
Slurp Data Services Platform
Table of Contents
Overview..............................................................................................................................................2
The Service Designer...........................................................................................................................3

Creating a Service............................................................................................................................3
Defining Service Inputs and Outputs...............................................................................................5
Adding Components to a Service....................................................................................................6
Deleting a Service..........................................................................................................................10
Testing a Service............................................................................................................................10
Field Mapping Editor.....................................................................................................................13
Debugging a Service......................................................................................................................15
Service Security Model..................................................................................................................17
Menu Options................................................................................................................................19
Programming Pallet.......................................................................................................................22
Operations Pallet............................................................................................................................24

Running Slurp as a Stand-alone Data Service....................................................................................28
Windows (Service).........................................................................................................................28
Windows (Command Line)............................................................................................................29
Unix (Daemon)..............................................................................................................................29
Unix (Command Line)...................................................................................................................29

Writing and Using a Plugin................................................................................................................30
Server Clustering................................................................................................................................31
Frequently Asked Questions...............................................................................................................32



Overview

• A one-stop, code-free solution to quickly develop and deploy extremely fast/agile 
data services for Windows/Unix/Cloud.

• Operates as an in-memory ETL (Extract Transform Load) platform but is also able 
to stream data between selected components (easier than Azure Data Factory).

• Uses it’s own micro-services framework to ensure maximum performance. If run on 
Java 21+, it makes use of Virtual Threading for outstanding performance.

• Any service can be configured to be available to an external client, which can 
access it via Restful or SOAP calls, using basic or token-based authentication.

• Can be deployed as a Windows service, a Unix daemon or by WAR file to a 
separate Java web server.

• Slurp servers are cluster-ready.

• Has built-in web and OAuth2 servers making it a stand-alone solution.

• Create/test/deploy in mixed Windows/Unix/Cloud environments.

• Requires Java JRE 1.8 or greater. If your Java installation is not recorded in 
Windows registry, or to choose an alternative JRE, then set the JAVA_HOME 
environment variable to where it is installed.

• Is a single 16MB binary (slurp.exe) which is used for:

a) The   Service Designer  . The user interface to create/update services, and 
optionally by single click to create a Java web server deployment of the services
(WAR file). It will run as a native application under Windows, and for other 
platforms run it with ‘java -jar slurp.exe’.

b) To run Slurp as a Windows service or Unix daemon.

c) The library to add to the build classpath when creating a plugin for Slurp (it is 
also JAR format).

• The services configuration maintained by a) or read by b) is contained in the file 
slurp.xml, which is in the same directory from which slurp.exe is run.

• Other, preference-type properties are kept in the file slurp.properties. It will be 
generated when you edit a service or change any preferences in the Service 
Designer.

• There are existing plugins for:

a) Secure file transfer (SFTP) and secure remote shell execution (SSH).

b) LDAP access control checking.

c) Reading/writing to Windows shares (SMB/CIFS).

d) Reading/writing Microsoft documents (only Excel so far but more by request).

https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html


The Service Designer

Creating a Service

• Create a service using menu Service>Create (or right-click on the canvas). The 
following dialogue is displayed:

Menu Options: Create, 
configure, save and deploy 
services

Programming Pallet: Apply 
conditions to data flows and 
other programming 
components

Operations Pallet: Parse, 
generate and filter data, call web 
services and access data stores 
and plugins

Inputs component: 
Specify service inputs here Outputs component: 

Specify service outputs here

Components: Specify 
bespoke functionality

Data flows: Connect 
fields between 
components



• Assign a ‘Package’ to the service so that related services can be grouped together 
for the convenience of, eg. importing/exporting them. Packages do not exist on their
own right, but only if specified by one or more services. The ‘Timeout’ can be set 
such that the service will be aborted if its execution takes longer than the specified 
time. ‘Required Permissions’ are the permissions required to execute the service, 
which will be derived from an authenticated user, see Security Model. Automatic (in 
addition to the normal on-demand) invocation of the service can be specified with a 
Cron expression and/or when the Slurp runtime is started and/or stopped. ‘DB 
Transactions’ specifies how to handle database transactions (if any) for this service 
and for other Slurp services called from it. See Miscellaneous Operations for more 
details. ‘Execute in Background’ will cause the service to run in the background so 
that the caller does not need to wait for it to complete. A blank service will look like 
this:

• The service contains 3 components by default: for input, output and a service 
comment.



• No service inputs or outputs have been specified so far. If this service is run it will 
not expect any inputs and will return no outputs. It could nonetheless do something 
useful in between.

• The service can be tested in the GUI by right-click ‘Run Service’ (or control-r). 
Alternatively, it can be tested from a web client, eg. browser, using the inbuilt Jetty 
web server (see Test  ing   a Service  ).

