GRAPH THEORY		Semester	IV
Course Code	BCS405B	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	2:2:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	100
Credits	03	Exam Hours	03
Examination type (SEE)	Theory		

Course objectives:

- Understand the basic concepts of graphs and their properties, and operations of graphs.
- Hamiltonian and Euler graphs, trees and matrix representation of the graph.
- Apply the concepts of a planar graph, matching and colouring in computer science engineering.

Teaching-Learning Process

Pedagogy (General Instructions):

These are sample Strategies, teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied Mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will assign homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students to group learning to improve their creative and analytical skills.
- 6. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution for some exercises (post-lecture activity).

Module-1

Introduction to Graphs: Introduction- Basic definition – Application of graphs – finite, infinite and bipartite graphs – Incidence and Degree – Isolated vertex, pendant vertex and Null graph. Paths and circuits – Isomorphism, sub-graphs, walks, paths and circuits, connected graphs, disconnected graphs and components. **(8 hours)**

(RBT Levels: L1, L2 and L3)

Teaching-Learning	Chalk and talk method / PowerPoint Presentation	
Process		

Module-2

Eulerian and Hamiltonian graphs: Euler graphs, Operations on graphs, Hamiltonian paths and circuits, Travelling salesman problem. Directed graphs – types of digraphs, Digraphs and binary relation. (8 hours)

(RBT Levels: L1, L2 and L3)

Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation	
Module-3		
Trees – properties, pendant vertex, Distance and centres in a tree - Rooted and binary trees, counting trees, spanning trees.		
Connectivity Graphs : Vertex Fundamental circuits.	Connectivity, Edge Connectivity, Cut set and Cut Vertices, (8 hours)	
(RBT Levels: L1, L2 and L3)		

Teaching-Learning	Chalk and talk method / PowerPoint Presentation		
Process	Madula 4		
Dianar Cranhe, Dianar grank	Module-4		
Planar Graphs: Planar graphs, Kuratowski's theorem (proof not required), Different representations of planar graphs, Euler's theorem, Geometric dual.			
Graph Representations: Matrix representation of graphs-Adjacency matrix, Incidence Matrix,			
Circuit Matrix, Path Matrix. (8 hours)			
(RBT Levels: L1, L2 and L3)			
Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation		
Module-5:			
	romatic number, Chromatic polynomial, Matchings, Coverings,		
-	lour problem. Greedy colouring algorithm. (8 hours)		
(RBT Levels: L1, L2 and L3)			
Teaching-Learning Process	Chalk and talk method / PowerPoint Presentation		
Course outcome (Course Skill S			
At the end of the course, the stud			
-	concepts of properties and representation of graphs.		
-	ving characterization and operations on graphs. nd graph connectivity to solve real world problems.		
	nar graph and graph representations to solve the given problem.		
	hing and coloring of graphs to solve the real world problems.		
Assessment Details (both CIE a			
	ernal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is		
50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50)			
and for the SEE, the minimum p	assing mark is 35% of the maximum marks (18 out of 50 marks).		
The student is declared as a pass	s in the course if he/she secures a minimum of 40% (40 marks out		
of 100) in the sum total of th	e CIE (Continuous Internal Evaluation) and SEE (Semester End		
Examination) taken together.			
Continuous Internal Evaluation	n:		
• There are 25 marks for the	CIE's Assignment component and 25 for the Internal Assessment		
Test component.			
• Each test shall be conducted for 25 marks. The first test will be administered after 40-50%			
of the coverage of the syllabus, and the second test will be administered after 85-90% of the			
coverage of the syllabus. The average of the two tests shall be scaled down to 25 marks			
• Any two assignment methods mentioned in the 220B2.4, if an assignment is project-based			
then only one assignment for the course shall be planned. The schedule for assignments			
shall be planned properly by the course teacher. The teacher should not conduct two			
assignments at the end of the semester if two assignments are planned. Each assignment			
shall be conducted for 25 marks. (If two assignments are conducted then the sum of the two			
assignments shall be scaled down to 25 marks)			
The final CIE marks of the course out of 50 will be the sum of the scale-down marks of tests and			
assignment/s marks.	se out of oo will be the sum of the scale down marks of tests and		
assignment, s marks.			

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by the University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.

Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

```
Books (Name of the author/Title of the Book/Name of the publisher/Edition and Year)
Text Books:
```

- 1. Narsingh Deo, Graph theory with the applications to engineering & Computer Science, Dovers Publications, 2016
- 2. J.A. Bondy and U.S.R. Murty. Graph theory with Applications, Springer, 1st edition, 2008.

Reference Books:

- 1. Garry Chartand and Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill, 2006.
- 2. Frank Harary, Graph Theory, Narosa Publishing House, Latest edition.
- 3. R. Diestel, Graph Theory, free online edition, 2016: diestel-graph-theory.com/basic.html.
- 4. Douglas B. West, Introduction to Graph Theory, Prentice Hall India Ltd.,2001
- 5. Robin J. Wilson, Introduction to Graph Theory, Longman Group Ltd., 2010

Web links and Video Lectures (e-Resources):

- http://nptel.ac.in/courses.php?disciplineID=111
- http://www.class-central.com/subject/math(MOOCs)
- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program.

Activity-Based Learning (Suggested Activities in Class)/Practical-Based Learning

- Quizzes
- Assignments
- Seminar