Grading Scale	
Score	Level
< 40% (39 and below)	1
< 60% =>40% (40 to 59)	2
= > 60% (60 and above)	3

Subject:	Introdu	ction to M	Iechanical I	Engineering	Subject Code:	BESCK104D				
Semester:	Fi	rst	Academic	Year:	2023	3-24				
	T1	T2	AS1	AS2	SP	LAB				
	•	Cour	se Out (Comes-C	Os					
CO1	Q1/Q2		Q1 - Q8		Q1 - Q9					
CO2	Q3/Q4		Q9 - Q14		Q10 -Q17					
CO3		Q1	Q15 - Q18	Q1 - Q2	Q18 - Q25					
CO4		Q2		Q3 -Q11	Q26 - Q33					
CO5		Q3/Q4		Q12 - Q16	Q34 - Q36					
Note: T1- Test-I; T2-Test-II; T3-Test-III; AS1- Assignment-I; AS2- Assignment-II										

SP- Seminar Presentation; Q- Question number as per the record.

	Course Outcome					CO1				
	CIE Assessment Type	T1	T2	AS1	AS2	SP	LAB			
	Ref.Number	Q1/Q2		Q1-Q8		Q1-Q9				
	Max.Marks	12		80		25		117	%	Level
1	ASHWINI	10		77		20		107	91%	3
2	ВНООМІКА М.	8		74		18		100	85%	3
3	DEEKSHITHA P.	12		70		23		105	90%	3
4	DEEPTHI SRINIVASA	4		64		22		90	77%	3
5	DHANUSHREE R.	9		74		23		106	91%	3
6	DISHA B.G.	9		70		23		102	87%	3
7	KAVYA N.	10		70		22		102	87%	3
8	KEERTHANA T.R.	9		74		20		103	88%	3
9	KULSUM F.	12		77		23		112	96%	3
10	RANJITHA N.S.	12		77				89	97%	3
11	RUCHITHA P.	12		74				86	93%	3
12	SANA MUNIR	12		77				89	97%	3
13	SANIYA SUBHAN	6		64				70	76%	3
14	SHARADA KUMARI J.	12		77				89	97%	3

15	SIMRAN	10	77		87	95%	3
16	SUPRIYA GURU NAIK	10	71		81	88%	3
17	TASMIYA FATHIMA KHANUM AZEEZ	9	70		79	86%	3
18	TEJASHWINI	10	77		87	95%	3
19	VARSHITHA A.S.	7	74		81	88%	3
20	VIJAYA LAKSHMI R.	8	67		75	82%	3
21	VYSHALINI	11	67		78	85%	3
22	ZAINAB TAJ	12	80		92	100%	3
23	ANKITHA GURU G.K.	8	80		88	96%	3
24	CHANDANA T.	4	74		78	85%	3
25	INDUMATHI R.	10	77		87	95%	3
26	JYOTHI MANJUNATH GULYANAVAR	9	80		89	97%	3
27	KEERTHANA R.	9	77		86	93%	3
28	МЕНАК ТАЈ	10	80		90	98%	3
29	MONIKA R.	3	70		73	79%	3
30	PRARTHAVI S.P.	10	67		77	84%	3
31	RITU V. CHETTY	10	67		77	84%	3
32	SARITHA A.	11	61		72	78%	3

36	VARSHINI V.H.	11	7/0	Ave	erage % V		89%	3
36	VARSHINI V.H.	11	70			81	88%	3
	SIRI A.C. NAIK SUSHMITHA R.	5 6	80 64			85 70	92% 76%	3
33	SHAIK AATIKA KULSUM	10	74			84	91%	3

Tota	Total No. of Students										
Course Outcomes	Average Level Grading	3	2	1							
CO1	3	36/36 = 100%	0/36 = 0%	0/36 = 0%							

