CALCULUS AND LINEAR ALGEBRA	Semester	1	
Course Code	1BMATS101	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:2:0:0	SEE Marks	50
Total Hours of Pedagogy	40Hours Theory + 20Hours Tutorial	Total Marks	100
Credits	4	Exam Hours	3 hrs
Examination type (SEE)	Theory		

Course Outcomes

CO1: Apply the concepts of multivariable calculus and vector calculus to compute derivatives, optimize functions, and analyze vector fields for applications in computer science engineering.

CO2: Solve system of linear equations and determine eigenvalues and eigenvectors using direct and iterative methods.

CO3: Apply the concepts of vector spaces and linear transformations to problems in computer science engineering.

CO4: Demonstrate the applications of computer science and allied engineering Science using modern ICT tools.

Module-1: Calculus

(8Hours Theory + 4Hours Tutorial)

Partial differentiation, total derivative, differentiation of composite functions, Jacobian, Statement of Taylor's and Maclaurin's series expansion for two variables. Maxima and minima for the function of two variables.

Module-2: Vector Calculus

(8Hours Theory + 4Hours Tutorial)

Scalar and vector fields, Gradient, directional derivatives, divergence and curl - physica interpretation, solenoidal vector fields, irrotational vector fields and scalar potential.

Introduction to polar coordinates and polar curves.

Curvilinear coordinates: Scale factors, base vectors, Cylindrical polar coordinates, Spherical polar coordinates, transformation between cartesian and curvilinear systems, orthogonality.

Module-3: System of Linear Equations, Eigenvalues and Eigenvectors

(8Hours Theory + 4Hours Tutorial)

Elementary row transformation of a matrix, Echelon form, rank of a matrix. Consistency and solution of system of linear equations: Gauss elimination method, Gauss Jordan method. Applications: Traffic flow.

Eigenvalues and Eigenvectors, diagonalization of the matrix, modal matrix.

Module-4: Vector Space

(8Hours Theory + 4Hours Tutorial)

Vector spaces: definition and examples, subspace: definition and examples. Linear Combinations, linear span, linearly independent and dependent sets, basis and dimension, row space and column space of a matrix, Coordinates vector, inner products and orthogonality.

Module-5: Linear Transformation

(8Hours Theory + 4Hours Tutorial)

Definition and examples, algebra of linear transformations, matrix of a linear transformation. Singular, non-singular linear transformations and invertible linear transformations. Rank and nullity of linear transformations, Rank-Nullity theorem.

Suggested Learning Resources: (Textbook/Reference Book):

Textbooks:

- 1. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44th Ed., 2021.
- 2. Gilbert Strang, Linear Algebra and its Applications, Cengage Publications, 4th Ed., 2022.
- 3. Seymour Lipschutz and Marc Lipson, Linear Algebra, Schaum's outlines series, 4th Ed., 2008.

Reference books:

- 1. V. Ramana, Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. N. P Bali and Manish Goyal, A Textbook of Engineering Mathematics, Laxmi Publications, 10th Ed., 2022.
- 3. James Stewart, Calculus, Cengage Publications, 7thEd., 2019.
- 4. David Poole, Linear Algebra, a modern introduction, Cengage publishers, 4th Ed., 2014.
- 5. David C Lay, Linear Algebra and its Applications, Pearson Publishers, 4th Ed., 2018.
- 6. Gareth Williams, Linear Algebra with applications, Jones Bartlett Publishers Inc., 6th Ed., 2017.

Web links and Video Lectures (e-Resources):

- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program
- https://nptel.ac.in/courses/111106135
- https://nptel.ac.in/courses/111105160
- https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
- https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students to group learning to improve their creative and analytical skills.
- 6. Show short-related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

The CIE Theory component consists of average of TWO IA tests for 25 marks and Continuous Comprehensive Assessments (CCA) for 25 marks.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.
- Notwithstanding the above, a student is considered to have **passed the course**, provided the combined total of **CIE and SEE is at least 40 out of 100 marks**.

Continuous Comprehensive Assessments (CCA):

CCA will be conducted with a total of 25 marks. It is recommended to include a maximum of two learning activities aimed at enhancing the holistic development of students. These activities should align with course objectives and promote higher-order thinking and application-based learning.

Learning Activity-1: Tutorial: Practicing problems (Lab Activities/Surprise Test/ Seminar for 15 Marks) Execute the following lab exercises with the aid of any modern technological tool (Matlab/ Mathematica/ Scilab/ Python/ Maxima, etc).

Learning Activity-2: Assignments (Marks-10).

List of Lab Activities:

- 1) Finding partial derivatives and Jacobian,
- 2) Expansion of Taylor's and Maclaurin's series,
- 3) Finding Gradient, divergence and curl,
- 4) Finding rank, reduced echelon form, solving system of linear equations using Gauss elimination method,
- 5) Solving system of linear equations using Gauss-Seidel method,
- 6) Determine Eigenvalues and Eigenvectors,
- 7) Linearly Independence and Dependence sets,
- 8) Basis and dimension,
- 9) Linear transformation-range space and null space,
- 10) Verification of the rank nullity theorem.

Rubrics for Learning Activity (Based on the nature of learning activity, design the rubrics for each activity):

	Superior	Good	Fair	Needs	Unacceptable
				Improvement	
Performance					
Indicator- 1					
(CO/PO					
Mapping)					
Performance					
Indicator-2					
(CO/PO					
Mapping)					
Performance					
Indicator-n					
(CO/PO					
Mapping)					

Suggested Learning Activities may include (but are not limited to):

- Course Project
- Case Study Presentation
- Programming Assignment
- Tool/Software Exploration

- Literature Review
- Open Book Test (preferably at RBL4 and RBL5 levels)
- GATE-based Aptitude Test
- Assignment (at RBL3, RBL4, or RBL5 levels)
- Any other relevant and innovative academic activity
- Use of MOOCs and Online Platforms

Suggested Innovative Delivery Methods may include (but are not limited to):

- Flipped Classroom
- Problem-Based Learning (PBL)
- Case-Based Teaching
- Simulation and Virtual Labs
- Partial Delivery of course by Industry expert/ industrial visits
- ICT-Enabled Teaching
- Role Play