

Class X CBSE Science

Acids, Bases, and Salts

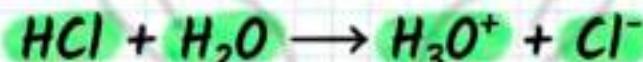
Comprehensive Chapter Notes

Sample

Joshi's Academy for Excellence

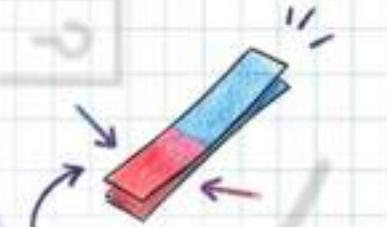
Table of Contents

1. Acids - Definition & Physical properties.
2. Classification of Acids.
3. Chemical properties of Acids.
4. Bases - Definition & Physical properties.
5. Classification of Bases.
6. Chemical properties of Bases.
7. Salts - Properties & its types.
8. Acid - Base indicators.
9. Universal indicators & pH scale.
10. Role of pH in our daily life.


Sample

Acids (Introduction)

Derived from Latin word 'Acidus' = sour in taste.


Examples: Unripe mango, Lemon, Orange, Tomatoes, Vinegar, Curd.

Arrhenius Concept (1884): Acids are defined as compounds which contain one or more Hydrogen atoms. When they dissolve in water they produce H^+ ions or H_3O^+ ions.

Physical Properties of Acids

1. Sour in taste.
2. Corrosive in nature (corrode metals).
3. Turn Blue Litmus \rightarrow Red.
4. Electrolytes: Conduct electricity due to H^+ ions.
5. Soluble in water.

Common Acids

HCl (Hydrochloric), H_2SO_4 (Sulphuric), HNO_3 (Nitric), CH_3COOH (Acetic), H_2CO_3 (Carbonic), H_3PO_4 (Phosphoric), HNO_2 (Nitrous), H_2SO_3 (Sulphurous).

Daily Life Examples & The H⁺ Ion

Acids in Daily Life		
	Curd	→ Lactic acid
	Lemon / Orange	→ Citric acid
	Stomach	→ dil HCl
	Spinach, Tomato	→ Oxalic acid
	Baking powder	→ Tartaric acid
	Grapes, Tamarind	→ Tartaric acid
	Vinegar	→ Acetic acid
	Cold drinks	→ Carbonic acid
	Apple	→ Malic acid
	Red Ant	→ Formic acid

All Acids Contain H⁺ Ion

Hydrogen ions do not exist as H⁺ alone; they are unstable. They combine with polar water molecules to form Hydronium ion [H₃O]⁺.

So the acidic property is due to the presence of [H₃O]⁺ ions.

Sample

Classification of Acids (Source & Strength)

1. Basis of Source / Origin

Organic Acids

Naturally occurring (plants/animals).

Weak acids. Not harmful to eat.

Example: Vinegar, Citric acid, Milk, Curd.

Mineral (Inorganic) Acids

Obtained from minerals on earth crust.

Corrosive, harmful, dangerous.

Example: HCl , H_2SO_4 , HNO_3 , H_3PO_4 .

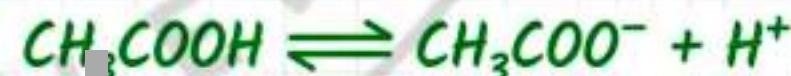
Note: Exception - H_2CO_3 (Carbonic acid) is mineral but weak.

2. Basis of Strength (Ionization)

Strong Acids

Complete ionization in aqueous solution.

Strength \propto concentration of H^+ ions.


Example: All mineral acids.

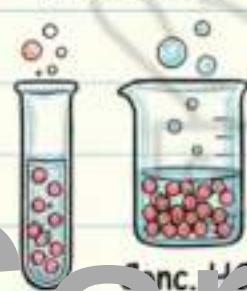
Weak Acids

Partial / Incomplete ionization.

Example: Organic acids.

Sample

Classification (Concentration & Basicity)


3. Basis of Concentration

Dilute Acid: Acid quantity is less, water is more

(e.g., 90% water / 10% HCl)

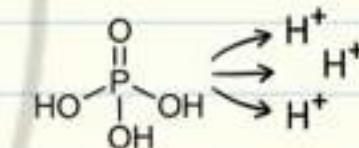
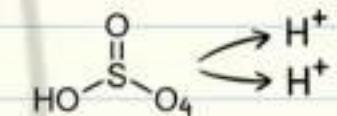
Concentrated Acid: Acid quantity is high, water is low

(e.g., 90% HCl / 10% H₂O)

CRITICAL WARNING: Dilution of an Acid

Rule: Acid to Water
(Gradually with stirring).
NOT Water to Acid.

Reason: Highly Exothermic reaction. Adding water to acid causes explosion/splashing due to heat generated.



4. Basis of Basicity

(Definition: Number of H⁺ ions produced per molecule)

Monobasic: Produces 1 H⁺
(HCl, CH₃COOH, HBr, HI)

Dibasic: Produces 2 H⁺
(H₂SO₄, H₂CO₃)

Tribasic: Produces 3 H⁺
(H₃PO₄)

Acidic Behavior & Water

Common Feature: Acids produce H^+ / H_3O^+ when dissolved in water.

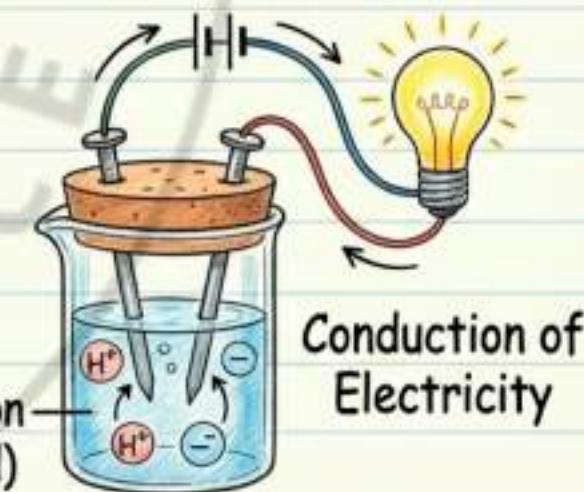
Not All Hydrogen Compounds are Acids

HCl , HNO_3 → Acidic (produce H^+).