• To switch between different services, either:

• Double-click on a the service in the navigation panel.

• Use mouse forward and back buttons (if you have them) to scroll through your 
service editing history, or the ‘Next’ and ‘Previous’ buttons in the menu.

• Right-click the canvas and select ‘Go to Service’, then select a service.

Defining Service Inputs and Outputs

• Right-click on a service and select ‘Properties’. This will invoke the Container Editor 
on the service input and output components, eg:

• The basic field types are: text, integer, decimal, date/time, boolean, binary and 
container. For a singular required field these are represented by one of the following
icons respectively: 

• The date/time type represents a local date/time as would be represented by a 
calendar date combined with time. More description in FAQs.

• There are variants for each field type, depending on whether it’s a list of the type 
and if its value is mandatory, eg. for text type:

Service input and output 
fields

Buttons to add/remove fields 
from inputs and outputs

Adjust field properties



• List of text

• Non-mandatory text

• Non-mandatory list of text

• If a field has had a constant value applied to it (right-click, ‘Set Constant’) then it will
have a yellow background and the constant value can be displayed by hovering the 
mouse over it, or the constant changed or removed by right-click.

• Streamable fields have a black ‘s’ marked in the icon, eg: 

If a source streamable field/container is mapped to a destination streamable 
field/container and they have no other mappings then data will be streamed 
between them, as opposed to all being held in memory. This allows for unlimited 
amounts of data to be transferred between the components. A data flow that is set 
to stream data between components is depicted with a thick black data flow line. 
More details about streaming data flows can be found here.

• You can also set the service input or output fields using an XSD (XML Schema 
Document) or JSON Schema by double-clicking on the input or output component 
itself.

Adding Components to a Service

• This is done by dragging components from the Programming Pallet or Operations 
Pallet and dropping them on the canvas.

• At the point of drop, most components display a dialogue so that a variant of the 
component can be chosen and configured. This process will set the component’s 
input and output fields, and usually the default value of input fields (to save you 
from having to set them using a data flow or constant).

• The arrow on the left is for the component inputs, the arrow on the right is for the 
component outputs and the arrow at the bottom can be used to handle errors when 
the component is executed (by connecting it to a component that handles the error).

• Initially, the component’s titles and borders are greyed out. This is because it 
doesn’t yet have any input flows to activate it. It is effectively commented out code 
until at least one input or control flow is passed to it (see Programming Pallet for a 
description of component activation).



• Once the component is on the canvas, it’s conventional to specify where its inputs 
are coming from (if it has any). This is done by dragging a line (creating a flow) from
the output of a previous component to the input of the current component, eg: to 
parse the output of a Restful service call:

• Components and flow lines can be removed by selecting them with the mouse and 
then using the delete key. Most components panels can be written into to document
their intended purpose.

• Double-click a data flow line to specify the data mappings between the output fields 
of the previous operation to the input fields of the next operation (at runtime, this will
signify that the contents of the output fields are copied to the input fields). This 
invokes the Field Mapping Editor, as follows:

• Create data mappings by dragging a line from a source field on the left to a 
destination field on the right. In-line transformations on the data can be specified by 
right-click and selecting ‘Add Function’ to wire-in a function call (the same functions 
can be dropped onto the service canvas by using a Call Function ). Illogical 
mappings, eg. decimal field mapped to binary field or trying to lose the context of a 
container list element cannot be made or will be highlighted as an error.

• Data mapping lines can be can removed by clicking with the mouse and then using 
the delete key. Once happy with the mappings, click Save.

• Now that the inputs are available to the component it may require further 
configuration (which is often dependent on the inputs). To do this, double-click the 
component to (re)configure it.



• Editing data flows and configuring components can be done as many times as 
necessary.

• Constants can be assigned to input fields instead of using field mapping. Right-click
a field to get options. Input fields can also be assigned a default value in case the 
field is not set by a mapping or constant.

• Components can be moved or copy/pasted using multi-selection: component 
selection can be done by holding down the left mouse button and dragging across 
component titles and/or holding the Control key and clicking component titles. Then 
to move the selection drag a selected component title, or right-click for copy/paste 
options.

• Right-click on a component to get other component options, including:

• Edit/View the component inputs or outputs (if it has them). This can also be 
achieved by double-clicking the component input or output icons.

• Turn container list iteration on/off for the component. A component with this 
setting expects to operate on the elements of a top-level container list (see 
program iteration constructs).

• Generate XSD or JSON Schema for the component inputs or outputs (if it has 
them).

• Log inputs, outputs or both. Requires logging level set to at least ‘custom’ in 
menu File>Preferences.