	Course Outcome					CO2				
	CIE Assessment Type	T1	T2	AS1	AS2	SP	LAB			
	Ref.Number	Q3/Q4		Q9-Q14		Q10-Q17				
	Max.Marks	13		60		25		98	%	Level
1	ASHWINI	4		58				62	85%	3
2	BHOOMIKA M.	9		55				64	88%	3
3	DEEKSHITHA P.	9		53				62	85%	3
4	DEEPTHI SRINIVASA	8		48				56	77%	3
5	DHANUSHREE R.	7		55				62	85%	3
6	DISHA B.G.	5		53				58	79%	3
7	KAVYA N.	9		53				62	85%	3
8	KEERTHANA T.R.	7		55				62	85%	3
9	KULSUM F.	8		58				66	90%	3
10	RANJITHA N.S.	11		58		22		91	93%	3
11	RUCHITHA P.	8		55		20		83	85%	3
12	SANA MUNIR	7		58		23		88	90%	3
13	SANIYA SUBHAN	3		48		21		72	73%	3
14	SHARADA KUMARI J.	0		58		20		78	80%	3

15	SIMRAN	9	58	25	92	94%	3
16	SUPRIYA GURU NAIK	2	53	21	76	78%	3
17	TASMIYA FATHIMA KHANUM AZEEZ	9	50	24	83	85%	3
18	TEJASHWINI	8	58		66	90%	3
19	VARSHITHA A.S.	7	55		62	85%	3
20	VIJAYA LAKSHMI R.	0	50		50	68%	3
21	VYSHALINI	7	50		57	78%	3
22	ZAINAB TAJ	9	60		69	95%	3
23	ANKITHA GURU G.K.	5	60		65	89%	3
24	CHANDANA T.	5	55		60	82%	3
25	INDUMATHI R.	6	58		64	88%	3
26	JYOTHI MANJUNATH GULYANAVAR	6	60		66	90%	3
27	KEERTHANA R.	3	58		61	84%	3
28	МЕНАК ТАЈ	6	60		66	90%	3
29	MONIKA R.	1	53		54	74%	3
30	PRARTHAVI S.P.	2	50		52	71%	3
31	RITU V. CHETTY	7	50		57	78%	3
32	SARITHA A.	0	46		46	63%	3

33	SHAIK AATIKA KULSUM	9		55				64	88%	3
34	SIRI A.C. NAIK	1		60				61	84%	3
35	SUSHMITHA R.	1		48				49	67%	3
36	VARSHINI V.H.	3		53				56	77%	3
						Ave	erage % V	alue	83%	
Perce	Percentage of Students achieved CO2			83	0% 0					
Avera	verage Level of Grading.				3					

Tota	Total No. of Students										
Course Outcomes	Average Level Grading	3	2	1							
CO2	3	36/36 = 100%	0/36 = 0%	0/36 = 0%							

	Course Outcome					CO3				
	CIE Assessment Type	T1	T2	AS1	AS2	SP	LAB			
	Ref.Number		Q1	Q15-Q18	Q1-Q2	Q18-Q25				
	Max.Marks		12	40	20	25		97	%	Level
1	ASHWINI			38	20			58	97%	3
2	ВНООМІКА М.			37	20			57	95%	3
3	DEEKSHITHA P.		6	35	20			61	85%	3
4	DEEPTHI SRINIVASA		8	32	20			60	83%	3
5	DHANUSHREE R.			37	20			57	95%	3
6	DISHA B.G.		11	35	20			66	92%	3
7	KAVYA N.			35	20			55	92%	3
8	KEERTHANA T.R.			37	20			57	95%	3
9	KULSUM F.			38	20			58	97%	3
10	RANJITHA N.S.			38	20			58	97%	3
11	RUCHITHA P.			37	20			57	95%	3
12	SANA MUNIR			38	20			58	97%	3
13	SANIYA SUBHAN			32	20			52	87%	3
14	SHARADA KUMARI J.		8	38	20			66	92%	3