Glucose ($\text{C}_6\text{H}_{12}\text{O}_6$), Alcohol ($\text{C}_2\text{H}_5\text{OH}$) → Neutral. They contain H but do not ionize/produce H^+ .

Distilled vs. Rain Water

Distilled: Neutral. No ions. Does not conduct electricity.

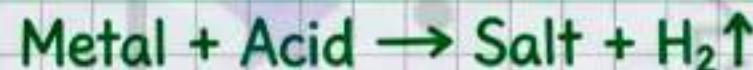

Rain Water: Conducts electricity. Contains dissolved gases (CO_2 , SO_2) which form acids (H_2CO_3 , H_2SO_4) and ions.

Sample

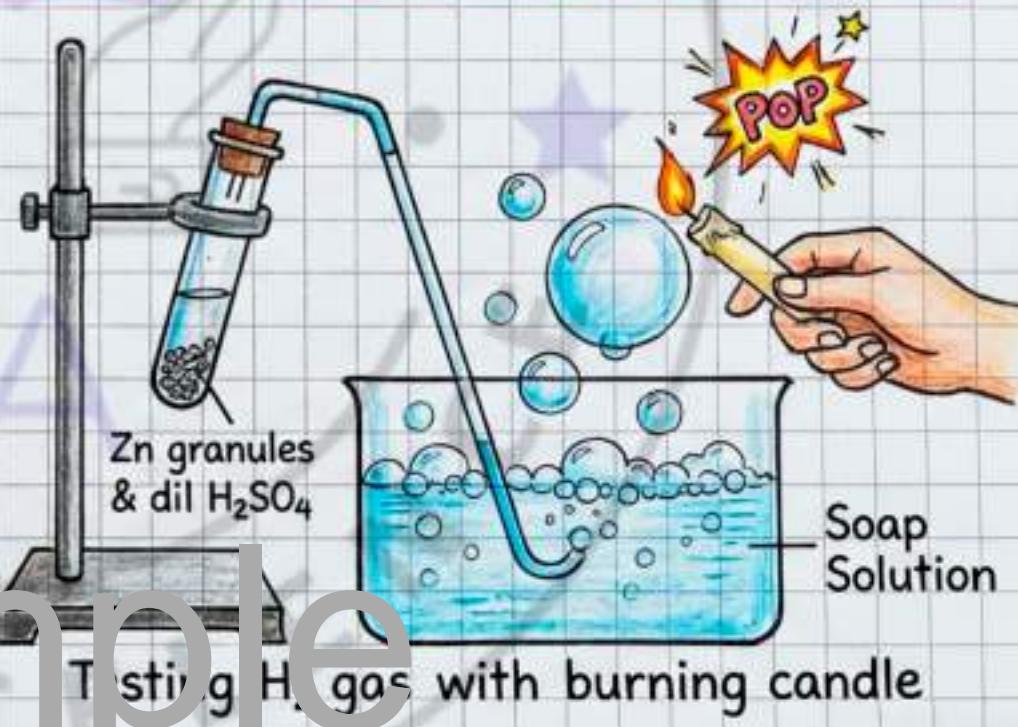
Absence of Water

Acids only breakdown in water. In solid/gaseous state (dry), they do not show acidic behavior.

Acid Solution
($\text{H}_2\text{O} + \text{Acid}$)



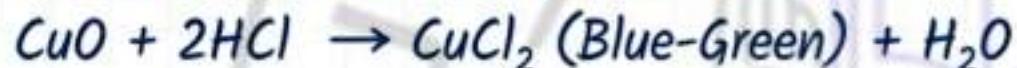
Chemical Properties of Acids


1. **Corrosive Nature:** Mineral acids cause burns. “Eat up” wood, cloth, stone, metals. **Storage:** Glass jars (never metal).

Warning: Do not keep curd/sour substances in Brass/Copper vessels (forms poisonous salts).

2. Reaction with Metals:

Note: Displacement reaction ($\text{Zn} > \text{H}$).



Sample

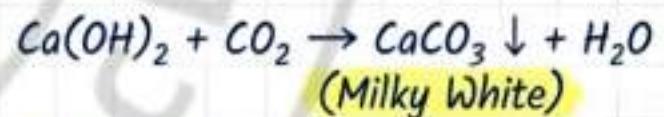
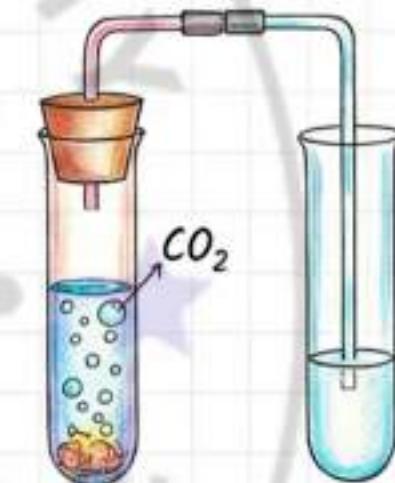
Chemical Properties of Acids

3. Reaction with Metal Oxides (Neutralization):

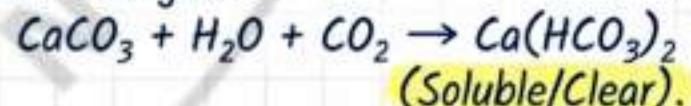
Metal Oxide + Acid \rightarrow Salt + Water

4. Reaction with Metal Hydroxides:

Metal Hydroxide + Acid \rightarrow Salt + Water



5. Reaction with Carbonates/Bicarbonates:

Carbonate/Bicarbonate + Acid \rightarrow Salt + CO_2 + H_2O



Uses: H_2SO_4 (Fertilizers), HCl (Textile), HNO_3 (Explosives).

