USN						
USIN						

BCS401

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Analysis and Design of Algorithms

Time: 3 hrs.

Max. Marks: 100

		, detail to the control of the one of the control o			
	1	Module – 1	M	L	C
Q.1	a.	Define algorithm Explain asymptotic notations Bigh oh, Big omega and Big theta notations.	08	L2	CO1
	b.	Explain the general plan for analyzing the efficiency of a recursive algorithm. Suggest a recursive algorithm to find factorial of number. Derive its efficiency.	08	L3	CO1
	c.	If t_1 (n) $\in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$ then show that t_1 (n) $+$ $t_2(n) \in O(\max \{ g_1(n), g_2(n) \})$	04	L2	CO1
	,	OR OR			
Q.2	a.	With a neat diagram explain different steps in designing and analyzing algorithm.	08	L2	CO1
	b.	Write an algorithm to find the max element in an array of n elements. Give the mathematical analysis of this non- recursive algorithm.	08	L3	CO1
	c.	With the algorithm derive the worst case efficiency for selection sort.	04	L3	CO1
	Т	Module – 2			
Q.3	a.	Explain the concept of divide and conquer. Design an algorithm for merge sort and derive its time complexity.	10	L3	CO2
	b.	Design an algorithm for insertion algorithm and obtain its time complexity. Apply insertion sort on these elements. 89, 45, 68, 90, 29, 34, 17	10	L3	CO2
Q.4	a.	Design an algorithm for Orbits and August Au			
~	4.	Design an algorithm for Quick sort. Apply quick sort on these elements. 5, 3, 1, 9, 8, 2, 4, 7.	10	L3	CO2
	b.	Explain Strassen's Matrix multiplication and derive its time complexity.	10	L2	CO2
		Module – 3			
Q.5	a.	Define AVI trees. Explain its four rotation types.	10	L2	CO3
	b.	Design an algorithm for Heap sort. Construct bottom – up heap for the list 15, 19, 10, 7, 17, 16.	10	L3	CO4
		OR			
Q.6	a.	Design Horspool's Algorithm for string matching Apply Horspool algorithm to find pattern BARBER in the test: JIM_SAW_ME_IN_A_BARBERSHOP.	10	L3	CO4
	b.	Define heap. Explain the properties of heap along with its representation.	10	12	CO3
		To representation.	10	L2	CO ₃

		Madulo 4			
Q.7	a.	Construct minimum cost spanning tree using Kruskal's algorithm for the	10	L3	CO ₄
	,	following graph.			
		Q 2 Q			
		3/4//3			
		6 6			
		4			
		8			
		370			
		Fig. 7(a)			
	h	What are Huffman trees? Construct the Huffman tree for the following data	10	L3	CO4
	b.	Character A B C D -			
		Probability 0.4 0.1 0.2 0.15 0.15			
		i) Encode the text ABAC ABAD ii) Decode the code 100010111001010			
		n) Becode the code root of the code root			
		OR			
Q.8	a.	Apply Dijkstra's algorithm to fine single source shortest path for the given	10	L3	CO4
		graph by considering A as the source vertex.			
		A 2 B 9			
		3			
		(F)			
		3			
		TO SEE			
		4 (8)			
		Fig.8 (a)			
		Define transitive closure of a graph. Apply Warshall's algorithm to	10	L3	CO4
	b.	Define transitive closure of a graph. Apply Warshall's algorithm to compute transitive closure of a directed graph.			
		compare may			
		6			
		Fig.8 (b)			
		2 of 3			

· -			Module – 5			
	Q.9	a.	Explain the following with examples.	10	L2	CO5
			i) P problem			
			ii) NP problem			
			ii) NP-Complete problem			
			iv) NP – Hard problem			
		b.	What is backtracking? Apply backtracking to solve the below instance of	10	L3	CO6
		0.	sum of subset problem.			
			$S = \{1, 2, 5, 6, 8\}$ and $d = 9$.			
		_	OR Ougens	10	L2	CO6
	Q.10	a.	Illustrate N Queen's problem using backtracking to solve 4 – Queens	10		
		b.	problem. Using Branch and Bound method solve the below instance of Knapsack	10	L3	CO6
		b.	Problem.			
			Item Weight Value			
			4 40			
			2 7 42 25			
			3 5 25 12			
			Capacity = 10			

			(3 of 3			
			(3.of 3			
			<u>`</u>			
			5			
13			APP.			

TIGNI				
USN	USN			

BCS402

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Microcontrollers

Time: 3 hrs.

Max. Marks: 100

			M	L	С
		Module 1			CO1
Q.1	a.	Explain the major design rules to implement the RISC design philosophy.	08	L2	
	b.	Differentiate between RISC and GISC processors.	04	L2	CO1
	c.	Explain ARM core data flow model, with neat diagram.	08	L2	CO1
		OR			
Q.2	a.	With the help of bit layout diagram, explain Current Program Status Register (CPSR) of ARM.	08	L2	CO1
	b.	With an example, explain the pipeline in ARM.	05	L2	CO1
	c.	Discuss the following with diagrams; (i) Von-Neuman architecture with cache (ii) Harvard architecture with TCM	07	L2	CO1
		Module – 2	-		
Q.3	a.	Explain the different data processing instructions in ARM.	08	L2	CO2
	b.	Explain the différent branch instructions of ARM.	04	L2	CO2
	c.	Explain the following ARM instructions: (i) MOV r ₁ , r ₂ (ii) ADDS r ₁ , r ₂ , r ₄ (iii) BIC r ₃ , r ₂ , r ₅ (iv) CMP r ₃ , r ₄ (v) UMLAL r ₁ , r ₂ , r ₃ , r ₄	08	L2	CO2
		OR OR			
Q.4	a.	Explain the different load store instructions in ARM.	08	L2	CO2
	b.	With an example, explain full descending stack operations.	07	L2	CO2
	c.	Develop an ALP to find the sum of first 10 integer numbers.	05	L3	CO2
		Module – 3	•		-
Q.5	a.	List out basic C data types used in ARM. Develop a C program to obtain	08	L2	CO3
Q.v		checksums of a data packet containing 64 words and write the compiler output for the above function.			
	b.	Explain the C looping structures in ARM.	08	L2	CO
	c.	Explain pointer aliasing in ARM.	04	L2	CO
		1 of 2			

