 0.2 0.15 0.15 (i) Encode the text: ABACABAD (ii) Decode the text: 100010111001010	10	L3	CO4
		Module – 5	MB :		
Q.9	a. b.	Explain n-Queen's problem with example using backtracking approach. Solve the following instance of the knapsack problem by the branch-and-bound algorithm. Construct state-space tree.	10 10	L2 L3	CO5
		Item Weight Value 1 4 \$ 40 2 7 \$ 42 3 5 \$ 25 4 3 \$ 12		# P	
1 1 1	J.	The knapsack's capacity W is 10.	× .	.0	9.0
Q.10	a.	OR Differentiate between Branch and Bound technique and Backtracking. Apply backtracking to solve the following instance of subset-sum problem S = {3, 5, 6, 7} and d = 15. Construct a state space tree.	10	L3	COS
	b.	Explain greedy approximation algorithm to solve discrete knapsack problem.	10	L2	COS

and told

USN

BCS402

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Microcontrollers

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		2. M. Marks, L. Bloom's level, C. Course outcomes.			
	_	Module – 1	M	L	C
Q.1	a.	Explain the architecture of an arm embedded device with a neat diagram.	10	L2	CO1
	b.	How are monitor and control internal operations performed in ARM core?	10	L2	CO1
		Explain in brief.			
	_	OR*			•
Q.2	a.	Explain memory management in ARM core. Compare cache and tightly	10	L2	CO1
	ļ	coupled memory.			
	b.	Explain mechanism applied by ARM core to handle exception, interrupts	10	L2	CO1
		using different vector table.			
	т—	Module – 2			
Q.3	a.	Examine data processing instructions requirement in the manipulation of	10	L2	CO2
		data register? Explain in brief data processing instructions.			
	b.	Explain with examples the following 32-bit instruction of ARN processor	10	L2	CO2
		i) CMN (ii) MLA iii) MRS iv) BIC (v) LDR.			
		OR			
Q.4	a.	Explain the following with example:	10	L2	CO2
		i) Stock operation ii) Swap instructions.			
	b.	Explain Branch instructions in ARM with suitable example. Demonstrate	10	L2	CO2
		Branch instruct usage flow of execution with an example program.			
		Module – 3			
Q.5	a.	How registers are allocated to optimize the program? Develop an assembly	10	L2	CO3
		level program to find the sum of first to integer numbers.			
	b.	How complier handles a "for loop" with variable number of iterations N	10	L2	CO3
		and loop controlling with an example.			
		OR '			
Q.6	a.	Explain the following terms with an appropriate example:	10	L2	CO3
		i) Pointer Aliasing ii) Portability issues.			İ
	b.	How function calling is efficiently used by ARM through APCS with an	10	L2	CO3
		example program.			
	-	· Module – 4			
Q.7	a.	Explain ARM processors exception and modes with a neat diagram.	10	L2	CO4
	b.	Explain exception priorities and link register offset.	10	L2	CO4
		OR	•		
Q.8	a.	List ARM firmware suite features. Explain firmware execution flow and	10	L2	CO4
		Red Hat Boot.			
	b.	Explain IRQ and Fir exception, also to enable and disable IRQ and FIQ	10	L2	CO4
		interrupts.			
		Module – 5			
Q.9	a.	Explain basic architecture of cache memory.	10	L2	CO5
	b.	Explain process involved in main memory mapping to a cache memory.	10	L2	CO5
	•	OR			
Q.10	a.	Explain with diagram set associative cache. How are efficiency is	10	L2	CO5
		measured?		112	003
	b.	Briefly explain cache line replacement policies with an example.	10	L2	CO5
		1 with an example.	LU	114	LU3

the Parish and the Salah and t

en desta de la companya de la compa La companya de la co

SOFT TO BE THE CONTROL OF THE STATE OF THE S	
i de Colonia br>Colonia de Colonia de C	
internulus neci supervivos elifete trese la elificación	

BCS403

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Database Management Systems

Time: 3 hrs.

USN

Max. Marks: 100

		Module – 1	M	L	C						
Q.1	a.	Define database. Elaborate component modules of DBMS and their interactions.	10	L2	CO1						
	b.	Describe the three-schema architecture. Why do we need mappings among schema levels?	06	L2	CO1						
4	c.	Explain the difference between logical and physical data independence.	04	L2	CO1						
	1	OR									
Q.2	a.	Draw an ER diagram for an COMPANY database with employee,	10	L3 CO3							
		department, project as strong entities and dependent as weak entity. Specify			003						
		the constraints, relationships and ratios in the ER diagram.	_								
	b.	Define the following terms with example for each using ER notations:	10	L3	CO3						
		Entity, attribute, composite attribute, multivalued attribute, participation									
		role.	_								
		Module – 2									
Q.3	a.	Discuss the update operations and dealing with constraint violations with suitable examples.	08	L2	CO2						
	b.	Illustrate the relational algebra operators with examples for select and	06	L2	CO2						
		project operation.									
	c.	Discuss the characteristics of relations that make them different from	06	L2	CO2						
		ordinary table and files.									
		OR									
Q.4	a.	Perform (i) Student U instructor (ii) Student ∩ Instructor	04	L3	CO2						
		(iii) Student – Instructor (iv) Instructor – Student on the following tables:									
		Student Instructor									
		Fname Lname Fname Lname									
		Susan Yao John Smith									
		Ramesh Shah Ricardo Browne									
		Johnny Kohler Susan Mao									
		Barbara Jones Francis Johnson									
	Ť	Amy Ford Ramesh Shah									
		Jimmy Wang									
		Ernest Gilbert									
	b.	Consider the following relational database schema and write the queries in	10	L3	CO2						
		relational algebra expressions:									
		EMP(Eno, Ename, Salary, Address, Phone, DNo)		_	-						
		DEPT(<u>DNo</u> , Dname, DLoc, MgrEno)									
		DEPENDENT(Eno, Dep_Name, Drelation, Dage)									
	1	(i) List all the employees who reside in 'Belagavi'.									
		(ii) List all the employees who earn salary between 30000 and 40000									
		(iii) List all the employees who work for the 'Sales' department			_						
		(iv) List all the employees who have at least one daughter									
		(v) List the department names along with the names of the managers									