Lime Water Test

Excess gas:

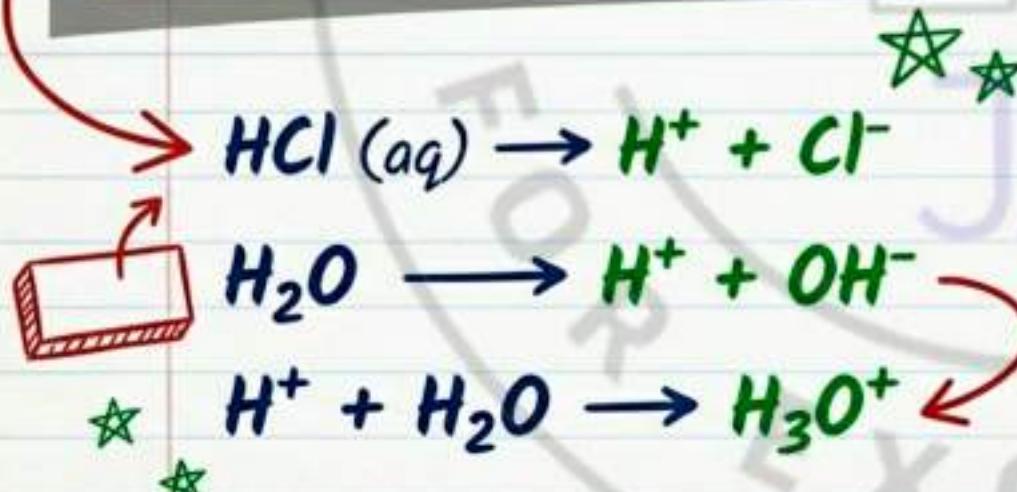
Bases

Arrhenius Concept - 1884

Bases are those chemical substances, when they dissolve in water, produce Hydroxide ions OH^- . They can neutralize an acid.

Physical Properties

- ✓ Bases are bitter in taste.
- ✓ They turn red litmus to blue.
- ✓ They give OH^- ions when they dissolve in water or aqueous solution.
- ✓ They also act as an electrolyte and conduct electricity due to presence of OH^- ions.

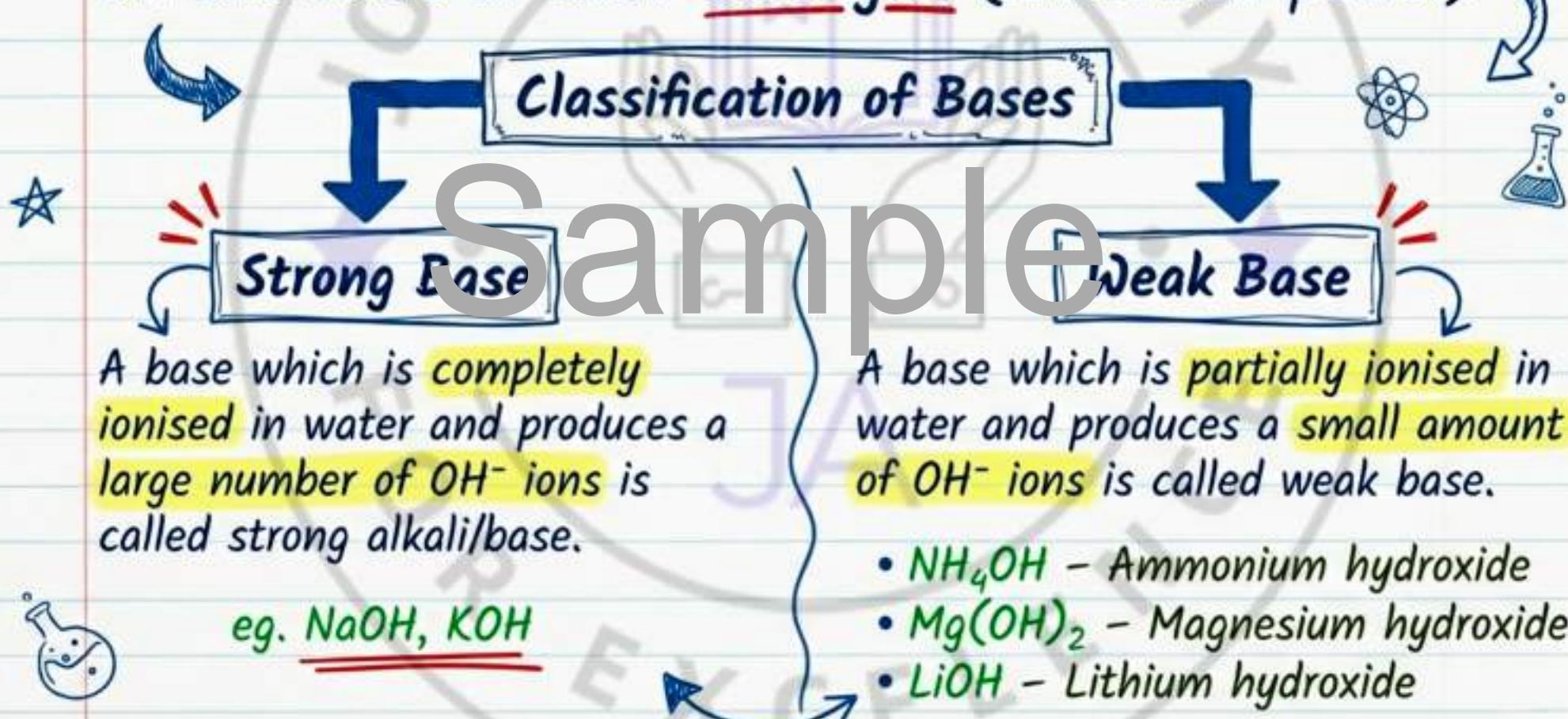


→ Examples: NH_4OH , $\text{Ca}(\text{OH})_2$

Q. How is the concentration of hydroxyl ions affected when the solution of base is diluted?

Ans: When the solution of base is diluted by mixing more water then the concentration of OH^- ions per unit volume decreases.

Sample



Q: How is concentration affected when acid is diluted?

Ans: When the concentrated solution of an acid is diluted by mixing water then the concentration of H^+ ions per unit volume decreases.