Q.6 Q.7	a. b.	With an example, explain function calls in ARM.	08	T = -	
Q.7			$\perp 08$		
Q.7				L2	CO
Q.7		Explain register allocation in ARM.	07	L2	CO3
Q.7	۲.	Write a brief note on portability issues when porting C code to ARM.	05	L2	CO ₃
Q. 7		Module – 4			
	a.	Explain the ARM processor exceptions and modes waster to 11	10	L2	CO4
		exception priorities.			004
	b.	Explain the interrupts in ARM.	10	L2	CO4
		OR			004
Q.8	a.	Explain the ARM firmware suite and red hat redboot	10	T 0	~ .
	b.		10	L2	CO4
	D.	Explain the sandstone directory layout and sandstone code structure.	10	L2	CO4
0.0		Module – 5			
Q.9	a.	Explain the basic architecture of a cache memory and basic operation of a cache controller.	10	L2	CO5
					005
	b.	With a neat diagram, explain a 4 KB, four way set associative cache.	10	L2	CO.
		A 40'	10	L2	CO5
Q.10	a.	Explain the write buffers and measuring cache efficiency.			
	h	Evaluin al. 1	08	L2	CO5
	D.	Explain the cache policy:	12	L2	CO5
		Explain the cache policy: * * * * * * * * * * * * * * * * * * *			
	•				
		· · ·			
		<i>*</i>			
		2 02			
		2 of 2			

USN						Bl	IS402
	1						

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Advanced Java

Time: 3 hrs.

Max. Marks: 100

		Module – 1	M	L	C
Q.1	a.	What is Collection Framework? Explain the methods define by the collection interface.	7	L2	CO1
	b.	Demonstrate ArrayList class collection with example.	7	L2	CO1
•	c.	Explain how collections can be accessed using an iterator with example.	6	L2	CO1
		OR N			
Q.2	a.	Explain the following map classes: i) HashMap ii) TreeMap.	10	L2	CO1
	b.	What are comparators? Write a comparator program to sort accounts by last name.	10	L3	CO1
		Module – 2			
Q.3	a.	Explain the string comparison functions with suitable program.	6	L2	CO2
	b.	Explain the following built in methods with respect to StringBuffer class: i) capacity() ii) delete() iii) replace() iv) append() v) substring()	7	L2	CO2
	c.	Write a Java program that demonstrates any four constructors of string class.	7	L3	CO2
		OR			
Q.4	a.	Write a Java program to remove duplicate characters from a given string and display the resultant string.	7	L3	CO3
	b.	Explain character extraction functions in string class.	7	L2	CO2
	c.	Explain constructors in Java string builder class.	6	L2	CO2
	1	1 of 2		•	

				BI	S402
		Module – 3			
Q.5	a.	Explain the difference between AWT and Swing. What are two key features of swing and explain.	6	L2	CO3
	b.	What is JLabel class? Explain with example of any three constructors and methods of JLabel class.	7	L2	CO3
	c.	Write a Java program in swing event handling applications that creates 2 buttons ALPHA and BETA and displays the text "Alpha pressed" when Alpha button is clicked and "Beta pressed" when beta button is clicked.	7	L3	CO3
		OR A			
Q.6	a.	What is JPanel class? Explain the constructors of Jpanel class and give a suitable example.	6	L2	CO3
	b.	give a suitable example.	7	L2	CO3
	c.	What is JFrame class? Explain constructors and methods of JFrame class.	7	L2	CO3
	_	Module – 4			
Q.7	a.	Explain the life cycle of servlet.	6	L2	CO4
	b.	Write a Java servlet program to display the name, USN and total marks by accepting student detail.	7	L3	CO4
	c.	Describe the core interfaces that are provided in Javax Servlet.http package.	7	L3	CO4
		OR O			
Q.8	a.	What is JSP? Explain the various types of JSP tags with example.	10	L2	CO4
	b.	What are cookies? How cookies are handled in JSP? Write a JSP program to create and read a cookie.	10	L2	CO4
		Module – 5			
Q.9	a.	What are database drivers? Explain the different JDBC driver types.	10	L2	CO5
	b.	Describe the various steps of JDBC with code snippets.	10	L2	CO5
	1	OR			
Q.10	a.	Write any two syntax of established a connection to a database.	6	L2	CO5
	b.	What is connection pooling? Explain connection pooling with a neat diagram with snippets.	7	L2	CO5
	c.	Describe the following concepts: i) Callable statement ii) Transaction processing.	7	L2	CO5

GBGS SCHEME

USN											BCS40	3
-----	--	--	--	--	--	--	--	--	--	--	-------	---

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Database Management Systems

Time: 3 hrs.