	c.	Consider the two tables T_1 and T_2 shown below:	06	L3	CO ₂
		T_2			
	#4.E	PQR ABC			
		10 a 5			
		15 b 8 25 c 3			
		25 a 6 10 b 5			
		Show the results of the following operations:			
	1 1 1 1	$(i) T_1 \bowtie_{T_1,P=T_2,A} T_2$			
		(ii) $T_1 \bowtie_{T_1,Q=T_1,B} T_2$			
	,	(iii) $T_1 \bowtie_{(T_1,P=T_2.A \text{ AND } T_1.R=T_2.C)} T_2$			-5
		Module – 3			
Q.5	a.	Discuss the informal design guidelines for relation schema design.	08	L2	CO4
	b.	Define 1NF, 2NF, and 3NF with examples.	06	L2	CO4
	c.	Write the syntax for INSERT, UPDATE and DELETE statements in SQL	06	L2	CO ₃
		and explain with suitable examples.	00	~~	005
		OR			
Q.6	a.	Discuss insertion, deletion and modification anomalies. Why are they	10	L2	CO3
		considered bad? Illustrate with examples.			000
	b.	Illustrate the following with suitable examples:	10	L2	CO3
		(i) Datatypes in SQL	_ ~	~-	000
		(ii) Substring Pattern Matching in SQL.	- 1		
		Module – 4			
Q.7	a.	Consider the following relations;	10	L3	CO3
		Student(Snum, Sname, Branch, level, age)			257
	b.	Class(Cname, meet_at, room, fid)			- 1
		Enrolled(Snum, Cname)			_
		Faculty(<u>fid</u> , fname, deptid)		5 -!	
		Write the following queries in SQL. No duplicates should be printed in any	_		
		of the answers.	-	-	
-	13.1	(i) Find the names of all Juniors (level = JR) who are enrolled in a			Y.
		class taught by I. Teach.			
		(ii) Find the names of all classes that either meet in room R128 or			_
		have five or more students enrolled.			< 1
		(iii) For all levels except JR, print the level and rthe average age of			
1		students for that level.			
		(iv) For each faculty member that has taught classes only in room	1		
	1	R128, print the faculty member's name and the total number of			
	1.	classes she or he has taught.			
	L	(v) Find the names of students not enrolled in any class.	0.4	7.0	666
	b.	What do understand by correlated Nested Queries in SQL? Explain with	04	L2	CO3
	-	suitable example.	0.5	7.0	66.1
	c.	Discuss the ACID properties of a database transaction.	06	L2	CO4
00	T 6	What are the views in SOL 2 Explain with examples	0.4	Т.	005
Q.8	a. b.	What are the views in SQL? Explain with examples. In SQL, write the usage of GROUP BY and HAVING clauses with suitable	04	L3	CO5
	D.	examples.	06	L2	CO3
	C	Discuss the types of problems that may encounter with transactions that run	10	1.2	007
	c.	concurrently.	10	L2	CO5
		concurrently.	41	,	

0.0		What is the two phase leaking protectly Herry day it Country	0.0		60-
Q.9	a.	What is the two phase locking protocol? How does it Guarantee serializability.	06	L2	CO5
	b.	Describe the wait-die and wound-wait protocols for deadlock prevention.	08	L2	CO5
	c.	List and explain the four major categories of NOSQL system.	06	L2	CO3
		OR			
Q.10	a.	What is Multiple Granularity locking? How is it implemented using	10	L2	CO5
	b.	intension locks? Explain. Discuss the following MongoDB CRUD operations with their formats:	06	L2	CO4
		(i) Insert (ii) Delete (iii) Read			ý.
	c.	Briefly discuss about Neo4j data model.	04	L2	CO4

	-				
		A STATE OF THE STA			
		3 of 3			
		3 of 3			

BCS405B

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Graph Theory

Time: 3 hrs.

Max. Marks: 100

		Module – 1	M	L	C		
Q.1	a.	Define graph. List and explain the types of graph.	08	L1	CO1		
II	b.	Prove that the number of vertices of odd degree in a graph is always even.	06	L2	CO1		
	c.	Define isomorphic graph and verify the following graphs are isomorphic or not. [Refer Fig.Q1(c)]	06	L2	CO1		
		e d c'					
	1	OR		-			
Q.2	a.	Explain the following graphs: (i) Bi-partile graph (ii) Sub graphs (iii) WALK (iv) Path	10	L1	CO1		
V* - 1	b.	Prove that a simple graph with n vertices and K components can have at most $(n - K)(n - K + 1)/2$ edges.	10	L2	CO1		
		Module – 2					
Q.3	a.	State and prove necessary condition of a graph to be a Euler graph.	10	L2	CO2		
Ų.J	b.	List and explain the different operations on graph.	10	L2	CO2		
		Elst and explain the different operations on graph.	10	LL	COZ		
		OR					
Q.4	a.	Define diagraph. Find the indegree and outdegree of the following graph [Fig.Q4(a)].	08	L2	CO2		
	1.	Fig.Q4(a)	0.7	7.0	66		
	b.	Illustrate the travelling salesman problem using a graph.	06	L2	CO2		
	c.	List and explain different digraphs and binary relations.	06	L2	CO2		
		Module – 3					
Q.5	a.	Define a tree. Prove that in a graph G there is one and only one path between every pair of vertices, G is a tree.	06	L1	CO3		
		1 of 2					