15	SIMRAN		38	20		58	97%	3
16	SUPRIYA GURU NAIK	8	35	20		63	88%	3
17	TASMIYA FATHIMA KHANUM AZEEZ	8	34	20		62	86%	3
18	TEJASHWINI		38	20	23	81	95%	3
19	VARSHITHA A.S.	8	37	20	21	86	89%	3
20	VIJAYA LAKSHMI R.	11	34	20	20	85	88%	3
21	VYSHALINI		34	20	20	74	87%	3
22	ZAINAB TAJ	8	40	20	24	92	95%	3
23	ANKITHA GURU G.K.	11	40	20	20	91	94%	3
24	CHANDANA T.	12	37	20	20	89	92%	3
25	INDUMATHI R.		38	20	22	80	94%	3
26	JYOTHI MANJUNATH GULYANAVAR		40	20		60	100%	3
27	KEERTHANA R.	8	38	20		66	78%	3
28	МЕНАК ТАЈ		40	20		60	100%	3
29	MONIKA R.	5	35	20		60	83%	3
30	PRARTHAVI S.P.		34	20		54	90%	3
31	RITU V. CHETTY		34	20		54	90%	3
32	SARITHA A.		30	20		50	83%	3

33	SHAIK AATIKA KULSUM			37	20			57	95%	3
34	SIRI A.C. NAIK			40	20			60	100%	3
35	SUSHMITHA R.		7	32	20			59	69%	3
36	VARSHINI V.H.			35	20			55	92%	3
						A	verage Val	ue	91%	
Perce	entage of Students achieved CO3			91	%					
Avera	Average Level of Grading.		(3						

Total No. of Students								
Course Outcomes	Average Level Grading	3	2	1				
CO3	3	36/36 = 100%	0/36 = 0%	0/36 = 0%				

	Course Outcome					CO4				
	CIE Assessment Type	T1	T2	AS1	AS2	SP	LAB			
	Ref.Number		Q2		Q3-Q11	Q26-Q33				
	Max.Marks		12		90	25		127	%	Level
1	ASHWINI		7		68			75	74%	3
2	ВНООМІКА М.		12		72			84	82%	3
3	DEEKSHITHA P.				83			83	92%	3
4	DEEPTHI SRINIVASA				83			83	92%	3
5	DHANUSHREE R.		12		90			102	100%	3
6	DISHA B.G.				83			83	92%	3
7	KAVYA N.		12		86			98	96%	3
8	KEERTHANA T.R.		7		83			90	88%	3
9	KULSUM F.		12		90			102	100%	3
10	RANJITHA N.S.		12		90			102	100%	3
11	RUCHITHA P.		12		90			102	100%	3
12	SANA MUNIR		12		90			102	100%	3
13	SANIYA SUBHAN		8		65			73	72%	3
14	SHARADA KUMARI J.				83			83	81%	3

15	SIMRAN	12	90		102	100%	3
16	SUPRIYA GURU NAIK		79		79	77%	3
17	TASMIYA FATHIMA KHANUM AZEEZ		86		86	84%	3
18	TEJASHWINI	12	86		98	96%	3
19	VARSHITHA A.S.		72		72	71%	3
20	VIJAYA LAKSHMI R.		90		90	88%	3
21	VYSHALINI	6	90		96	94%	3
22	ZAINAB TAJ		90		90	88%	3
23	ANKITHA GURU G.K.		72		72	71%	3
24	CHANDANA T.		83		83	81%	3
25	INDUMATHI R.	12	79		91	89%	3
26	JYOTHI MANJUNATH GULYANAVAR	12	72	21	105	83%	3
27	KEERTHANA R.		76	20	96	83%	3
28	МЕНАК ТАЈ	12	79	21	112	88%	3
29	MONIKA R.		79	21	100	87%	3
30	PRARTHAVI S.P.	12	83	21	116	91%	3
31	RITU V. CHETTY	6	65	22	93	73%	3
32	SARITHA A.	12	86	25	123	97%	3

33	SHAIK AATIKA KULSUM		12		83	23		118	93%	3
34	SIRI A.C. NAIK		4		65			69	68%	3
35	SUSHMITHA R.				79			79	88%	3
36	VARSHINI V.H.		6		90			96	94%	3
						Averag	e Value		88%	3
Perce	entage of Students achieved CO4			88	%					
Avera	Average Level of Grading.			3						

Total No. of Students								
Course Outcomes	Average Level Grading	3	2	1				
CO4	3	36/36 = 100%	0/36 = 0%	0/36 = 0%				