• If the component doesn’t have any data inputs it will still require an incoming flow to 
active it, ie. makes it dependent on the execution of a previous component. This 
can be either an empty data flow from another component, or the control flow output
from a Conditional Flow Control component (see description of the Programming 
Pallet), or to handle an error from a previous component.

• The different styles of flow lines are:

• Data flow with no field mappings

• Data flow with field mappings

• Data flow set to stream data

• Control flow

• You can right-click the canvas for other options. If a data flow or component shows 
any red colouration (indicating an issue) then hover the mouse over it to find the 
reason.

• Each opened service is contained within it’s own tab in the Service Designer. The 
title of a tab is the service name.

• A red title indicates that one or more configuration errors exist in the service 
(hover over your mouse over red components to determine the reasons).



• If the title is preceded by an asterisk (*) this indicates that the service has been 
changed since the service tab was opened and right-clicking on the service 
canvas will have the option to ‘Undo Service Changes’ (since the tab was 
opened). Service changes that have been undone can be redone with ‘Redo 
Service Changes’ as long as no other changes to the service have been made 
since.

• Once a service tab is closed or you click ‘Save Service Changes’ you lose the 
option to ‘Undo Service Changes’. However, you always have the option to use 
menu Workspace>Edit Log and revert to a previously saved snapshot of your 
services since the Service Designer was started.

• You don’t have to save changed services between runs of the Service Designer. 
When you rerun the Service Designer you can carry on where you left off.

• If the service title is preceded by an exclamation mark (!) this indicates that the 
service has one or more dialogues open on it, and closing the service may lose 
their changes.

• During your editing session, periodic snapshots of your work are taken, so that you 
can revert to them if you decide to undo changes across all edited services, see 
menu Workspace>Edit Log.



Deleting a Service

• You can either use menu Service>List/Delete to delete services or right-click on 
services in the navigation bar and select ‘Delete Service(s)’.

• As services can be dependent on other services, it can be helpful to use the former 
method, as having deleted some services you may decide to not save the result, in 
which case you can just cancel the dialogue. The dialogue informs you of any 
missing dependencies as you remove services and allows you to inspect the 
affected services before dismissing the dialogue.

• Whichever method you choose, if your workspace had unsaved changes before 
service deletion(s) then a snapshot of the workspace is taken prior any deletions. 
Prior configuration can be reverted to using menu Workspace>Edit Log.

Testing a Service

• This can be done easily in either of three ways:

a) Select menu Service>Run (or control-r) to provide input data in the GUI and see 
the outputs in the GUI.

b) Use the built-in Jetty web server and call the service from an external client (web
browser, Restful or SOAP client).

c) Create a deployment WAR file for an external Java web server and test the 
service there.

• For test method a) you will be prompted to enter input data:



• Unset mandatory fields will be marked in red, until set. Unset non-mandatory fields 
are displayed with strike-through. Select a field and then click in the right-hand box 
to set its value. If the field is a list then multiple values can be entered. Right-click 
the field or its value to unset or remove it. A summary of a field’s current value is 
displayed to the right of the field.

• Test data can be created, saved or recovered using the buttons on the left (‘Clear’, 
‘Store’, ‘Retrieve’, ‘Set’).

• You then have 3 options of how to run the service:

• ‘Run’: will run the service until it completes normally, or a non-handled error 
occurs, or a service times out (timeout is a service property).

• ‘Debug’: will enable you to debug your services, using breakpoints, single-
stepping, etc (see Debugging a Service).

• ‘Run in browser’: will call the service from your browser (only enabled for a 
service with non-container input parameters).

• For test methods b) and c), by default, no services can be called from outside Slurp.
To make a service available externally use menu Server>Configure, to assign it a 
service ‘Endpoint’ and/or ‘Restful Path’, and enable it (only ‘Endpoint’s are used by 
SOAP requests). For test method b), start the local server using menu Server>Start 
Local Server, or click the circular server status icon (red=stopped, green=running).

• So, for example, with ‘HTTP Port enabled’ set to 8080, service “Service XYZ” 
assigned endpoint name “xyz” and the local server started, then a JSON encoded 
response from this service can be invoked using http://localhost:8080/xyz.json.

• For test method c), the ‘Built-in Server’ details are not used. Having specified the 
Endpoints and/or Restful Paths for your services and enabled them, use menu 
Server>Create Deployment to create the deployment WAR file. This can then be 
deployed on a separate Java web server like Tomcat.

• There are 3 ways for a request to pass parameters to an invoked service:

a) As URL parameters, eg. http://localhost:8080/remote.json?Operation=add& 
Arg1=3&Arg2=5, or

b) As components of the restful path, eg. http://localhost:8080/remote/add/3/5.json 
(where Restful Path for service has been set to remote/{Operation}/{Arg1}/ 
{Arg2}), or

c) As a JSON object or XML content in the request body (if it starts with ‘{‘ it is 
assumed to be a JSON object, if ‘<’ then XML).