			BCS	405B
b.	Explain the following: (i) Cut-edge (ii) Cut-vertex (iii) Cut-set	06	L1	CO3
c.	Find and construct the following: (i) Minimum possible height of 11 vertex binary tree (ii) A binary tree for a given 11 such that the farthest vertex is as far as possible from the root that must have exactly 2 vertices at each level, except at zero level. OR	08	L2	CO3
Q.6 a.	Prove that every circuit has an even number of edges in common with any cut set.	10	L2	CO3
b.	Prove that ring 50 m of any two cut-sets in a graph is either a third cut-set or an edge disjoint union of cut-sets.	10	L2	CO3
Q.7 a.	Module – 4 Define the following: (i) Planar graph (iii) Non-planar (iv) Kuratowski's 2 graph	08	L2	CO4
b.		08	L2	CO4
c.	Write a note on path matrix.	04	L1	CO4
Q.8 a.	Prove that two graphs G1 and G2 are isomorphic if and only if their incidence matrices A(G1) and A(G2) differ only by permutations of rows and columns.	10	L2	CO5
b.		10	L2	CO5
37 1	Module – 5			10
Q.9 a.	Prove that every tree with two or more vertices is 2 - chromatic.	10	L2	CO5
b.	(i) Finding a maximal independent set(ii) Finding all maximal independent set.	10	L2	CO5
0.10	OR			
Q.10 a.	Prove that the vertices of every planar graph can be properly colored with	40	TTA	~~=
	five colors.	10	L2	CO5
b.		10	L2	CO5

USN

Fourth Semester B.E./B. Tech. Degree Examination, June/July 2024 Advanced Java

Time: 3 hrs.

Max. Marks: 100

	al.	Module – I	M	L	C
Q.1	a.	What is collection Frame Work? Explain the methods defined by the following Interfaces: (i) Collection (ii) List	10	L2	CO1
	b.	(iii) Sorted Set (iv) Queue What are Legacy Classes? Explain any four legacy classes of Java's collection Frame work with suitable program.	10	L2	CO1
		OR			
Q.2	a.	Explain how collectors can be accessed using an iterator with example.	5	L3	CO1
Q.2	b.	What are the various changes that collection framework underwent recently?	5	L1	CO1
	c.	With an example program, explain how to store user-defined classes in collections.	10	L2	CO1
		Module – 2			
Q.3	a.	Explain any two character extraction methods of string class.	5	L2	CO ₂
	b.	Explain the various string constructors used in Java with examples.	10	L2	CO2
	c.	Explain additional string methods. OR	5	L2	CO2
Q.4	a.	Briefly describe special string operations with syntax and examples.	5	L2	CO2
	b.	Explain the following methods of string buffer class with examples: (i) capacity() (ii) reverse() (iii) insert	10	L2	CO2
	c.	(iv) append () Explain any four string modification methods of string class.	5	L2	CO2
	Ι	Module – 3		LL	CU2
Q.5	a.	Explain the four types of the swing buttons, with demonstration program.	10	L3	CO3
Q.C	b.	Explain MVC connector Architecture.	5	L2	CO3
	c.	What are the two key swing features? Discuss.	5	L1	CO3
	1	OR	169		
Q.6	a.	Explain the following: (i) JLabel and Image Icon. (ii) JTextField	10	L2	CO3
	b.	Write a program to demonstrate a simple swing application.	10	L3	CO3
		Module – 4			
Q.7	a.	Explain the life cycle of Servlets.	5	L2	CO4
	b.	Describe the core interfaces that are provided in Jakarta (Javax), Servlet, http package.	5	L2	CO4
	c.	Define JSP. Explain the different types of JSP tags by taking suitable example.	10	L2	CO4
		OR		11	
		4 00			

		The state of the s			
Q.8	a.	Explain any two cookies method.	5	L1	CO4
" 15 01	b.	With a code, explain how to handle HTTP get requests and HTTP post requests.	10	L2	CO4
	c.	Explain how cookies can be handled using servlets.	5	L4	CO4
		Module – 5			
Q.9	a.	Explain different steps involved in JDBC process with a code snippet.	10	L3	CO5
	b.	List and elaborate Database Metadata Object methods.	5	L2	CO5
	c.	List and explain three kinds of exception occurred in JDBC.	5	L2	CO5
		OR A			
Q.10	a.	Mention all steps to create the association between the database and a	12	L3	CO5
- 1 5	01	JDBC/ODBC bridge.		Lie	
1	b.	Explain the four types of JDBC drivers.	8	L2	CO5

BUHK408

Question Paper Version: A											USN
ree Examination, June/July 2024	. Deg	ech	в.т	E./I	B.I	er	est	Sem	th S	urt	Fo