Classification of Bases

On the basis of their Strength (Ionisation power)

Classification: On the basis of their Acidity

We call it acidity because it replaces H^+ ions and takes its position.

Monoacidic bases

The base/alkali on complete ionisation produces one OH^- ion in aqueous solution.

eg. $NaOH$, KOH , $LiOH$

Diacidic bases

The base on complete ionisation produces two OH^- ions in aqueous solution.

eg. $Ca(OH)_2$, $Mg(OH)_2$, $Be(OH)_2$

Triacidic bases

The base on complete ionisation produces three hydroxyl ions in aqueous solution.

eg. $Al(OH)_3$

Classification: On the basis of Concentration

→ It means the amount of water present in them.

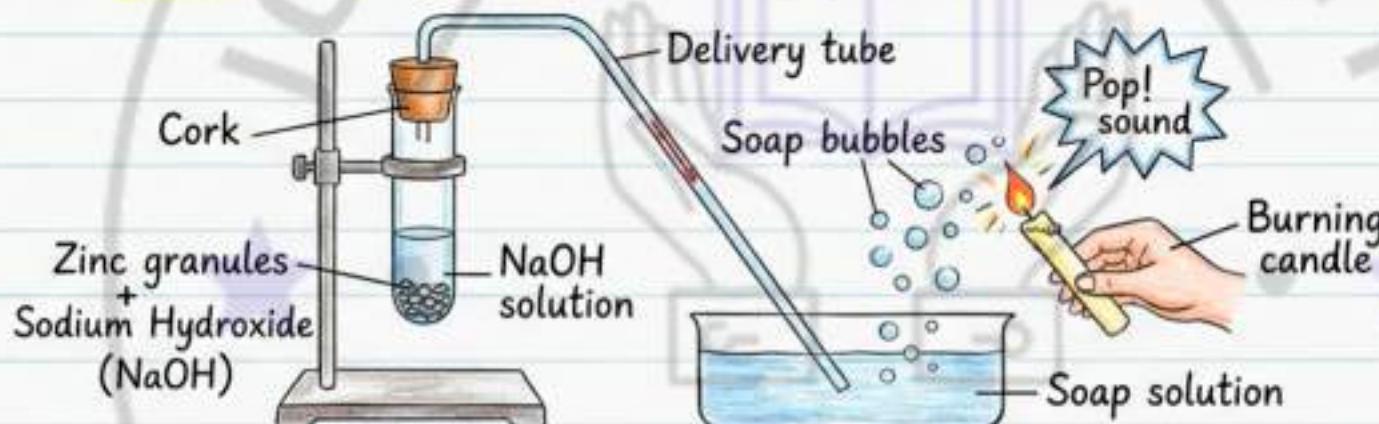
Concentrated Base

Dilute Base

Amount of water is less and amount of base is more.

eg. conc. NaOH

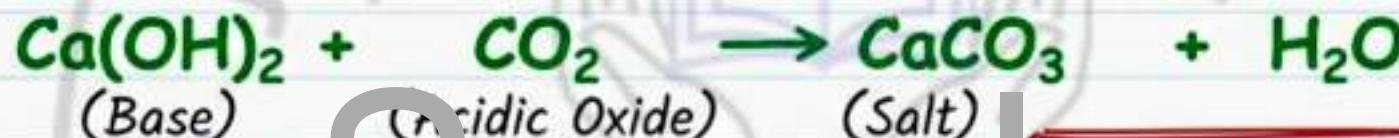
Amount of water is more and amount of base is less.


eg. dil. NaOH

Chemical Properties of Bases

1. Reaction with metals

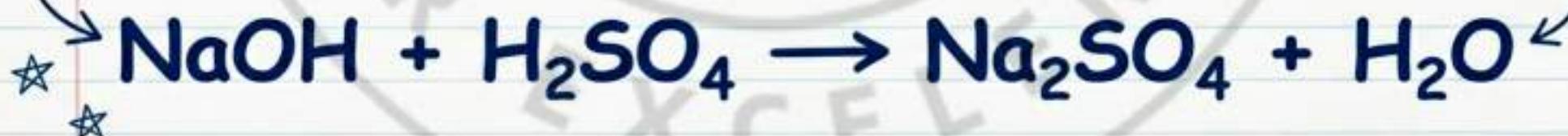
→ All metals don't react with base. Only few metals (Al, Zn, Pb) which are **Amphoteric** in nature react with base and form complex salts.


→ H_2 gas is evolved, which is collected by downward displacement of water.

Chemical Properties

2. Reaction with non-metal oxide

→ Non-metal oxide + base → Salt + water


Non-metallic oxides are acidic in nature so they react with base to form salt and water (Neutralisation reaction).

Met. I oxides are basic in nature, so they don't react with base. (Exception: Amphoteric metals like Al, Zn react with both).

3. Neutralisation reaction

When acid and base reacts with each other, they form salt and water.

Uses of Bases

1. Sodium Hydroxide – NaOH

- Used in manufacture of soap, paper, rayon etc.
- It is starting material for many compounds.
- Largely used in Lab and Industries.

2. Calcium Hydroxide

- Used in making whitewash, bleaching powder.

3. Magnesium Hydroxide

- Used as an antacid to reduce acidity in stomach.

4. Sodium Carbonate

- Used in softening hard water, used in washing soda.

5. Sodium Bicarbonate

- Used in fire extinguisher

Sample

Salts

- * Salt is a general name, it doesn't refer only to common salt – NaCl .
Salt family is a huge family.