Max. Marks: 100

	-			- 1	~
		Module – 1	M	L	<u>C</u>
Q.1	a.	Explain the types of attributes with example.	4	L2	CO1
	b.	Define database. Explain the main characteristics of the database approach.	8	L2	CO1
	c.	Show the ER diagram for an EMPLOYEE database by assuming your own entities (minimum 4) attributes and relationships, mention cardinality ratios wherever appropriate.	8	L3	CO2
		OR A			
Q.2	a.	Describe the three schema architecture.	4	L2	CO1
	b.	Explain the component models of DBMS and their interaction with the help of diagram.	8	L2	CO1
	c.	Design ER diagram for a university database by assuming your own entities (4). Mention primary key, constraints and relationships.	8	L3	CO2
		Module – 2		,	
Q.3	a.	Explain relational model constraints.	6	L2	CO1
	b.	Explain the characteristics of relations with suitable example for each.	6	L2	CO1
Q.4	а.	Considering the following schema: Sailors (sid , sname , rating , age) Boats (bid , bname , color) Reserves (sid , bid , day) Write a relational algebra queries for the following: i) Find the names of sailors, who have reserved red and a green boat. ii) Find the names of sailors who have reserved a red boat. iii) Find the names of sailors who have reserved a red or green boat. iv) Find the names of sailors who have reserved all boats. OR Explain the steps to convert the basic ER model to relational Database	8	L3	CO1
		schema.			
	b.	Explain Unary relational operations with example.	6	L2	CO1

					002
	•	Consider the maleting of the Freedom detalogo	8	L3	CO3
	c.	Consider the relation schema Employee database.			
		EMPLOYEE (Fname, Minit, Lname, SSn, Bdates, Address, Sex, Salary			
		Super SSn, Dno)			
		DEPARTMENT (Dname, <u>Dnumber</u> , Mgr_SSn, Mgr_start_date)			
		DDC/FOT (D. D.)			
		PROJECT (Pname, <u>PNumber</u> , Plocation, Dnum)			
		WORKS_ON (Essn, Pno, Hours)			
		DEPENDENT (Essn, Dependent_name, sex, Bdate, Relationship)			
		Write relational algebra queries for the following:			
		"\" P. t. " the recovered at the second wing.			
		i) Retrieve the name and address of all employees who work for the			
		'Research' department.			
		ii) List the names of all employees with 2 or more dependents.			
		iii) Find the names of employees who work on all the projects controlled			
		by department number 5			
		iv) List the names of employees who have no dependents.			
	1	Module – 3			
-	_		6	L2	CO4
Q.5	a.	What is the need for normalization? Explain second and third normal form	U	1.2	C04
		with examples.			
	h	Outline constraints in SQL.	6	L2	CO1
	b.	Outine constraints in SQL.			
			-	T. C	60.1
	c.	Identify the given Relation R(ABCDE) and its instance, check whether	8	L3	CO4
		FDS given hold or not. Give reasons.			
		i) $A \rightarrow B$ ii) $B \rightarrow C$ iii) $D \rightarrow E$ iv) $CD \rightarrow E$			
		A B C D E			
		a_1 b_1 c_1 d_1 e_1			
		$\mathbf{a}_1 \mathbf{b}_2 \mathbf{c}_1 \mathbf{d}_1 \mathbf{e}_1$			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$a_2 \mid b_3 \mid c_3 \mid d_2 \mid e_2$			
				1	
		OR .		112	CO4
Q.6	a.	What is Multivalued dependency? Explain 4NF and 5NF with suitable	6	L2	CO4
		example			
		Champion			
		a ville C 1 1 - i - C iddings for relations (scheme	6	L2	CO4
	b.	Outline the informal design guidelines for relational schema.	"		001
	c.	Consider relation R with following function dependency:	8	L3	CO4
	٠.	EMPPROJ (SSn, Pnumber, Hours, Ename, Pname, Plocation)			
		DIVIERNOJ (SSII , IAIGIIOCI , HOURS , Eliante , Florancia)			
		SSN, Pnumber → Hours,			
		SSN Ename	1		
		Pnumber → Pname, Plocation.			
		Is it 2NF? Verify? If no give reason.			
1		12 If 71AL (ACTITAL II IIO RIVE LEGISOR)			
	\perp				1
		₹			
		2 of 3			
		2 of 3			
		₹ >			
	1				
	1				
September 1	1	ht. v u.e			

7 2		Module – 4	10	1.2	CO	12
' '	1.	Consider the following schema for a company database:	10	L3	CO	3
		Employee (FName, LName, SSn, Adderss, Sex, Salary, Dno,				
		Super SSn)				
		Department (Dname, Dnumber, mgr_SSn, mgr_st_date)				
		Project (Pname, Pnumber, Plocation, Dnum)				
		WORKS_on (Essn , Pno , Hours)				
		DEPENDENT (Essn, Dependent name, Sex, Bdate, relationship).				
		Write the SQL queries for the following:				
		i) List the names of managers who have atleast one dependent (use				
		correlated nested).				
		ii) Retrieve the name of each employee who has a dependent with the				
		same first name and is the same sex as the employee.				
		iii) For each project retrieve the project number, project name and the				
		number of employees who work on that project.				
		iv) Retrieve the SSN of all employees who work on project number 1, 2				
		or 3. (Use 1N).				
		v) Find the sum of the salaries of all employees of the Research department as well as maximum salary, minimum salary, average				
		department as well as maximum sutary, minutes as y				
		salary in this department.				
		1 10 Descripto with an example	10	L	2 (COS
	b.	Why concurrency control is needed? Demonstrate with an example.	1	_	_ `	
			1			
		OR	10	T	2 (CO
Q.8	a.	Consider the following schedule. The actions are listed in the order they are	10		3 (JU.
		scheduled and prefixed with the transaction name.				
		$S1 \cdot T1 \cdot R(X) \cdot T2 \cdot R(X) \cdot T1 \cdot W(Y) \cdot T2 : W(Y) \cdot T1 \cdot R(Y) \cdot T2 : R(Y) \cdot T2 \cdot R(Y) \cdot$				
		S2:T3:W(X), T1:R(X), T1:W(Y), T2:R(Z), T2:W(Z), T3:R(Z)				
		For each schedule answer the following:				
		What is the precedence graph for the schedule?				
		ii) What is the precedence graph for the schedule? Is the schedule conflict_serializable? If so what are all the conflicts				
		equivalent serial schedules?				
		iii) Is the schedule view serializable? If so what are all the view equivalent				
		serial schedules?				
		SQL 11 managhar	2 1	0	L3	CC
	b.	Explain triggers with example write a trigger in SQL to call a procedur	6 1	U		C
		"Inform_Supervisor" whenever an employees salary is greater than the	e			
		salary of his or her direct supervisor in the COMPANY database.			1	
	0	Module - 5				
Q.9	a	Describe the two - phase locking protocol for concurrency control provide	le	10	L2	C
Q.J	l a.	example to illustrate how it ensures serializability in transaction schedule.				
		example to mustrate now it ensures per interest of				
	+-	E li de Cartairies a CNOCOL quetem		10	L2	C
	b	Explain the characteristics of NOSQL system.		10		~
						1
		OR		10		1
Q.10) a	Explain binary locks and shared lock with algorithm.		10	L2	(
~						
	b	. Explain MongoDB dâta model, CRUD operations and distributed systematical explains and distributed systemat	em	10	L2	(
	"	characteristics.				
		Characteristics.				
		, Venna				