	Universal Human Values Course
Time	e: 1 hr.] [Max. Marks: 50
	INSTRUCTIONS TO THE CANDIDATES
1.	Answer all the fifty questions, each question carries one mark.
2.	Use only Black ball point pen for writing / darkening the circles.
3.	For each question, after selecting your answer, darken the appropriate circle
	corresponding to the same question number on the OMR sheet.
4.	Darkening two circles for the same question makes the answer invalid.
5.	Damaging/overwriting, using whiteners on the OMR sheets are strictly
	prohibited.
	\Diamond
a b c	The purpose of value –Education is to) Foster universal core values) Make syllabus easy) Develop values in individual) Both A and C
a	elf exploration uses two mechanisms i) Natural Acceptance ii)?) Experiential validation b) Reason) Logical Thinking d) Theoretical concept
	Once we know what is valuable to us, these values becomes the basis, the anchor for Once we know what is valuable to us, these values becomes the basis, the anchor for Once we know what is valuable to us, these values becomes the basis, the anchor for Once we know what is valuable to us, these values becomes the basis, the anchor for Once we know what is valuable to us, these values becomes the basis, the anchor for Once we know what is valuable to us, these values becomes the basis, the anchor for Once we know what is valuable to us, these values becomes the basis, the anchor for Once we know what is valuable to us, these values becomes the basis, the anchor for
a	o fulfill Human Aspirations, what are necessary) Both values and skills b) Values) Skills d) None of these
in A c	Which the following are the encompassing principles underlying the successful implementation of value education? A) Conviction B) Connection C) Critical thinking D) Commitment hoose the most appropriate answer from the options given below: A) A, C and D only b) B, C and D only c) A, B and D only d) None of these
•	Value and skills should go hand in hand

c) Cannot tell d) None of these

b) False

a) True

7.	Are the content of self a) Program	explorationb) Desire	c) Both a and b	d) None
8.	Human life is lived at for a) Nature	our levels individual, b) Nurture	Family, Society and c) World	d) Universe
9.	Any course content on a) Universal	value education needs b) Rational	to be c) Natural	d) All of these
10.	Value education enable a) To understand our no b) Visualize our goals of c) Indicate the direction d) All of the above	eeds correctly		·
11.	Harmony should be ma a) Between body and li b) Between self and so c) Between life and env d) All of these	fe ciety		
12.	I being the a) does, seer and Enjoy c) seer	er	b) doer d) enjoyer	
13.	Which of the following a) Knowing	is NOT response of t b) Assuming	he self? c) Recognizing	d) Preconditioning
14.	Activities of self (I) are a) Happiness c) Desire, thought and		b) Prosperity d) None	
15.	The requirement of bod a) Desire	y is right utilization a b) Protection	nd nurturing c) Thought	d) Expectation
16.	The is an instruma) I, Body	b) Body, I	c) Both a and b	d) None
17.	The activity of desire, t a) Body	hought and expecting b) Health	together is called as c) Imagination	d) Future
18	Imaging is with a) Continuous	time b) Discontinuous	c) Random	d) Different
19.	Where there is harmony a) Swasthya	y among the parts of the b) Sanyam	he body it is known as c) Prosperity	d) None
20.	Knowing means having a) Assumption c) Right feeling	; the	b) Right understand d) None	ing
21.	Harmony should be ma a) Between body and li b) Between self and soc c) Between life and env d) All of these	fe ciety		

22.	The foundational value a) Respect	e in relationship is b) Love	c) Trust	d) Glory
23.	Ensuring right understa a) Care	anding and feeling in the b) Affection	e others is called c) Gratitude	d) Guidance
24.	Harmony in the family a) Society	is the building block for b) Individual	or harmony in the c) Friend	d) Relative
25.	The total numbers of fe a) 5	b) 10	onship c) 9	d) 8
26.	Comprehensive human a) Co-existance	goal is right understan b) Happiness	ding prosperity, trust c) Abhay	(fearlessness) and d) None
27.	There is justice in relata a) Mutual fulfillment		c) Freedom	d) None
28.	The extension of family a) Self	y is b) Body	c) Society	d) Nature
29.	The feeling of relatedness a) Love	ess to all human beings b) Affection	is called c) Gratitude	d) Respect
30.	Acceptance of excellen a) Reverence	ce in others is called b) Glory	c) Gratitude	d) Guidance
31.	All the units of nature of a) Two	can be classified into _ b) Three	orders c) Four	d) Six
32.	Which of the following a) BIO	g does not form an order b) Animal	er in nature? c) Consciousness	d) Human
33.	Which of the following a) Material units have of b) Material units have to c) Material units have of fulfilling d) None of the statement	only two kinds of active hree kinds of activities only four kinds of active	assuming, recognizing	ng and fulfilling
34.	Which of the following a) There is inter connect b) There is recyclability c) There is struggle for d) There is mutual fulfi	etedness in nature y and self regulation in survival in nature	nature	
35.	According to quantity, a) Bio order >> Physics b) Animal order >> Bio c) Physical order >> Bio d) None of the above	al order >> Animal ord o order >> Physical ord	er >> Human order er >> Human order	in nature
36.	What are the fundamen a) Plants and Animals c) Rocks and minerals	•	b) Air and water d) All of these 4 - 3 of 4	