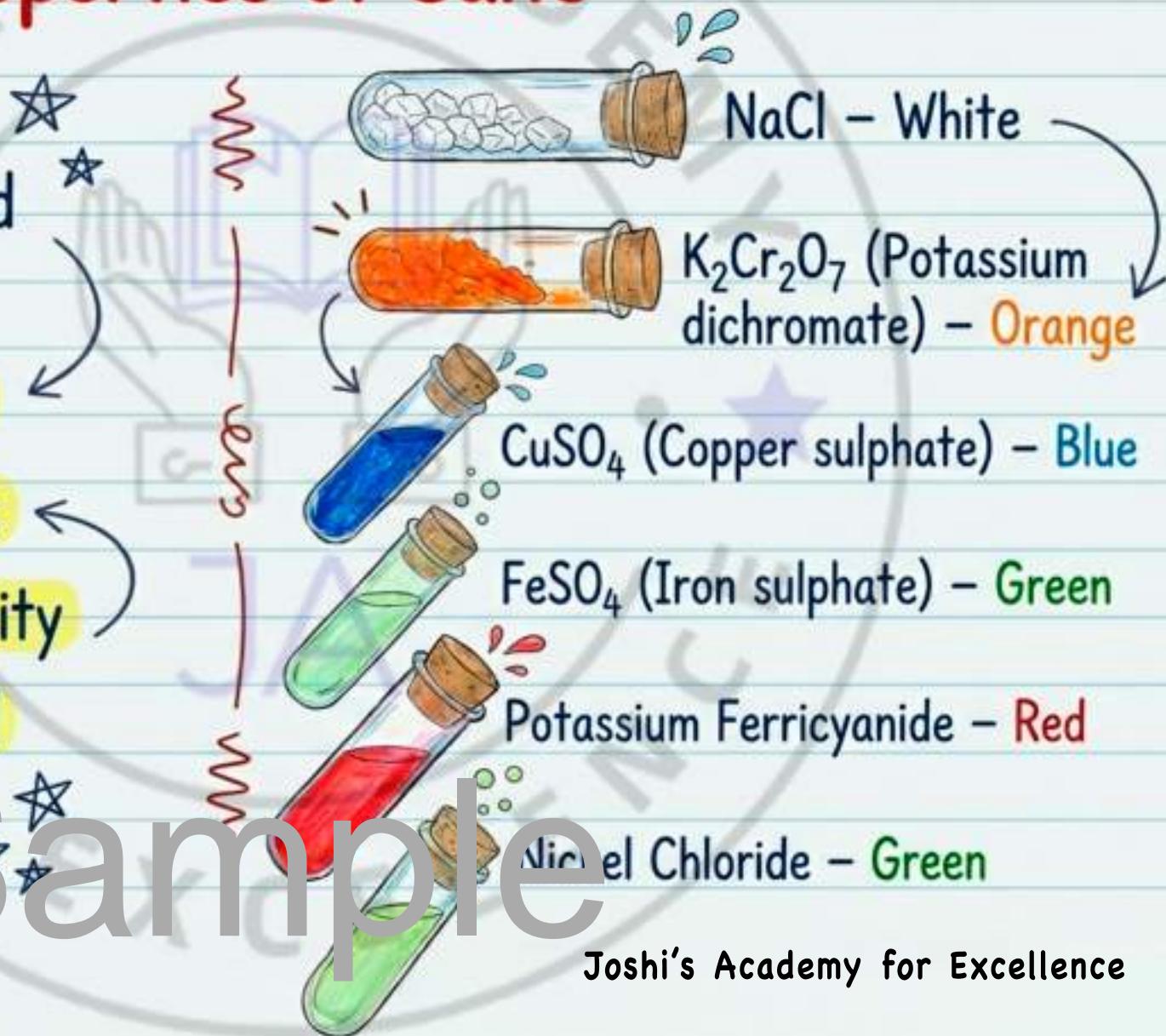
Formation

- * Salts are formed when acid and base react with each other (Neutralisation).


Equation: Acid + Base \rightarrow Salt + Water

- * Also formed when metal oxide reacts with acid $\text{CaO} + \text{HCl} \rightarrow \text{CaCl}_2 + \text{H}_2\text{O}$

Structure


- * A salt is an ionic compound. When dissolved, gives Cation (+ ion) and Anion (- ion).

Sample

Properties of Salts

- Solids
- High Melting and Boiling point
- Soluble in water
- Ionic compounds
- Conduct electricity
- They are neutral compounds

Sample

Types of Salts

1. Normal Salt

It doesn't contain any H^+ or OH^- ion. Formed by complete replacement of H^+ ions. Eq: $\text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + \text{H}_2\text{O}$ (excess)

2. Acid Salt

Partial replacement of H^+ ions. Shows some acidic behaviour.

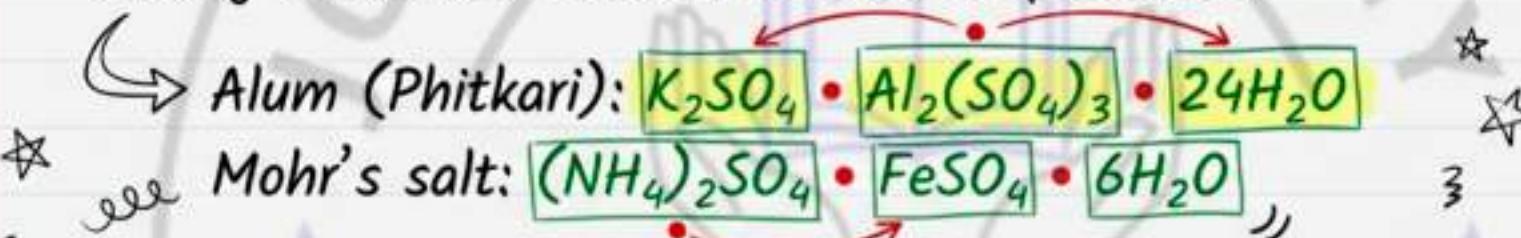
Eq: $\text{KOH} + \text{dil. H}_2\text{SO}_4 \rightarrow \text{KHSO}_4 + \text{H}_2\text{O}$ (less amount) ✓

Examples: NaHSO_4 , NaH_2PO_4

Caveat

Note: HCl & HNO_3 cannot make acid salt (only 1 H^+). Only dibasic/tribasic acids can.

3. Basic Salt


Partial replacement of OH^- ions from the base. Contains OH^- .