USN											BCS405	E
-----	--	--	--	--	--	--	--	--	--	--	--------	---

Fourth Semester B.E/B.Tech. Degree Examination, June/July 2025 **Graph Theory**

Time: 3 hrs.

	т		7.7	T	C
		Module – 1	M	L	C
1	a.	Consider the following graph G Fig.Q1(a). Write:	6	L3	CO ₁
		i) Open walk which is not a trail			
		ii) Trial which is not a path			
		iii) Closed walk which is a cycle			
		iv) Closed walk which is a circuit but not a cycle			
		v) Closed walk neither circuit nor cycle			
		vi) Path of length 4.			
		V ₁			
		N2 V4 V5			
		7			
	ļ.,	Fig.Q1(a)	7	L1	CO1
	b.	Define bipartite graph and complete bipartite graph can a bipartite graph have	,	Li	001
	-	odd length cycles. Explain. Is there a simple graph with 1, 1, 3, 3, 3, 4, 6, 7 as the degree of vertices?	7	L3	CO1
	c.		,		COT
		Explain. OR			
		Define spanning subgraph and induced subgraph. Draw a complete graph G	6	L1	CO1
2	a.	Define spanning subgraph and induced subgraph. Diawa complete graph	U		
		with 5 vertices and spanning subgraph and induced subgraph of G.	7	L2	CO2
	b.	Verify the following:	,		002
		i) Fig.Q2(b)(i) and Fig.Q2(b)(ii) are isomorphic.			
		na V1 V5			
		45 410 V6			
		(4) (4) V ₁ V ₁ V ₁₀			
		ug 10			
		77			
		V ₃ V ₃			
		Fig.Q2(b)(ii)			
		ii) Fig.Q2(b)(iii) and Fig.Q2(b)(iv) are not isomorphic.			
		1) 1 1g. (2(0)(11)			
		Fig O2(h)(iv)			
		Fig.Q2(b)(iii) Fig.Q2(b)(iv)	7	L3	CO2
	c.	A simple graph with n vertices and k components can have at most	'	13	
		(n-k)(n-k+1)/2 edges.			
		1 of 3			