	Course Outcome					CO5				
	CIE Assessment Type	T1	T2	AS1	AS2	SP	LAB			
	Ref.Number		Q3/Q4		Q12-Q16	Q34-Q36				
	Max.Marks		12		50	25		87	%	Level
1	ASHWINI		2		38			40	65%	3
2	ВНООМІКА М.		13		40			53	85%	3
3	DEEKSHITHA P.		12		46			58	94%	3
4	DEEPTHI SRINIVASA		10		46			56	90%	3
5	DHANUSHREE R.		12		50			62	100%	3
6	DISHA B.G.		11		46			57	92%	3
7	KAVYA N.		12		48			60	97%	3
8	KEERTHANA T.R.		5		46			51	82%	3
9	KULSUM F.		12		50			62	100%	3
10	RANJITHA N.S.		12		50			62	100%	3
11	RUCHITHA P.		13		50			63	102%	3
12	SANA MUNIR		12		50			62	100%	3
13	SANIYA SUBHAN		5		36			41	66%	3
14	SHARADA KUMARI J.		5		46			51	82%	3

15	SIMRAN	12	50	62	100%	3
16	SUPRIYA GURU NAIK	7	40	47	76%	3
17	TASMIYA FATHIMA KHANUM AZEEZ	12	48	60	97%	3
18	TEJASHWINI	7	48	55	89%	3
19	VARSHITHA A.S.	12	40	52	84%	3
20	VIJAYA LAKSHMI R.	0	50	50	81%	3
21	VYSHALINI	10	50	60	97%	3
22	ZAINAB TAJ	12	50	62	100%	3
23	ANKITHA GURU G.K.	12	40	52	84%	3
24	CHANDANA T.	6	40	46	74%	3
25	INDUMATHI R.	12	44	56	90%	3
26	JYOTHI MANJUNATH GULYANAVAR	6	42	48	77%	3
27	KEERTHANA R.	5	40	45	73%	3
28	МЕНАК ТАЈ	12	42	54	87%	3
29	MONIKA R.	11	42	53	85%	3
30	PRARTHAVI S.P.	5	42	47	76%	3
31	RITU V. CHETTY	5	44	49	79%	3
32	SARITHA A.	7	50	57	92%	3

33	SHAIK AATIKA KULSUM	13		46			59	95%	3
34	SIRI A.C. NAIK	12		46	23		81	93%	3
35	SUSHMITHA R.	10		42	21		73	84%	3
36	VARSHINI V.H.	6		40	20		66	76%	3
					Averag	e Value		87%	3
Perce	entage of Students achieved CO5		87	' <mark>%</mark>					
Avera	age Level of Grading.			3					

Total No. of Students								
Course Outcomes	Average Level Grading	3	2	1				
CO5	3	36/36 = 100%	0/36 = 0%	0/36 = 0%				

Total No. of Stu	dents			
Course Outcomes	Course Outcomes % Grading			
Course Outcomes	% Grading	3	2	1
CO1	89%	36/36 = 100%	0/36 = 0%	0/36 = 0%
CO2	83%	36/36 = 100%	0/36 = 0%	0/36 =
CO3	91%	36/36 = 100%	0/36 =	0/36 = 0%
CO4	88%	36/36 = 100%	0/36 =	0/36 =
CO5	87%	36/36 = 100%	0/36 = 0%	0/36 = 0%
Average %		88%	0 /0	0 /0

	Course Outcomes by SEE Assessment									
	Max.Marks	50	100	Level						
1	ASHWINI	20	40	2						
2	ВНООМІКА М.	31	62	3						
3	DEEKSHITHA P.	18	36	1						
4	DEEPTHI SRINIVASA	30	60	3						
5	DHANUSHREE R.	29	58	2						
6	DISHA B.G.	31	62	3						
7	KAVYA N.	27	54	2						
8	KEERTHANA T.R.	22	44	2						
9	KULSUM F.	34	68	3						
10	RANJITHA N.S.	29	58	2						
11	RUCHITHA P.	33	66	3						
12	SANA MUNIR	32	64	3						
13	SANIYA SUBHAN	19	38	1						
14	SHARADA KUMARI J.	29	58	2						
15	SIMRAN	29	58	2						
16	SUPRIYA GURU NAIK	24	48	2						
17	TASMIYA FATHIMA KHANUM AZEEZ	24	48	2						
18	TEJASHWINI	37	74	3						