Eq: $\text{Pb(OH)}_2 + \text{HCl} \rightarrow \text{Pb(OH)Cl} + \text{H}_2\text{O}$ (Basic Lead Chloride)

Eq: $\text{Cu(OH)}_2 + \text{HCl} \rightarrow \text{Cu(OH)Cl} + \text{H}_2\text{O}$ (Basic Copper Chloride)

Types of Salts

4. **Double Salt:** At least two salts joined by a dot. Crystalline. Formed by mixing saturated solution of two simple salts.

5. **Mixed Salts:** Fixed proportion of two salts sharing either a common cation or anion. No H^+ or OH^- .

- $NaKSO_4$ (Na^+ , K^+ – 2 cations; SO_4^{2-} – 1 anion)
- $NaKC_3$ (Sodium Potassium Carbonate)
- Bleaching Powder ($CaOCl_2$): Ca^{2+} (1 cation); OCl^- , Cl^- (2 anions)

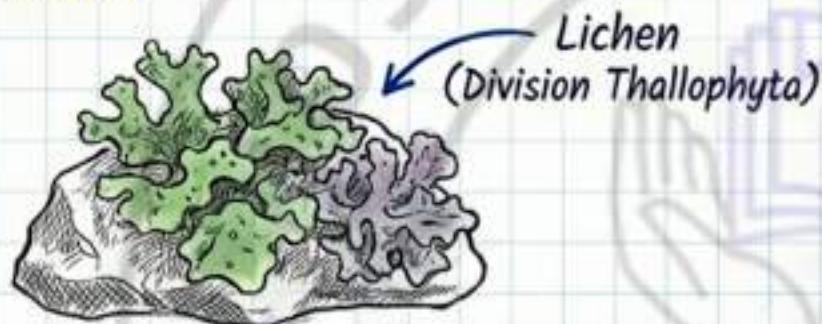
6. **Complex Salt:** Coordinate compounds. Simple ion + Complex ion.

- $[Zn(NH_4)_4]SO_4$ (Tetra amine zinc sulphate)
- $Na[Ag(CN)_2]$ (Sodium Silver Cyanide)

Acid - Base Indicators

A chemical substance used to identify whether a given substance is an **acid** or **base** by a change in its colour.

Why use indicators?
We cannot taste or touch chemicals! They are poisonous, have burning properties, and are corrosive in nature.

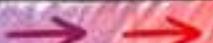

Sample

Types of Indicators

- **Natural Indicators** – Obtained directly from nature (e.g., Turmeric)
- **Synthetic Indicators** – Artificially made by humans (e.g., Methyl orange)
- **Olfactory Indicators** – Related to smell (e.g., Vanilla essence)
- **Universal Indicators** – Mixture of chemical dyes; provides information about the strength of acids/bases.

Natural Indicators (Obtained from Nature)

1. Litmus

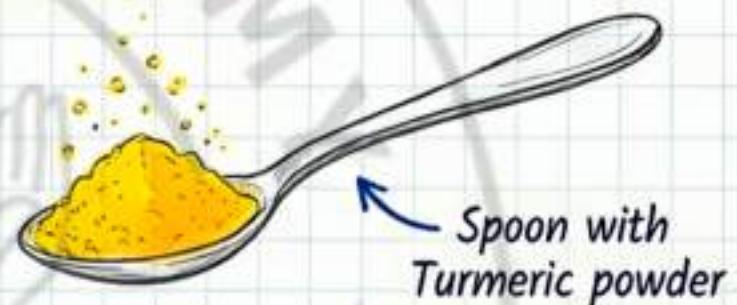

Origin: Purple dye extracted from Lichen plant.

Neutral State: In water, solution is neutral (Purple).

Litmus Paper:

Paper dipped in this solution and dried.

Dipped in Acid


Gel Pen Red

Dipped in Base

Ballpoint Blue

2. Turmeric

Properties: Yellow coloured natural dye.

Neutral State: Dissolves in water to give neutral solution.

- Basic water solution → **Reddish pink colour**
- Acidic solution → **No change (remains Yellow)**

Other Natural Indicators

Indicator	Neutral (in water)	Acid	Base
Rose	Purple	Dark pink	Green
Red Cabbage	Red	Red (no change)	Green
Hydrangea (flower)	Blue	Blue (no change)	Pink

Sample

Synthetic Indicators

(Artificial/Man-made chemical dyes)

★ Useful in acid
base titration.

Phenolphthalein Indicator

Neutral

Colourless

Acid

Colourless

Base

Pink colour

Methyl Orange

Neutral

Orange colour

Acid

Red colour

Base

Yellow colour

Sample

Olfactory Indicators

Related to the sense of smell. Substances whose odour changes in acidic or basic medium.

1. Onion

Has a characteristic smell.

Acidic medium: Smell remains same (not vanished).

Basic medium: Smell is completely vanished

(Example: cotton strip soaked in onion juice overnight).

2. Vanilla essence

Has a characteristic smell.

Acidic medium: Smell remains same.

Basic medium: Smell disappears.

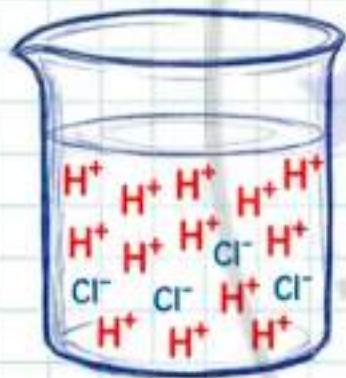
3. Clove oil

Has a peculiar smell.

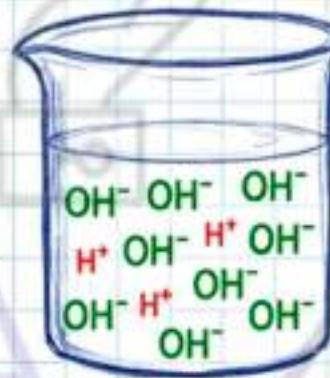
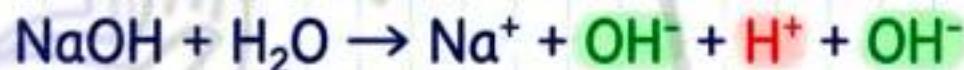
Result: It has a different smell in acid and basic medium.