a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12.					BCS4	105B
a. By specifying the walk draw two Euler graphs and unicursal graph. b. If all the vertices in a connected graph G are of even degree, then show that G T L3 CO2 is Eulerian. c. Define and find union, intersection and ring sum of K3 and K3,3. 7 L1 CO2 Ba Define reflexive relation, symmetric relation and transitive relation CO1 L2 CO1 b. Distinguish between Hamiltonian graph and Eulerian graph with two T L2 CO2 examples by specifying the walk. c. Prove that a connected graph G has an Euler circuit if and only if G can be T L3 CO2 decomposed into edge-disjoint cycles. b. Prove that a tree with n vertices has n-1 edges. b. i) Prove that a graph is confidered if and only if it has aspanning tree T L3 CO2 fig.Q5(b)(ii) Fig.Q5(b)(ii) Fig.Q5(b)(ii), Fig.Q5(b)(ii), Fig.Q5(b)(iii). Fig.Q5(b)(iii) Fig.Q5(b)(iii) Fig.Q5(b)(iii) Fig.Q5(b)(iii) Fig.Q5(b)(iii) c. Show that for any graph G, the vertex connectivity cannot exceed the edge connectivity and edge connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G OR a. Prove that a connected graph G is a tree if and puly if there is one and only 6 L3 CO2 Define a tree and forest Prove that with two of more vertices in a tree, there T L1 CO1 Fig.Q6(c) Module 4 a. i) State Kufrajowski's theorem affoldraw Kuratowski's two graphs ii) Draw planar graphs of : i) Order S and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 T L3 CO2 Fig.Q7(c)(i) Fig.Q7(c)(ii) and Fig.Q7(c)(ii).			Module – 2	6	1.2	COL
b. If all the vertices in a connected graph G are of even degree, then show that a connected graph in the provided transitive relation in the provided provided provided transitive relation in the provided provided provided transitive relation in the provided provi	3	a.	By specifying the walk draw two Euler graphs and unicursal graph.			
c. Define and find union, intersection and ring sum of Kranind Ks. J. J. L. Col. a. i) Define reflexive relation, symmetric relation and transitive relation ii) Draw a symmetric graph and complete asymmetric graph. b. Distinguish between Hamiltonian graph and Eulerian graph with two examples by specifying the walk. c. Prove that a connected graph G has an Euler circuit if and only if G can be decomposed into edge-disjoint cycles. Module - 3 a. Prove that a graph is connected if and only if it has a spanning tree ii) Identify cut vertices if any in graph Fig.Q5(b)(ii) Fig.Q5(b)(ii), Fig.Q5(b)(iii) Fig.Q5(b)(iii) Fig.Q5(b)(ii) Fig.Q5(b)(iii) Fig.Q5(b)(iii) c. Show that for any graph G, the vertex connectivity cannot exceed the edge connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G A. Prove that a connected graph G is a tree if and poly if there is one and only one path between every pair of vertices. b. Define a tree and forest Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Fig.Q6(c) Fig.Q6(c) Fig.Q6(c) Fig.Q7(c)(i) Fig.Q6(c) To L3 CO2 Fig.Q6(c) Fig.Q7(c)(ii) To L3 CO2 Fig.Q7(c)(ii) To L3 CO3 To L4 CO3 To L5 CO4 L5 CO5 L5 CO5 C Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii).		b.	If all the vertices in a connected graph G are of even degree, then show that	·		
a. i) Define reflexive relation, symmetric relation and transitive relation ii) Draw a symmetric graph and complete asymmetric graph. b. Distinguish between Hamiltonian graph and Eulerian graph with two 7 L2 CO2 examples by specifying the walk. c. Prove that a connected graph G has an Etler circuit if and only if G can be decomposed into edge-disjoint cycles. Module - 3 a. Prove that a tree with n vertices has n-1 edges. b. i) Prove that a graph is connected if and only if it has a spanning tree i) Identify cut vertices if any in graph Fig Q5(b)(ii) Fig Q5(b)(iii), Fig Q5(b)(iii), Fig Q5(b)(iii), Fig Q5(b)(iii) c. Show that for any graph G, the vertex connectivity cannot exceed the edge connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G OR a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig Q6(c). Fig Q6(c) Fig Q6(c) Fig Q7(c)(ii) Fig Q7(c)(ii). 7 L2 CO2 Fig Q7(c)(ii) Fig Q7(c)(ii).		c.		7	LI	COZ
a. i) Define reflexive relation, symmetric relation wild transitive relation i) Draw a symmetric graph and complete, asymmetric graph. b. Distinguish between Hamiltonian graph sand Eulerian graph with two of the examples by specifying the walk. c. Prove that a connected graph G has an Euler circuit if and only if G can be decomposed into edge-disjoint cycles. Module - 3 a. Prove that a graph is connected if and only if it has a spanning tree ii) Identify cut vertices if any in graph Fig.Q5(b)(ii) Fig.Q5(b)(iii). Fig.Q5(b)(iii). Fig.Q5(b)(iii). Fig.Q5(b)(iii) Fig.Q5(b)(iii) Fig.Q5(b)(iii) Fig.Q5(b)(iii) Cc. Show that Tor any graph G, the vertex connectivity cannot exceed the degree of the vertex with the smallest degree in G A. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest: Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Module 4 a. i) State Kuralowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO2 Fig.Q7(c)(ii). Fig.Q7(c)(ii) Fig.Q7(c)(ii).						COL
ii) Draw a symmetric graph and complete asymmetric graph. b. Distinguish between Hamiltonian graph and Eulerian graph with two of L2 CO2 examples by specifying the walk. c. Prove that a connected graph G has an Euler circuit if and only if G can be decomposed into edge-disjoint cycles. Module - 3 a. Prove that a tree with n vertices has n Euler circuit if and only if G can be decomposed into edge-disjoint cycles. Module - 3 a. Prove that a graph is conflected if and only if it has a spanning tree ii) Identify cut vertices if any in graph Fig.Q5(b)(ii), Fig.Q5(b)(iii), Fig.Q5(b)(iii). Fig.Q5(b)(iii). Vi V3 V2 Fig.Q5(b)(iii) Fig.Q5(b)(iii) Fig.Q5(b)(iii) Fig.Q5(b)(iii) Fig.Q5(b)(iii) Fig.Q5(b)(iii) A Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Fig.Q6(c) Fig.Q7(c)(ii) Fig.Q7(c)(ii) Fig.Q7(c)(ii) Fig.Q7(c)(iii) Fig.Q7(c)(iii)	4	a.		6		1
b. Distinguish between Hamiltonian graph and Eulerian graph with two examples by specifying the walk. c. Prove that a connected graph G has an Euler circuit if and only if G can be decomposed into edge-disjoint cycles. Module - 3 a. Prove that a tree with n vertices has n-1 edges. b) i) Prove that a graph is confected if and only if it has a spanning tree ii) Identify cut vertices if any in graph Fig.Q5(b)(ii), Fig.Q5(b)(iii), Fig.Q5(b)(iii). Fig.Q5(b)(iii) Cc. Show that for any graph G, the vertex connectivity cannot exceed the degree of the vertex with the smallest degree in G OR a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b) Define a tree and forest: Prove that with two of more vertices in a tree, there are at last two pendent vertices. c) Show that A Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Module 4 a. i) State Kufratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b) Show that a connected planar graph with n vertices and e-edges has e-n+2 regions. c. Draw the geometric dual of graphs Fig.Q7(c)(ii) and Fig.Q7(c)(ii). Fig.Q7(c)(ii) Fig.Q7(c)(ii) Fig.Q7(c)(ii) Fig.Q7(c)(iii)						
c. Prove that a connected graph G has an Euler circuit if and only if G can be decomposed into edge-disjoint eyeles. Module – 3 a. Prove that a tree with n vertices has n-1 edges. b. i) Prove that a graph is conflected if and only if it has a spanning tree ii) Identify cut vertices if any in graph Fig.Q5(b)(ii), Fig.Q5(b)(iii). Fig.Q5(b)(iii). c. Show that for any graph G, the vertex connectivity cannot exceed the edge connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G OR a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest: Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Module 4 a. i) State Kufatowski's theorem and diraw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 regions. c. Draw the geometric dual of graphs Fig.Q7(e)(i) and Fig.Q7(e)(ii). 7 L2 CO2		b.	Distinguish between Hamiltonian graph and Eulerian graph with two	7	L2	CO2
a. Prove that a tree with n vertices has n-1 edges. b. i) Prove that a graph is connected if and only if it has a spanning tree ii) Identify cut vertices if any in graph Fig.Q5(b)(i). Fig.Q5(b)(ii). Fig.Q5(b)(ii) C. Show that for any graph G, the vertex connectivity cannot exceed the edge connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G. OR a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Module 4 a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO2 of the graph Fig.Q7(c)(ii) Fig.Q7(c)(ii) Fig.Q7(c)(ii) Fig.Q7(c)(iii)		c.	Prove that a connected graph G has an Euler circuit if and only if G can be	7	L3	CO2
a. Prove that a tree with n vertices has n-1 edges. b. i) Prove that a graph is comficted if and only if it has a spanning tree ii) Identify cut vertices if any in graph Fig.Q5(b)(ii), Fig.Q5(b)(iii), Fig.Q5(b)(iii) c. Show that for any graph G, the vertex connectivity cannot exceed the edge connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(e). Fig.Q6(c) Fig.Q7(c)(i) Fig.Q7(c)(ii) Fig.Q7(c)(iii) 7 L2 CO2						
b. i) Prove that a graph is confiected if and only if it has a spanning tree ii) Identify cut vertices if any in graph Fig.Q5(b)(i),Fig.Q5(b)(ii), Fig.Q5(b)(ii). c. Show that for any graph G, the vertex connectivity cannob exceed the edge connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G OR a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Module 4 a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO2 Fig.Q7(c)(i) Fig.Q7(c)(ii) And Fig.Q7(c)(ii). 7 L2 CO2					13	COL
ii) Identify cut vertices if any in graph Fig.Q5(b)(ii), Fig.Q5(b)(iii), Fig.Q5(b)(iii). C. Show that for any graph G, the vertex connectivity cannot exceed the edge connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G. OR a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Module 4 a. i) State Kufratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO2	5_	-				
c. Show that for any graph G, the vertex connectivity cannot exceed the edge connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G OR a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two or more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Module 4 a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO2		b.	ii) Identify cut vertices if any in graph Fig.Q5(b)(i),Fig.Q5(b)(ii),	7	1	
c. Show that for any graph G, the vertex connectivity cannot exceed the edge connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G OR a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two or more vertices in a tree, there are at last two pendent vertices. C. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Module 4 a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO2			V_2 V_3 V_4 V_6			
connectivity and edge connectivity cannot exceed the degree of the vertex with the smallest degree in G OR a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two or more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Module 4 a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO				7	12	CO2
a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c)		c.	Show that for any graph G, the vertex connectivity cannot exceed the edge		L3	COS
a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Module 4 a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO2						
a. Prove that a connected graph G is a tree if and only if there is one and only one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Nodule - 4			with the smallest degree in G			
one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Module 4 a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO2						
one path between every pair of vertices. b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Module 4 a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO2	6	a.	Prove that a connected graph G is a tree if and only if there is one and only	6	L3	CO2
b. Define a tree and forest. Prove that with two of more vertices in a tree, there are at last two pendent vertices. c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). The spanning tree is a spanning tree in the spanning tree i			one path between every pair of vertices.			
c. Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees of the graph Fig.Q6(c). Fig.Q6(c) Module -4 a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO		b.	Define a tree and forest. Prove that with two or more vertices in a tree, there	7	L1	CO1
a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii).		C	Show that a Hamiltonian path is a spanning tree. Draw all the spanning trees	7	L2	CO2
Fig.Q6(c) Module -4 a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L.3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO		C.				
a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO			of the graph rig. (o(c).			
a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO						
a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO						
a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO						
a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO			$\sim \sim $			
a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO						
a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO						
a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO			Fig,Q6(c)			
a. i) State Kuratowski's theorem and draw Kuratowski's two graphs ii) Draw planar graphs of: i) Order 5 and size 8 ii) Order 6 and size 12. b. Show that a connected planar graph with n vertices and e-edges has e-n+2 regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO Fig.Q7(c)(i) Fig.Q7(c)(ii)			Module ₹4			
b. Show that a connected planar graph with n vertices and e-edges has e-n+2 c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO Fig.Q7(c)(i) Fig.Q7(c)(ii)	_	1	State Kuratowski's theorem and draw Kuratowski's two graphs	6	L1	
b. Show that a connected planar graph with n vertices and e-edges has e-n+2 7 L3 CO regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO	7	a.	Draw planer graphs of: i) Order 5 and size 8 ii) Order 6 and size 12.		L3	CO2
b. Show that a connected planar graph with it vertices and c edges has regions. c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii). 7 L2 CO				2 7	L3	CO2
c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii).		b.		- '		
c. Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(ii).			regions.	-	T '	2 CO2
Fig.Q7(c)(ii)		C.	Draw the geometric dual of graphs Fig.Q7(c)(i) and Fig.Q7(c)(11).	'	L.	2 003
		5.				
			Fig O7(e)(ii)			
2 of 3						
			2 01 3			