19	VARSHITHA A.S.	29	58	2
20	VIJAYA LAKSHMI R.	24	48	2
21	VYSHALINI	18	36	1
22	ZAINAB TAJ	31	62	3
23	ANKITHA GURU G.K.	30	60	3
24	CHANDANA T.	21	42	2
25	INDUMATHI R.	24	48	2
26	JYOTHI MANJUNATH GULYANAVAR	38	76	3
27	KEERTHANA R.	18	36	1
28	МЕНАК ТАЈ	21	42	2
29	MONIKA R.	22	44	2
30	PRARTHAVI S.P.	20	40	2
31	RITU V. CHETTY	21	42	2
32	SARITHA A.	28	56	2
33	SHAIK AATIKA KULSUM	35	70	3
34	SIRI A.C. NAIK	22	44	2
35	SUSHMITHA R.	34	68	3
36	VARSHINI V.H.	7	14	1
	Average Value		52.277	77778

Total No. of Stud	36					
Course Outcomes by SEE	0/ Creding	% I	Distribu	tion		
Asessment	% Grading	3	2	1		
CO1 to CO5	52%	12//36 = 33.33%	19/36 = 52.77%	5//36 = 13.88%		

Total No. of Stu	dents	36						
Course Outcomes by CIE	% Grading	% Distribution						
& SEE Asessment	70 Graunig	3	2	1				
By CIE Assessment	88%	36/36 = 100%	0/36 = 0%	0/36 = 0%				
By SEE Assessment	52%	33.33	52.77	13.88				
Average of CIE & SEE	70%	66.66%	26.38%	6.94%				

	Atta	inment	of C		Leve	el by		E As	sess	men	nt			
Parameter	COs	CO Attainment %	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	89%	3					1				1		1
T1 - Q1/Q2	Explain con Q2.Explain	some of the tren nstruction and pri operating princi nstruction and pri	nciple o	f operationsolar cell	on of nuc	clear pov	ver plant	with a n	eat sketc	h.				
AS1 - Q1 to Q8	Explain con Explain con Explain con Explain con Define rene Compare an	recent trends and astruction & work astruction & work astruction & work astruction & work wable and non reading five major construction & work astruction & work as work as the work as	king of the king of he king of se king of se enewable nparison	hermal paydel pow nuclear poolar cell e sources s betwee	oower plant wer plant ower plant with a no of energen n biofue	with a not with a not with a not with a not eat fig. By with eland fost	a neat figeat fig. neat fig. neat fig. xamples. sil fuel.	Ţ.			ompariso	on betwe	en them.	
SP - Q1 to Q9	Construction Construction Construction	on & Working of on & Working of on & Working of on & Working of on & Working of	Thermal Wind Po Nuclear	Power I ower Plan Power P	Plant with nt with A lant with	h Application Application Application	ations ons							

Note: Level 3 - Highly Mapped; Level 2 - Moderately Mapped; Level 1 - Low Mapped; Level 0 - Not Mapped

	Atta	ainment	of C	CO2	Lev	el by	v CI	E As	ssess	men	ıt			
Parameter	COs	CO Attainment %	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO2	83%	3					1				1		1
T1 - Q3/Q4	Explain the i. Drilling i Q4: Define	n operating prince following opera i) Knurling iii) I additive manufa e major compone	tions wit Boring a cturing.	h neat sk nd iv) Sl Explain t	ketches. ot millin the proce	g. ess with a	a simple			t out son	ne of its a	applicatio	ons.	
AS1 - Q9 to Q14	Explain the Explain sla Explain the What are so	ming, facing and e operating princi b drilling, boring e components of ome of the major lditive Manufactu	ple of m and read CNC madadvanta	illing maming oper chine too ges and a	chines werations voluments of with a application	vith neat with neat flow cha ons of Cl	figure. figures. rt. NC mach	ine tools	;?					
SP - Q10 to Q17	Drilling, bo Operating p Elements o	cing and knurling oring and reaming orinciple of milling for CNC Machine Additive Manufactures.	g operations of the property o	ons nes th block	diagram.									
Note: Level 3 - Highly Mapp	ped; Level 2 - M	oderately Mapped;	Level 1 -	Low Maj	pped; Lev	vel 0 - Not	Mapped							