Sample

Summary: Indicators in Different Media


Indicator	Neutral Medium	Acidic Medium	Basic Medium
Litmus	Purple	Red	Blue
Turmeric	Yellow	No change	Red brown
Rose Petals	Purple	Dark pink	Green
Red Cabbage	Red	No change	Green
Hydrangea Flower	Blue	No change	Pink
Onion Extract	Characteristic smell	Same smell	Smell vanished
Vanilla Essence	Characteristic smell	Same smell	Smell disappears
Phenolphthalein	Colourless	Colourless	Pink colour
Methyl Orange	Orange colour	Red colour	Yellow colour

Sample



Strength of Acid and Base & Universal Indicators

Common indicators only tell us if a substance is acid or base. They cannot indicate relative strength (strong vs weak).

How strong are acid or base? Strength depends on H^+ ion concentration.

H^+ ion concentration is more

H^+ ion concentration is less
 OH^- is more

Universal Indicator: A mixture of many types of dyes which give different colours. With the help of colours, we can find out the strength of acid or base using the pH scale.

Sample

The pH Scale

History:

Discovered in 1990 by Peter Sorenson.

Etymology:

German 'Potenz' = Power.
Means 'Power of Hydrogen'

Concept:

Scale measures concentration of H^+ ions. No unit, only numbers.

$$\text{pH} = -\log_{10} [\text{H}^+]$$

(Negative logarithm of base 10 of H^+ ion concentration).

Important Relationship:

$$\text{pH} \propto \frac{1}{[\text{H}^+ \text{ ion concentration}]}$$

High pH value

Low H^+ concentration

Low pH value

High H^+ concentration

Sample

pH Scale Categories

Acidic Solution (pH < 7)

Contains high H⁺.

Examples:

- Sulphuric Acid (H₂SO₄): pH 0 (Dark red, strong strong acid)
- Citric Acid (Lemon juice): pH 2.5 (Orange, weak acid)

Neutral Solution (pH = 7)

Examples: Pure water, Sugar solution, Sodium chloride solution.

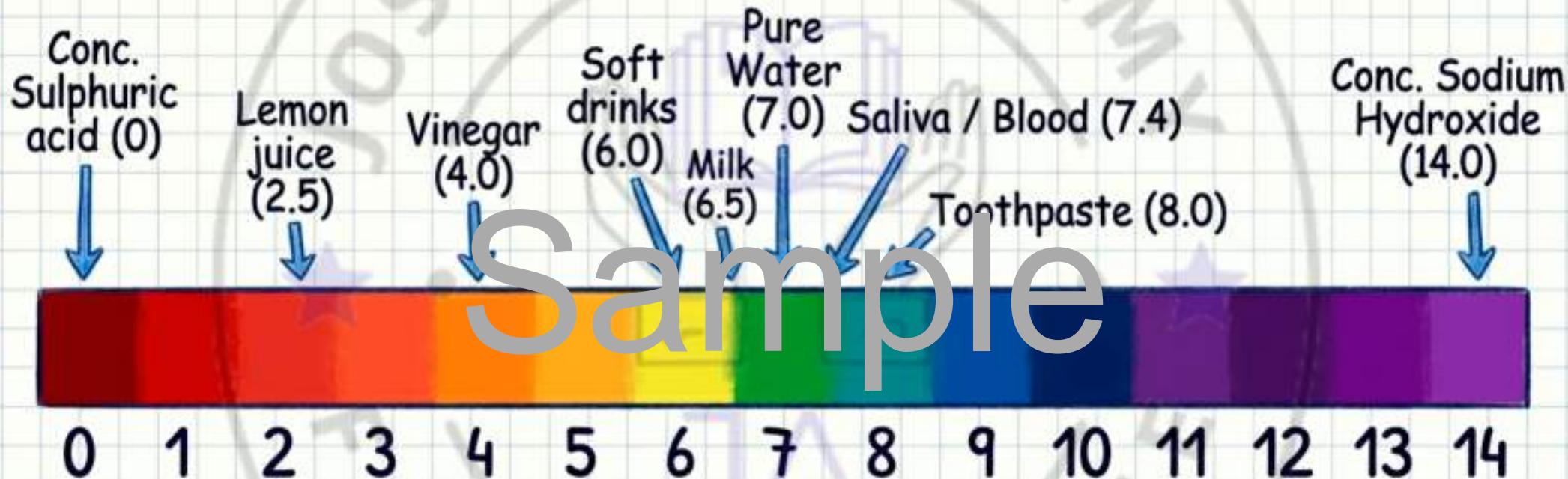
Result: No effect on litmus.

Summary:

- pH = 7 → Neutral
- pH < 7 → Acidic
- pH > 7 → Basic

Basic Solution (pH > 7)

Contains less H⁺ and more OH⁻.


Examples:

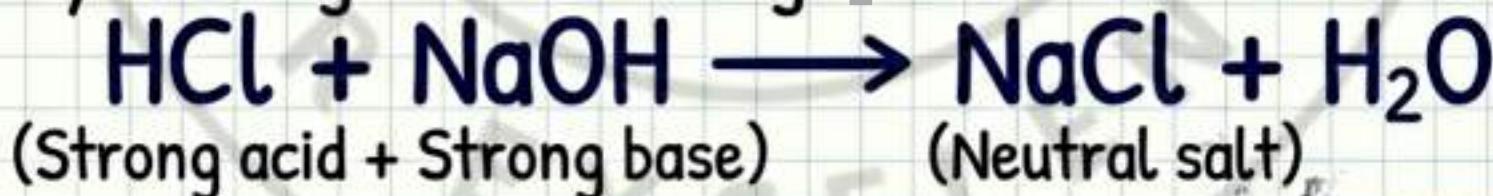
- Sodium Hydroxide: pH 14 (Strong base)
- Blood: pH 7.4 (Weak base)

Sample

pH Values & Colour Chart

0: Dark red, 1-2: Red, 3: Orange-red, 4: Orange, 5: Orange-yellow, 6: Yellow, 7: Green, 8: Greenish blue, 9: Blue, 10: Navy blue, 11: Purple, 12: Dark purple, 13-14: Violet.