				BCS	405B
0		OR			
8	a.	i) Show that Kuratowski's first graph K ₅ isnon planar	6	L2	CO ₂
		ii) Show that every connected simple graph G contains a vertex of degree less than 6.		L2	CO2
	b.	If G is a simple planar graph with at least three vertices then show that:	7	L3	CO2
_	c.	(i) $e \le 3n - 6$ ii) $e \le 2n - 4$ if G is triangle free. Write down adjacency matrix, path matrix and circuit matrix for the given	7	L2	CO3
		graphs Fig.Q8(c)(i) and Fig.Q8(c)(ii). V1 V2 V3 Fig.Q8(c)(i) Fig.Q8(c)(ii)	,	LZ	COS
		Module – 5		L3	CO2
9	a.	Prove that a graph with at least one edge is 2-chromatic if and only if it has no circuits of odd length.	6		
	b.	Define chromatic number. Find chromatic polynomial of C ₄ of length 4.	7	L2	CO3
	c.	State and prove 5 colour problems.	7	L3	CO2
10	a.	Prove that every connected simple planner graph is 6-colourable.	6	L3	CO3
	b.	Define matching and complete matching. Find the two complete matching of: C1 C2 S2 S3 S4 Fig.Q10(b)	7	L1	CO2
	c.	Define covering and minimal covering of a graph. Obtain two minimal covering from the given graph. Fig.Q10(c)	7	L2	CO3

USN					
ODI					

BBOC407

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Biology for Engineers (CSE)

Time: 3 hrs.