37.	The third order of natu a) Material order	re is b) Animal order	c) Plant order	d) Human order			
38.	The activities in human a) Composition	n body are b) Decomposition	c) Respiration	d) All of these			
39.	The systems in nature a) Cyclic c) Both a and b	are	b) Mutually fulfilled) None of these	ing			
40.	The natural characterisa) Perseverance	tics/Svabhava of a hur b) Bravery	man being are c) Generosity	E			
41.	The only effective way a) Knowledge c) Ethical competence	to ensure professiona	ethics is by developing b) Ethical conduct d) Professional activities				
42.	How does unethical pra a) Through skills c) Through practical	actices in various profe	essions can be resolv b) Through knowled) Via right unders	edge			
43.	What provides clear gragmented human soca) Humanistic educations (c) Profession	iety and a universal hu					
44.	The right understandidefinitiveness of human a) Ethical Human cond c) Policy	n conduct. What is this		enables us to identify the			
45.	Primary step to move among humans and the a) Do practical		alternative is to dev	yelop the right understanding y d) Teach others			
46.	The right understandin a) Samadhan	g helps us identify the b) Samridhi	comprehensive hum c) Sah-astitva	an goal in terms of d) All of these			
47.	The humanistic educa continuous	tion will facilitate the	e process of self ex	ploration which will lead to			
Jananan Janananan	a) Education	b) Self evolution	c) Development	d) People friendly			
48.	The values of human ba) Nine	eing can be enumerate b) Thirty	ed as c) Eighteen	d) Twenty four			
49.	Which of the following a) Kindness	g is not a characteristic b) Competency	of professionalism? c) Morality	d) Complacency			
50.	There are six character a) Ethical	istics of a professional b) Emotional	style which is not a c) Responsible	professional style? d) Intellectual.			

* * * * *

BUHK408

USN												Question Paper Version: B
-----	--	--	--	--	--	--	--	--	--	--	--	---------------------------

Fourth Semester B.E. Degree Examination, June/July 2024 Universal Human Values Course

		Univer	sai Huma	in Values Co	ourse						
Ti	me:	1 hr.]			[Max. Marks: 50						
		INST	RUCTIONS	TO THE CAN	DIDATES						
	1.	Answer all the fifty questions, each question carries one mark.									
	2.	Use only Black ball po	int pen for wri	ting / darkening th	e circles.						
	3.	For each question, after	er selecting yo	our answer, darke	en the appropriate circle						
		corresponding to the s									
	4.	Darkening two circles for	- \/\	<i>~</i>)							
	5.	_			OMR sheets are strictly						
		prohibited.			31.22. 31.000 3 2.0 342.002						
		promoted.									
	TI	1 00 1:	<u> </u>	1 41: : 1 1 1	·						
1.		ne only effective way to ens Knowledge	ure professiona	b) Ethical conduct	•						
		Ethical competence		d) Professional ac							
2.	Но	ow does unethical practices	in various profe	essions can be resolv	ved						
		Through skills		b) Through knowl	•						
	c)	Through practical		d) Via right under	standing						
3.		hat provides clear guidance gmented human society an			to the development of an un-						
		Humanistic education	a a umversar na	b) Humanistic cor	estitution						
The state of the s	<u>c)</u>	Profession		d) Ethical Human	conduct						
4.	de	finitiveness of human cond		s called?	enables us to identify the						
		Ethical Human conduct Policy		b) Valuesd) Utility values							
5.	Pr	•		, ,	velop the right understanding						
		Do practical		b) Remain calm							
	c)	Live accordingly		d) Teach others							
6.		ne right understanding helps Samadhan b) Sa	s us identify the imridhi	comprehensive hum c) Sah-astitva	nan goal in terms of d) All of these						

7.	The humanistic educate continuous a) Education	tion will facilitate the b) Self evolution	c) Development	ploration which will lead to d) People friendly
8.	The values of human be a) Nine	eing can be enumerated b) Thirty	d as c) Eighteen	d) Twenty four
9.	Which of the following a) Kindness	is not a characteristic b) Competency	of professionalism? c) Morality	d) Complacency
10.	There are six characteria) Ethical	istics of a professional b) Emotional	style which is not a property contact of the style which is not a property contact the style which is not a style which it is not a style which is not a style which it is not a	professional style? d) Intellectual.
11.	All the units of nature of a) Two	can be classified into _ b) Three	orders c) Four	d) Six
12.	Which of the following a)BIO	g does not form an ord b) Animal	er in nature? c) Consciousness	d) Human
13.	Which of the following a) Material units have of b) Material units have to c) Material units have of fulfilling d) None of the statement	only two kinds of active hree kinds of activities only four kinds of active	assuming, recogniz	ing and fulfilling
14.	Which of the following a) There is inter connect b) There is recyclability c) There is struggle for d) There is mutual fulfi	etedness in nature y and self regulation in survival in nature		
15.	According to quantity, a) Bio order >> Physics b) Animal order >> Bio c) Physical order >> Bio d) None of the above	al order >> Animal ord o order >> Physical ord	der >> Human order der >> Human order	
16.	What are the fundamen a) Plants and Animals c) Rocks and minerals	tal components of eco	systems? b) Air and water d) All of these	
17.	The third order of natura) Material order	re is b) Animal order	c) Plant order	d) Human order
18.	The activities in human a) Composition	body are b) Decomposition	c) Respiration	d) All of these
19.	The systems in nature a a) Cyclic c) Both a and b	are	b) Mutually fulfillind) None of these	ng
20.	The natural characterist a) Perseverance	b) Bravery	nan being are c) Generosity 3 – 2 of 4	d) All of these