	Atta	ainment	of C	CO3	Lev	el by	CI	E As	sess	men	ıt			
Parameter	COs	CO Attainment	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO3	91%	3					1				1		1
T2 - Q1		arallel mode of a		•				a block	diagram	•				
AS1 - Q15 to Q18; AS2: Q1-Q2	Explain the engine. Or Explain the engine. Or List out son AS2: Explain	e working princip Explain constant e working princip Explain constant me major compar ain major compor ne major advanta	al of 4-s pressure al of 4-s volume isons be nents of l	troke pet e cycle IC troke die cycle IC tween pe nybrid ve	rol enging Engine sel engine Engine. etrol and ehicle wi	ne . Or Done . O	iscuss we gine.	orking pı	rincipal o	of S.I eng			•	
	Working of	IC Engine f 4 Stroke Petrol f 4 Stroke Diesel ectric Vehicle	-		-									

	Atta	ainment	of C	CO4	Lev	el by		E As	sess	men	ıt			
Parameter	COs	CO Attainment	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO4	88%	3					1				1		1
T2 - Q2	_	ut any four comp naracteristics an				-					-	les.		•
AS2 - Q3 to Q11	What are p What are so What is sol What is bra Explain wo Explain wo Discuss the	me of the ferrous colymers? List ou hape memory allo dering? Explain to orking principle of corking principle of evarious flames of ajor comparisons	t the maj bys? List iron sold rch brazi f arc we f gas we obtained	or differ out their ering pri- ing with lding with lding with in gas w	ences bear advanta inciple was a neat dia the a neat the a neat elding we	tween the ages and with a nea agram. diagram diagram ith a nea	ermoplas applicati t diagran	tics and ons. n.	thermoso					
SP - Q26 to Q33	Ceramics Silica and Shape men	Graphite nory alloys ing method zing ng	aterials											

	Atta	ainment	of C	CO5	Lev	el by	CI	E As	sess	men	ıt			
Parameter	COs	CO Attainment	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO5	87%	3					1				1		1
T2 - Q3/Q4	Explain ar Q4: List o	in closed loop on two types of aut any five major pes of automati	robotic of the control of the contro	configur its of au	ations w tomation	ith neat		-	C					
AS2 - Q12 to Q16	Explain any Explain bas Define auto	en loop and close y two robotic con sic elements of au omation. Explain e scope of IOT in	figuration atomation different	ons with a n with a types of	a neat fig block dia f automa	g. What a agram.	are their a	application						
SP - Q34 to Q36	Open loop	robot configurat and closed loop romation and Program	nechatro	•										

Attainm	ent of	POs Lev	el by	CIE	C Ass	essn	ient	(inte	rms	of G	arde	Lev	el)	
Course Name	COs	CO Attainment %	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	89%	3					1				1		1
Introduction to	CO2	83%	3					1				1		1
Mechanical Engineering /	CO3	91%	3					1				1		1
BESCK104D	CO4	88%	3					1				1		1
	CO5	87%	3					1				1		1
Average		88%	3					1				1		1

Attainmo	Attainment of POs Level by CIE Assessment (interms of % Level)													
Course Name	COs	CO Attainment	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	89%	89%					89%				89%		89%
Introduction to	CO2	83%	83%					83%				83%		83%
Mechanical Engineering /	CO3	91%	91%					91%				91%		91%
BESCK104D	CO4	88%	88%					88%				88%		88%
	CO5	87%	87%					87%				87%		87%
Average		88%	88%					88%				88%		88%

Reference

 $\frac{https://www.nbaind.org/files/Some-more-examples-on-attainment-of-COs-and-PO-21-may-}{2016.pdf?shem=sswnst}$