pH of Salts

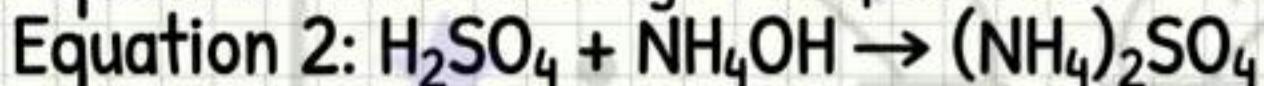
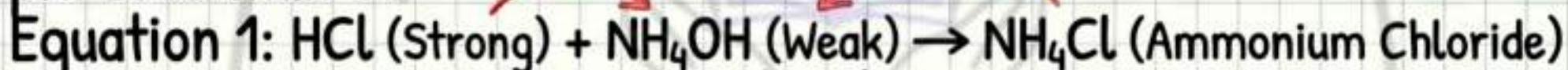

Salts are neutral compounds. Though aqueous solutions of many salts are neutral ($\text{pH}=7$), some show slight acidic or basic behaviour due to hydrolysis.

Salt	pH	Nature
NaCl	7	Neutral salt
NH ₄ Cl	6	Acidic salt
Na ₂ CO ₃	9	Basic salt

Neutral Salts

Formed by: Strong Acid + Strong Base.

pH: 7.

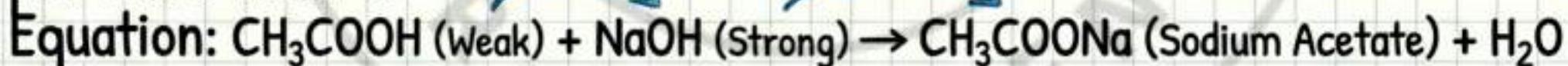



Types of Salts (Acidic & Basic)

Acidic Salts

Formed by: Strong Acid + Weak Base.

pH: Less than 7.

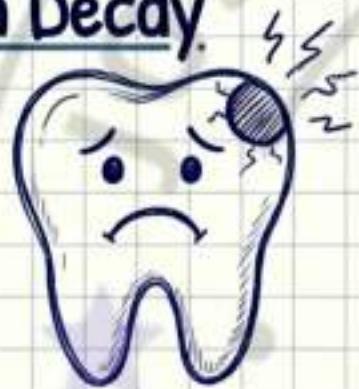


Note: In aqueous solution, nature is acidic.

Basic Salts

Formed by: Weak Acid + Strong Base.

pH: More than 7.



Note: CH_3COONa is a basic salt.

Sample

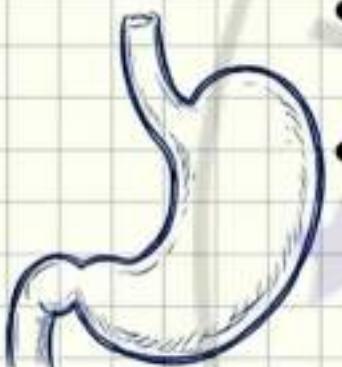
Role of pH in Daily Life (Part 1)

1. Tooth Decay

- pH of mouth is 5.5.
- Process: Sugar + Bacteria → Acid.
- Effect: Acid lowers pH below 5.5. ←
Bacteria become active and tooth decay starts. Acid corrodes teeth.
- Prevention: Clean mouth after eating.
Use toothpaste (basic) to neutralize acid.

2. Soil pH & Plant Growth

- Optimum range: 6.7 to 7.5
- Problem (Acidic pH < 6):
→ Treated with Quicklime (CaO), Slaked lime ($\text{Ca}(\text{OH})_2$), or Chalk (CaCO_3). These are basic and neutralize acidity.
- Problem (Basic pH > 7.5): Alkalinity reduced by adding decaying organic matter (manure/compost).
Naturally acidic, neutralizes the soil.



Sample

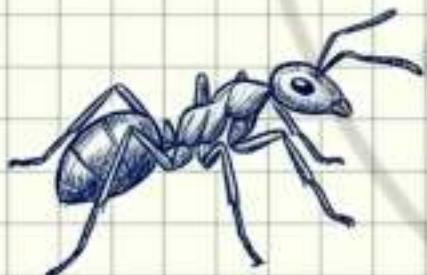
Role of pH in Daily Life (Part 2)

1. Digestive System

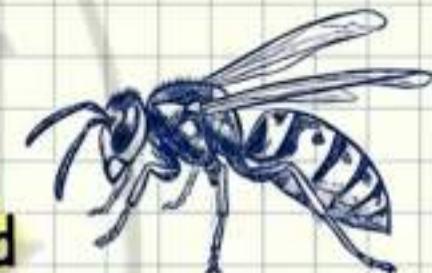
- Stomach pH: 1.4 (produces dil HCl for digestion).
- Issue: Indigestion/Overeating → Excess acid → Pain & irritation (acidity).
- Remedy: Antacids (mild base) like $Mg(OH)_2$ (Milk of magnesia) or baking soda. Neutralizes acid.

2. Sensitivity to pH Change

- Survival: Living organisms survive in narrow pH range.
- Human Body: Range 7.0 to 7.8. Outside this, systems are disturbed.
- Aquatic Animals: Acid rain (pH < 5.6) due to SO_2 , CO_2 , NO_2 in atmosphere.
- Effect: Lowers river pH, killing aquatic life.
- Prevention: Add $CaCO_3$ to water bodies to neutralize.


Sample

Self Defence by Animals & Plants (Chemical Warfare)


Injecting painful and irritating acids & bases.

- Honey Bee: Sting injects **Formic Acid (HCOOH)**. Causes pain/irritation.
- Prevention: Rub **mild base (soda)** or **metal coil**.

- Red Ant: Injects **Methanoic Acid (HCOOH)**.

- Wasp: Sting injects **Alkaline liquid**.
- Prevention: Rub **mild acid (vinegar)**.

- Nettle Plant: Stinging hair leaves inject **Methanoic Acid**. Causes **burning pain**.

Sample