21.	Harmony should be m a) Between body and l b) Between self and so c) Between life and end d) All of these	ife ciety			
22.	I being the a) does, seer and Enjoy c) seer	/er	b) doer d) enjoyer		
23.	Which of the following a) Knowing	g is NOT response of t b) Assuming		d) Preconditioning	
24.	Activities of self (I) are a) Happiness c) Desire, thought and		b) Prosperity d) None		
25.	The requirement of boo a) Desire	dy is right utilization a b) Protection	nd nurturing c) Thought	d) Expectation	
26.	The is an instruma) I, Body	ment of b) Body, I	c) Both a and b	d) None	
27.	The activity of desire, ta) Body	chought and expecting b) Health	together is called as c) Imagination	d) Future	
28.	Imaging is with a) Continuous		c) Random	d) Different	
29.	Where there is harmon a) Swasthya	y among the parts of to b) Sanyam			
30.	Knowing means having a) Assumption c) Right feeling	g the	b) Right understand d) None	ling	
31.	The purpose of value – a) Foster universal core b) Make syllabus easy c) Develop values in in d) Both A and C	e values			
32.	Self exploration uses to a) Experiential validati b) Reason c) Logical Thinking d) Theoretical concept	,	Vatural Acceptance	ii)?	
33.	Once we know what is a) Knowledge c) Society	valuable to us, these v	values becomes the bab) Actions d) None of these	sis, the anchor for	
34.	To fulfill Human Aspir a) Both values and skil c) Skills		sary b) Values d) None of these		

<i>3</i> 5.	which the following implementation of value A) Conviction B) Co choose the most appropal A, C and D only	e education? onnection C) Critical riate answer from the c	thinking D) Competions given below:	mitment
36.	Value and skills should a) True	go hand in hand b) False	c) Cannot tell	d) None of these
37.	Are the content of self a) Program	explorationb) Desire	c) Both a and b	d) None
38.	Human life is lived at fo a) Nature	our levels individual, I b) Nurture	Family, Society and c) World	d) Universe
39.	Any course content on va) Universal	value education needs t b) Rational	o be c) Natural	d) All of these
40.	Value education enables a) To understand our ne c) Indicate the direction	eeds	b) Visualize our goad) All of these	als correctly
41.	Harmony should be main a) Between body and lift c) Between life and env	fe (1)	b) Between self and d) All of these	society
42.	The foundational value a) Respect	in relationship is b) Love	c) Trust	d) Glory
43.	Ensuring right understa a) Care	nding and feeling in the b) Affection	e others is called c) Gratitude	d) Guidance
44.	Harmony in the family a) Society	is the building block fo b) Individual	r harmony in the c) Friend	d) Relative
45.	The total numbers of fee a) 5	elings in human relatio b) 10	nship c) 9	d) 8
46.	Comprehensive human a) Co-existance	goal is right understand b) Happiness	ding prosperity, trust c) Abhay	(fearlessness) and d) None
47.	There is justice in relational Mutual fulfillment	onship when there is b) Self regulation	c) Freedom	d) None
48.	The extension of family a) Self	is b) Body	c) Society	d) Nature
49.	The feeling of relatedne a) Love	ess to all human beings b) Affection	is called c) Gratitude	d) Respect
50.	Acceptance of excellence a) Reverence	ce in others is called b) Glory	c) Gratitude	d) Guidance

USN										Question Paper Version	: C
-----	--	--	--	--	--	--	--	--	--	-------------------------------	-----

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Universal Human Values Course

Time: 1 hr.] [Max. Marks: 50

INSTRUCTIONS TO THE CANDIDATES

1.	Answer all the fifty questions, each question carries one mark.									
2.	Use only Black ball point pen for writing / darkening the circles.									
3.	For each question, after selecting your answer, darken the appropriate circle									
	corresponding to the same question number on the OMR sheet.									
4.	Darkening two circles for the same question makes the answer invalid.									
5.	Damaging/overwriting, using whiteners on the OMR sheets are strictly									
	prohibited.									

1	All the units of r a) Two	nature ca	n be classifie b) Three	d into _	orders c) Four	d) Six
2	Which of the fo a)BIO	llowing	does not form b) Animal	n an orde	r in nature? c) Consciousness	d) Human
3	b) Material unitc) Material units	s have or ts have	nly two kinds three kinds	of activi	_	nd fulfilling ecognizing and fulfilling aming, recognizing and
4	d) None of the so			ot true?		
	a) There is interb) There is recycc) There is strugd) There is mutu	clability gle for s	and self regul survival in nat	lation in ure	nature	
5	According to qu	antity, w	which of the fo	ollowing	is true for the orde	ers in nature

a) Bio order >> Physical order >> Animal order >> Human order
b) Animal order >> Bio order >> Physical order >> Human order
c) Physical order >> Bio order >> Animal order >> Human order

d) None of the above

6	What are the fundamen a) Plants and Animals c) Rocks and minerals	tal components of ecos	systems? b) Air and water d) All of these			
7	The third order of natural a) Material order	re is b) Animal order	c) Plant order	d) Human order		
8	The activities in human a) Composition	body are b) Decomposition	c) Respiration	d) All of these		
9	The systems in nature a a) Cyclic	ıre b) Mutually fulfilling	c) Both a and b	d) None of these		
10	The natural characterist a) Perseverance	tics/Svabhava of a hum b) Bravery	nan being are c) Generosity	d) All of these		
11	The purpose of value – a) Foster universal core c) Develop values in in	values	b) Make syllabus ea d) Both A and C	asy		
12	Self exploration uses tv a) Experiential validation c) Logical Thinking		atural Acceptance b) Reason d) Theoretical conc	,		
13	Once we know what i	s valuable to us, these	e values becomes th	e basis, the anchor for		
	a) Knowledge	b) Actions	c) Society	d) None of these		
14	To fulfill Human Aspir a) Both values and skil c) Skills		ary b) Values d) None of these			
15	Which the following are the encompassing principles underlying the successfu implementation of value education? A) Conviction B) Connection C) Critical thinking D) Commitment choose the most appropriate answer from the options given below:					
	a) A, C and D only	b) B, C and D only	c) A, B and D only	d) None of these		
16	Value and skills should a) True	go hand in hand b) False	c) Cannot tell	d) None of these		
	Are the content of self a) Program	explorationb) Desire	c) Both a and b	d) None		
18	Human life is lived at fa) Nature	our levels individual, 1 b) Nurture	Family, Society and c) World	d) Universe		
19	Any course content on a) Universal	value education needs b) Rational	to be c) Natural	d) All of these		
20	Value education enable a) To understand our no b) Visualize our goals of c) Indicate the direction d) All of the above	eeds correctly				