Max. Marks: 100

		Module 1	M	L	С
Q.1	a.	Define Cell. Explain function and structure of cell.	7	L2	CO1
	b.	List the various hormones and write the functions of them.	7	L2	CO1
	c.	Demonstrate the properties and function of lipids.	6	L3	CO1
		OR			
Q.2	a.	What are stem cells? Discuss the function of stem cells.	7	L2	CO1
	b.	List the vitamins and write the functions of them.	7	L2	CO1
	c.	Demonstrate the properties and function of nuclic acids.	6	L3	CO1
		Module – 2			
Q.3	a.	Define Biomolecule. List the classification of biomolecules with each one example in short in engineering application.	7	L2	CO2
	b.	Explain the applications of enzymes in biosensors and bio bleaching.	7	L2	CO2
	c.	What is DNA finger printing? Explain the process involved in DNA finger printing.	6	L3	CO2
	,	ØR ØR			
Q.4	a.	Explain the properties of cellulose as an effective water filter.	7	L2	CO2
	b.	List the properties of PHA and explain the engineering applications of PHA.	7	L2	CO2
	c.	Demonstrate whey as a protein.	6	L3	CO2
		Module – 3			
Q.5	a.	Define ECG. Explain in detail.	7	L2	CO3
	b.	How kidney will be used as a filteration system, explain with one type of dialysis example.	7	L2	CO3
	1	Illustrate Brain as a CPU system.	6	L3	CO3

				вво	C407
		OR			
Q.6	a.	Briefly discuss the various bio engineering solutions for muscular dystrophy.	7	L2	CO3
	b.	Explain robotic arms for Prosthetic device.	7	L2	CO3
	c.	Illustrate eye as a camera system.	6	L3	CO3
		Module - 4			
Q.7	a.	Compare the process of photo synthesis to the functioning of photo synthesis to the functioning of photovoltaic cells.	7	L2	CO4
	b.	Super hydrophobic and self cleaning surfaces. Explain in detail.	7	L2	CO4
	c.	Write a note on Lotus leaf effect.	6	L3	CO4
	1	OR UPOG UPDG	-	7.0	CC.
Q.8	a.	Compare HBOC's and PEC.	7	L2	CO4
	b.	How shark skin and swim suits are using biological concepts.	7	L2	CO4
٢	c.	Write a note on GPS technology.	6	L3	CO4
		Module – 5	_		005
Q.9	a.	Explain in detail flow AI will be used in all disease diagnosis.	7	L2	CO5
	b.	Demonstrate bioremediation and biomining.	7	L3	CO5
	c.	Explain muscular system as a scaffold.	6	L2	CO5
0.10		OR /		1	00.
Q.10	a.	Explain in detail electrical nose in food science.	7	L2	CO5
	b.	Demonstrate bioprinting technique list all of them.	7	L3	CO5
	c.	Explain DNA origami and Bio computing.	6	L2	CO5
		2 of 2			

	5	362 26r		BUH	K408/22BD47
USN			Q	uestion Pape	r Version: A
Fourt	th Semester B.E./B.7				n, June/July 2025
	Ur	niversal H	uman Va	alues	
Time	: 1 hr.]			6	[Max. Marks: 50
	INS	FRUCTIONS	то тне с	CANDIDATI	ES
1.	Answer all the fifty qu	estions, each qu	estion carrie	s one mark.	
2.	Use only Black ball po	oint pen for wri	ting / darken	ing the circles	
3.	For each question, af	ter selecting yo	ur answer,	darken the a	ppropriate circle
	corresponding to the	same question	number on	the OMR she	et.
4.	Darkening two circles	for the same que	estion makes	the answer in	valid.
5.	Damaging/overwritin	g, using whit	eners on t	he OMR sh	eets are strictly
	prohibited.	<u> </u>			
1.	Human values are essentia) living in harmony witb) making life easy c) living with friends and) making money to full	h self, each other	and nature		•
2.	"Knowing" means having a) Self exploration b)		ing c) evalu	nation d)	none of these
3.	Each human being is co-ea) self, body b)	existance of the _ cost, value	c) and mind,	body d)	only body
4.	Selecting and desiring are a) body b)	activities of self	c) materia	ıl d)	mind
5.	The problems in our relat a) assumption b)	ionship with vari misunderstandin			negligence
6.	Value education ensures a) right understanding an c) right and wrong	and d right feeling	, -	man being. lue and moral th and needs	
7.	Process of value education a) Self declaration (b)		c) Self	d)	None of these

