Calculus, Laplace Transform and Numerical Techniques		Semester	2
Course Code	1BMATE201	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:2:0:0	SEE Marks	50
Total Hours of Pedagogy	40Hours (Theory)+ 20Hours Tutorials	Total Marks	100
Credits	04	Exam Hours	3 Hours
Examination type (SEE)	Theory		

Course outcome (Course Skill Set)

CO1: Apply the concepts of integral calculus and vector calculus to model and solve problems in engineering applications such as area, volume.

CO2: Apply appropriate numerical methods to find approximate solutions of algebraic, transcendental, and ordinary differential equations and to perform interpolation and numerical integration in engineering contexts.

CO3: Apply Laplace transform techniques for time domain, wave forms, periodic functions and solving differential equations.

CO4: Demonstrate the applications of electrical engineering and allied engineering science using modern ICT tools.

Module-1: Integral Calculus and its Applications

(8 Hours Theory + 4 Hours Tutorial)

Multiple Integrals: Evaluation of double and triple integrals, change of order of integration, changing to polar coordinates. Area and volume using double and triple integrals.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions.

Module-2: Vector Calculus and its Applications

(8 Hours Theory + 4 Hours Tutorial)

Vector Differentiation: Scalar and vector fields, gradient of a scalar field, directional derivatives, divergence of a vector field, solenoidal vector, curl of a vector field, irrotational vector, physical interpretation of gradient, divergence and curl and scalar potential.

Vector Integration: Line integrals, Statement of Green's and Stokes' theorem without verification problems.

Module-3: Numerical Methods-1

(8 Hours Theory + 4 Hours Tutorial)

Solution of algebraic and transcendental equations: Regula-Falsi method and Newton-Raphson method.

Finite Differences and Interpolation: Forward and backward differences, Interpolation, Newton forward and backward interpolation formulae, Newton's divided difference interpolation formula and Lagrange's interpolation formula.

Numerical Integration: Trapezoidal rule, Simpson's 1/3rd rule and Simpson's 3/8th rule.

Module-4: Numerical Methods-2

(8 Hours Theory + 4 Hours Tutorial)

Numerical solution of ordinary differential equations of first order and first degree: Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor corrector method and Adam-Bashforth predictor-corrector method.

Module-5: Laplace Transform

(8 Hours Theory + 4 Hours Tutorial)

Laplace transform (LT): Definition and Formulae of Laplace Transform, LT of elementary functions. Properties—linearity, scaling, shifting property, differentiation in the s domain, division by t. LT of periodic functions, square wave, saw-tooth wave, triangular wave, full and half wave rectifier, Heaviside Unit step function. Inverse Laplace Transforms: Definition, properties, evaluation using different methods, and applications to solve ordinary differential equations.

Suggested Learning Resources: (Textbook/Reference Book):

Textbooks:

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44th Ed., 2021.
- 2. E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2018.
- 3. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publishers, 8th Ed., 2022.

Reference books:

- 1. B.V. Ramana, Higher Engineering Mathematics, McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C.Bhunia, Engineering Mathematics, Oxford University Press, 3rd Ed., 2016.
- 3. N. P. Bali and Manish Goyal, A Textbook of Engineering Mathematics, Laxmi Publications, 10th Ed., 2022.
- 4. H. K. Dass and Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand Publication, 3rd Ed., 2014.
- 5. Steven V. Chapra and Raymond P. Canale, Applied Numerical Methods with Matlab for Engineers and Scientists, McGraw-Hill, 3rd Ed., 2011.
- 6. Richard L. Burden, Douglas J. Faires and A. M. Burden, Numerical Analysis, 10th Ed.,2010, Cengage Publishers.
- 7. S.S. Sastry, "Introductory Methods of Numerical Analysis", PHI Learning Private Limited, 5th Ed., 2012.

Web links and Video Lectures (e-Resources):

- http://academicearth.org/
- VTU e-Shikshana Program
- VTU EDUSAT Program
- https://nptel.ac.in/courses/111105160
- https://nptel.ac.in/courses/127106019
- https://ocw.mit.edu/courses/18-335j-introduction-to-numerical-methods-spring-2019/
- https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring-2012/pages/syllabus/

Teaching-Learning Process (Innovative Delivery Methods):

The following are sample strategies that educators may adopt to enhance the effectiveness of the teaching-learning process and facilitate the achievement of course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop students' theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework, grading assignments and quizzes, and documenting students' progress.
- 5. Encourage the students to group learning to improve their creative and analytical skills.
- 6. Show short-related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).

As a model solution of some exercises (post-lecture activity).

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the **SEE**, a student must score at least **35% of 50 marks**, i.e., **18 marks**.
- Notwithstanding the above, a student is considered to have **passed the course**, provided the combined total of **CIE and SEE** is at least 40 out of 100 marks.

Continuous Comprehensive Assessments (CCA):

CCA will be conducted with a total of 25 marks. It is recommended to include a maximum of two learning activities aimed at enhancing the holistic development of students. These activities should align with course objectives and promote higher-order thinking and application-based learning.

Learning Activity-1: Tutorial: Practicing problems (Lab Activities/Surprise Test/ Seminar for 15 Marks) Execute the following lab exercises with the aid of any modern technological tool (Matlab/ Mathematica/ Scilab/ Python/ Maxima, etc).

Learning Activity-2: Assignments (Marks-10).

List of Lab Activities:

- 1) Evaluate double integration and compute area and volume,
- 2) Evaluate triple integration and compute volume,
- 3) Finding gradient, divergence and curl,
- 4) Evaluate line integrals,
- 5) Regula Falsi and Newton Raphson method,
- 6) Interpolation,
- 7) Numerical integration,
- 8) Modified Euler's method, Fourth order Runge -Kutta method,
- 9) Laplace transform,
- 10) Inverse Laplace transform.

	Superior	Good	Fair	Needs Improvement	Unacceptable
Performance					
Indicator- 1					
(CO/PO					
Mapping)					
Performance					
Indicator-2					
(CO/PO					
Mapping)					
Performance					
Indicator-n					
(CO/PO					
Mapping)					

Suggested Learning Activities may include (but are not limited to):

- Course Project
- Case Study Presentation
- Programming Assignment
- Tool/Software Exploration
- Literature Review
- Open Book Test (preferably at RBL4 and RBL5 levels)
- GATE-based Aptitude Test
- Assignment (at RBL3, RBL4, or RBL5 levels)
- Any other relevant and innovative academic activity
- Use of MOOCs and Online Platforms

Suggested Innovative Delivery Methods may include (but are not limited to):

- Flipped Classroom
- Problem-Based Learning (PBL)
- Case-Based Teaching
- Simulation and Virtual Labs
- Partial Delivery of course by Industry expert/ industrial visits
- ICT-Enabled Teaching
- Role Play