21	The only effective way to ensure professional ethics is by developing a) Knowledge b) Ethical conduct c) Ethical competence d) Professional activities						
22	How does unethical practices in various professions can be resolved a) Through skills b) Through knowledge c) Through practical d) Via right understanding						
23	What provides clear guidance and policy frame work conducive to the development of an un-fragmented human society and a universal human order a) Humanistic education b) Humanistic constitution c) Profession d) Ethical Human conduct						
24	The right understanding definitiveness of human a) Ethical Human condic) Policy	n conduct. What is this		ables us to identify the			
25	Primary step to movunderstanding among ha) Do practical			to develop the right d) Teach others			
26	The right understanding a) Samadhan	g helps us identify the ob) Samridhi	comprehensive huma c) Sah-astitva	n goal in terms of d) All of these			
27	The humanistic education continuous a) Education	on will facilitate the position	rocess of self explora	ation which will lead to d) People friendly			
28	The values of human be a) Nine	eing can be enumerated b) Thirty	d as c) Eighteen	d) Twenty four			
29	Which of the following a) Kindness	is not a characteristic b) Competency	of professionalism? c) Morality	d) Complacency			
30	There are six characteria) Ethical	stics of a professional b) Emotional	style which is not a p c) Responsible	orofessional style? d) Intellectual.			
31	Harmony should be ma a) Between body and li b) Between self and soc c) Between life and env d) All of the above	fe eiety					
32	The foundational value a) Respect	e in relationship is b) Love	c) Trust	d) Glory			
33	Ensuring right understa a) Care	nding and feeling in th b) Affection	ne others is called c) Gratitude	d) Guidance			
34	Harmony in the family a) Society	is the building block for b) Individual	or harmony in the c) Friend	d) Relative			
35	The total numbers of fe a) 5	elings in human relation b) 10 Ver-C —	c) 9	d) 8			

36	Comprehensive human a) Co-existance	goal is right understan b) Happiness	ding prosperity, trust c) Abhay	(fearlessness) and d) None
37	There is justice in relati a) Mutual fulfillment	-	c) Freedom	d) None
38	The extension of family a) Self	b) Body	c) Society	d) Nature
39	The feeling of relatedness a) Love	ess to all human beings b) Affection	is called c) Gratitude	d) Respect
40	Acceptance of excellence a) Reverence	ce in others is called b) Glory	c) Gratitude	d) Guidance
41	Harmony should be ma a) Between body and li b) Between self and soc c) Between life and env d) All of these	fe eiety		
42	I being the a) does, seer and Enjoye c) seer	er	b) doer d) enjoy	
43	Which of the following a) Knowing c) Recognizing	is NOT response of th	e self? b) Assuming d) Preconditioning	
44	Activities of self (I) are a) Happiness c) Desire, thought and e	expectation	b) Prosperity d) None	
45	The requirement of bod a) Desire	b) Protection		d) Expectation
46	The is an instrum a) I, Body	b) Body, I	c) Both a and b	d) None
47	The activity of desire, the algorithm a) Body	hought and expecting t b) Health	· · ·	d) Future
48	Imaging is with t a) Continuous	time b) Discontinuous	c) Random	d) Different
49	Where there is harmony a) Swasthya	among the parts of th b) Sanyam	_	d) None
50	Knowing means having a) Assumption b) Right understanding c) Right feeling d) None	the		

BUHK408

Question Paper Version: D											USN
egree Examination, June/July 2024	. D	ech	3.T	E./F	B.I	er	iest	Sem	th S	ur	Fo

	Univ	ersal Human	Values Cou	rse	
ime	: 1 hr.]			[Max. Marks: 50	
	IN	STRUCTIONS TO	O THE CANDID	ATES	
1.	Answer all the fifty	questions, each quest	ion carries one mar	k.	
2.	Use only Black ball	point pen for writing	g / darkening the ci	rcles.	
3.	For each question,	after selecting your	answer, darken t	he appropriate circle	
	corresponding to th	e same question nu	mber on the OMR	sheet.	
4.	Darkening two circle	es for the same questi	on makes the answ	er invalid.	
5.	Damaging/overwrit	ting, using whiten	ers on the OMI	R sheets are strictly	
	prohibited.				
		$_{\wedge}$ \Diamond			
1	Harmony should be maintained in a) Between body and life b) Between self and society c) Between life and environment d) All of the above				
2	The foundational value a) Respect	e in relationship is b) Love	c) Trust	d) Glory	
3	Ensuring right understa a) Care	anding and feeling in the b) Affection	ne others is called c) Gratitude	d) Guidance	
4	Harmony in the family a) Society	is the building block f b) Individual	or harmony in the c) Friend	d) Relative	
5	The total numbers of fea a) 5	eelings in human relation b) 10	onship c) 9	d) 8	
6	Comprehensive human a) Co-existance	goal is right understar b) Happiness	nding prosperity, trus c) Abhay	t (fearlessness) and d) None	
7	There is justice in relat a) Mutual fulfillment	ionship when there is b) Self regulation	c) Freedom	d) None	
8	The extension of family a) Self	y is b) Body	c) Society	d) Nature	