The activity of desires, thoughts and expecting together is called as a) Imagination b) Interaction c) Conscious Ver - A - 1 of 5

d) None of these

9.	Any entity that has that a) Material Entity	ne activity of recognises b) Physical	zing and fulfillment of c) Physical identit	
10.	An individual people a) more responsible c) more powerful	aspiring for the univ	versal human order wil lly b) more rich d) more well - trav	
11.	Values important for a) Aggression	the relationship are ib) Competition	nany ; they may includ c) Integrity and char	de racter d) Arrogance
12.	Happiness means a) To be happy alwc) To be joyful	rays 2007	b) To be in the sta d) To live happily	_
13.	"Samridhi" means a) fulfillness	b) Prosperity	c) Sacrifice	d) Joy
14.	Value education lead a) Harmony	s a human being to b) Peace	c) Prosperity	d) (a) & (b)
15.	It is the first level of a) Individual	living b) Family	c) Society	d) Nature
16.	Expression of though a) Behavior	t is in the form of b) Work	c) Realization	d Behavior & Worl
17.	Our participation at day Behavior	lifferent levels in the b) Values	larger order is known c) Efforts	asd) None of these
18.	Values are the outcor a) Behavior	ne of realization and b) Work	which are always or Understanding	ays definite. d) Beliefs
19.	It is the fourth level of a) Individual	of living b) Family	c) Society	d) Nature
20.	Value education help a) Goals	s us to correctly iden b) Aspirations		d) All of these
21.	A harmonious world a) Home, Family, S c) School, Home, C	ociety, Country		nily, Society , Existence
22.	To fulfill human aspir a) Both values and sk c) Skills		ecessary. b) Values d) None of these	
23.	Values are the outcom a) Indefinite	b) Definite	understanding, which c) Constant - A – 2 of 5	are always d) Equilibrium

24.				tive of caste, creed,
	nationalities, religion, a) Rational	b) Universal	c) Leading to harmo	ny d) Consciousness
25.	The first dimension of		Co	
	a) Behavior	o) Work	c) Thought	d) Realization
26.	Developed Nations are			<u> </u>
	a) Prosperity b	o) Wealth	c) Happiness	d) Health
27.	The Third dimension o		<u> </u>	
	a) Behavior b	o) Work	c) Thought	d) Realization
28.	What is the emotional s			D 441 04
	a) Happiness b	o) Joy	c) Pleasure	d) All of these
29.	When we set our goal	in right direction wit	h the help of right ur	nderstanding, it is called
	a) Skill domain	o) Value domain	c) Prosperity	d) Development
30.		nains : Value domain	and skill domain. W	hich of the following is
	a) The value domain of	leals with the underst	anding part, while ski	ill domain deals with
	the learning part. b) The value domain of	deals with learning pa	rt, while skill domain	deals with the
	understanding part.		000	
		licts with skill domain e part of skill domain		
	· · · · · · · · · · · · · · · · · · ·			,
31.		y within myself. b) Happiness	c) Satisfaction	d) Pleasure
			<i>C</i> *	.,
32.	Prosperity can be achie a) Relationship	ved by	b) Physical facility	v only
	c) Right understanding	with physical facility		, 6
33.	Happiness is the state of		(
33. Á		Harmony	c) Satisfaction	d) Pleasure
24	Continuous happiness a	and prosperity are the		
34.	a) Impractical thought	ind prosperity are the	b) Impossible desire	S
	c) Basic human aspirat	ions	d) None of these	
35.	For prosperity, which o	f the following is not	required?	
	a) Appropriate assessm	nent of the physical n	needs.	al facility
	b) Ensuring availabilit	sy/production of more of physical facilities a	e than required physic	ai iacinty
	d) Giving first priority	to physical facilities	in life.	
	. 1		-3 of 5	

36.	The problems in our relationship with various entities are due to our a) Assumptions b) Misunderstandings c) Difference d) Negligence
37.	Society means a) Family b) All human beings c) Few individuals d) None of these
38.	The feeling of having more than required physical facility is a) Happiness b) Prosperity c) Satisfaction d) Success
39.	Basic requirements for fulfillment of aspirations of every human being with their correct priority area) Right understanding, Relationship and Physical Facilities
	 b) Physical Facilities, Relationship and Right understanding c) Right understanding, Physical facilities and Relationship. d) Relationship, Right understanding and Physical Facilities.
40.	Human consciousness is a) Giving weightage to physical facilities to the maximization of sensory pleasures to accumulation of wealth.
	 b) Giving weightage to relationship to the inherent feelings and right understanding. c) Both d) None of these
41.	helps the human being to transform from animal consciousness to human
	consciousness. a) Right understanding b) Preconditioning c) Sensations d) None of these
42.	Our natural acceptance is to be in which category of people a) Suvidha Viheen Dukhi Daridra (SVDD) b) Suvidha Sampanna Dukhi Daridra (SSDD) c) Suvidha Sampanna Sukhi Samridh (SSSS). d) All of these
43.	To which category a prosperous person belong? a) SVDD b) SSDD c) SSSS d) None of these
44.	Right understanding with physical facilities brings a) Deprivation b) Mutual prosperity c) Mutual fulfillment d) None of these
45.	The third basic requirement for transformation from animal consciousness to human consciousness is
	a) Mental discipline b) Sensory pleasure c) All of these d) None of these
46.	Right understanding of relationship means a) I am in harmony with everyone and everything. b) I am in conflict with everyone and everything c) I am in balance with everyone and everything

Ver - A - 4 of 5

				A A		
47.	The fourth basic consciousness is	requirement	for transforn	nation from an	imal conscio	ousness to human
	a) Relationship	b) Detac	hment	c) Right under	rstanding d)	Sensory pleasure
48.	When we are in 1	•				
	a) Conflict	b) Imba	lance	c) Detachme	nt d)	Peace
49.	The human goal a			\ F 1	2	
	a) Prosperity	b) Co –	existence	c) Fearlessner	ss (d) Rig	ght understanding
50.	Self exploration i					What I really want
	to be". Two mecha) Realization as			pioration are.		
	b) Natural and v	erifiable				
	c) Natural accep	- William -		lidation		
	d) Correctable a	nd identifiable		_ /		
		>	3			
		*		•		
				-6		
			D')	
			,	OB	<u> </u>	,
				3	S.	Y
			* * *	* *	. 1	
		K.) "		
		7	· ·	4	20	
		97.20		<u> </u>		
				N. S.		
		O.				
	K '					
h	9	^/	~	4		
		0,	£ "			
			5			
	7,7	,	7			
	•					
		D.				
			Ver – A	- 5 of 5		
	£ 1		, 01 11			