9	The feeling of relatedne a) Love	ess to all human beings b) Affection	is called c) Gratitude	d) Respect		
10	Acceptance of excellence a) Reverence	ce in others is called b) Glory	c) Gratitude	d) Guidance		
11	The only effective way a) Knowledge c) Ethical competence	to ensure professional	ethics is by developing b) Ethical conduct d) Professional activities			
12	How does unethical pra a) Through skills c) Through practical	ctices in various profe	ssions can be resolved b) Through knowledge d) Via right understanding			
13	What provides clear gui un-fragmented human s a) Humanistic education c) Profession	ociety and a universal	ne work conducive to the development of an human order b) Humanistic constitution d) Ethical Human conduct			
14	The right understanding gained through self exploration also enables us to identify the definitiveness of human conduct. What is this called? a) Ethical Human conduct b) Values c) Policy d) Utility values					
15	Primary step to movunderstanding among hea) Do practical					
16	The right understanding a) Samadhan	helps us identify the ob) Samridhi	comprehensive huma c) Sah-astitva	n goal in terms of d) All of these		
17	The humanistic education continuous a) Education	b) Self evolution	c) Development	tion which will lead to d) People friendly		
18	The values of human be a) Nine	ing can be enumerated b) Thirty	l as c) Eighteen	d) Twenty four		
19	Which of the following a) Kindness	is not a characteristic b) Competency	of professionalism? c) Morality	d) Complacency		
20	There are six characteria) Ethical	stics of a professional b) Emotional	style which is not a p c) Responsible	orofessional style? d) Intellectual.		
21	All the units of nature ca) Two	an be classified into _ b) Three	orders c) Four	d) Six		
22	Which of the following a)BIO	does not form an order b) Animal	er in nature? c) Consciousness	d) Human		
23	Which of the following a) Material units have of b) Material units have the c) Material units have of fulfilling d) None of the statement	only two kinds of activities hree kinds of activities nly four kinds of activ	assuming, recognizi	ng and fulfilling		

		_	_	Demii				
24	Which of the following a) There is inter connects b) There is recyclability c) There is struggle for d) There is mutual full							
25	According to quantity, which of the following is true for the orders in nature a) Bio order >> Physical order >> Animal order >> Human order b) Animal order >> Bio order >> Physical order >> Human order c) Physical order >> Bio order >> Animal order >> Human order d) None of the above							
26	What are the fundame a) Plants and Animals c) Rocks and minerals	ntal components of eco	b) Air and water d) All of these					
27	The third order of natual Material order	re is b) Animal order	c) Plant order	d) Human order				
28	The activities in huma a) Composition	n body are b) Decomposition	c) Respiration	d) All of these				
29	The systems in nature a) Cyclic c) Both a and b	are	b) Mutually fulfilli d) None of these	ng				
30	The natural characterista) Perseverance	stics/Syabhava of a hu b) Bravery	man being are c) Generosity	d) All of these				
31	Harmony should be n a) Between body and b) Between self and so c) Between life and en d) All of the above	life ociety						
32	I being the a) does, seer and Enjo c) seer	yer	b) doer d) enjoyer					
33	Which of the following a) Knowing	g is NOT response of b) Assuming	the self? c) Recognizing	d) Preconditioning				
34	Activities of self (I) ar a) Happiness c) Desire, thought and		b) Prosperity d) None					
35	The requirement of boa) Desire	dy is right utilization a b) Protection	and nurturing c) Thought	d) Expectation				
36	The is an instru	ment of b) Body, I	c) Both a and b	d) None				
37	The activity of desire, a) Body	thought and expecting b) Health	together is called as c) Imagination	d) Future				

38	Imaging is with	time			
	a) Continuous	b) Discontinuous	c) Random	d) Different	
39	Where there is harmon a) Swasthya	y among the parts of th b) Sanyam	ne body it is known as c) Prosperity	d) None	
40	Knowing means having a) Assumption c) Right feeling	g the	b) Right understanding d) None		
41	The purpose of value - a) Foster universal cor b) Make syllabus easy c) Develop values in ir d) Both A and C	e values			
42	Self exploration uses to a) Experiential validate c) Logical Thinking		atural Acceptance b) Reason d) Theoretical conc		
43	Once we know what	is valuable to us, thes	e values becomes th	e basis, the anchor for	
	a) Knowledge	b) Actions	c) Society	d) None of these	
44	To fulfill Human Aspir a) Both values and skill c) Skills		sary b) Values d) None of these		
45	implementation of valu	ne education? onnection C) Critica	al thinking D) Com		
	a) A, C and D only	b) B, C and D only	c) A, B and D only	d) None of these	
46	Value and skills should a) True	d go hand in hand b) False	c) Cannot tell	d) None of these	
47	Are the content of self a) Program	E – exploration b) Desire	c) Both a and b	d) None	
48	Human life is lived at a Nature	four levels individual, b) Nurture	Family, Society and c) World	d) Universe	
49	Any course content on a) Universal	value education needs b) Rational	to be c) Natural	d) All of these	
50	Value education enable a) To understand our n b) Visualize our goals c) Indicate the direction d) All of the above	eeds correctly			