Example JSON request body:

{"Operation":"add","Arg1":3,"Arg2":5}

Example XML request body (where input fields are defined as 3 attributes):

<root Operation=”add” Arg1=”3” Arg2=”5”/>



Example XML request body (where input fields are defined as 3 elements): 
<root><Operation>add</Operation><Arg1>3</Arg1><Arg2>5</Arg2></root>

• The format of the response from the service is specified by the extension placed 
after the endpoint name in the request URL: “.json” for JSON, “.xml” for XML, etc.

• The full set of endpoint extensions are:

• .json - execute the service and return the results as JSON.

The returned content type will be ‘application/json’.

• .xml - execute the service and return the results as XML.

The returned content type will be ‘application/xml’.

• .txt – execute the service and return the results of the single output text field.

The returned content type will be ‘text/plain’ unless function 
setResponseHeader has been called to set ‘Content-Type’ otherwise.

• .bin - execute the service and return the results of the single output binary field.

The returned content type will be ‘application/octet-stream’ unless function
setResponseHeader has been called to set ‘Content-Type’ otherwise.

• .wsdl - return a WSDL for the service (no service execution).

• .jsoni - return a JSON Schema of the request body (no service execution).

• .jsono - return a JSON Schema of the response body (no service execution).

• .xsdi - return an XSD (XML Schema Definition) for a request body (no service 
execution).

• .xsdo - return an XSD (XML Schema Definition) for a response body (no service 
execution).

• To test a service using a SOAP client you will need to obtain the WSDL (Web 
Service Description Language) for the service. This can be done in 3 ways:

• By right-clicking on the service’s Input component and selecting menu 
Generate>WSDL for Service.

• By invoking the .wsdl URL for the service (see endpoint extension, above).

• Alternatively, the WSDL for all externally available services can be obtained 
using, eg. http://localhost:8080?wsdl.



Field Mapping Editor

• The Field Mapping Editor is invoked by double-clicking on a data flow that connects 
the output container of a previous operation to the input container of the next 
operation.

• It can be used to specify the field mappings between the containers (ie. how the 
contents of the fields will be copied at runtime) as well as the properties of the fields
in the containers.

• Fields can be created and removed using the top-right toolbar or delete key. To 
specify a field mapping, drag a source field to a destination field using the mouse. 
Invalid mappings will be not be allowed, or highlighted in red. If the destination 
container has a pseudo field called ‘{add}’ then dragging a mapping line to it will 
create a copy of the source field as well as the mappings to it (not for container field
in some circumstances). This pseudo field mechanism is used as a prompt to where
input (parameter) fields are expected to be created as well as facilitating their 
creation.

• Click on a field to view its properties, and change them (component-defined fields 
are generally read-only but their default value can nonetheless be updated).

• Right-click for other functions including copy, paste and for adding an in-line 
function call.

• A destination field does not have to be mapped to and could, if necessary, be set to 
a constant value (right-click field, ‘Set Constant’), or have a default value set.

• Dragging from a source container to a destination container will attempt to map 
fields between the two containers. This auto-mapping only applies to fields of the 



same name (case-insensitive) and type (as might be created by copy/paste of a 
field hierarchy). The Auto-map tool performs the same function but at the top level.

• Slurp has 7 field types, made up of 6 data types (text, integer, decimal, date/time, 
boolean and binary) plus the container type. It is not possible to map from one type 
directly to a different type without either using a conversion function or specifying
that the source field permits auto-conversion ie. by default, no automatic type 
conversions are performed.

• The toolbar elements and field properties may be disabled, depending on field 
selection and whether the field is read-only (a component-defined field).

• Incorrect mapping lines are red dashed. If a field is in labelled in red then hover the 
mouse over it to find the reason.

• If the destination field is a container that allows user-added parameters then the 
pseudo-destination field ‘{add}’ specifies where additional component parameter 
fields are to be populated. These are usually data fields (ie. not a container), but for 
some components a container can also be specified.



Debugging a Service

• If you click ‘Debug’ in the run panel, the Service Designer will be displayed with 3 
extra menus and 4 extra buttons, and service execution will be stopped on the 
Inputs component (component title and border coloured red). Service time outs are 
not honoured in debug mode:

• The additional debug menus and buttons are:

• The ‘Breakpoints’ menu lists breakpoints that have been set on components (by 
right-clicking them and selecting ‘Set Breakpoint’. You also have the option of 
clearing all breakpoints. Individual breakpoints can be cleared by right-clicking a 
component and selecting ‘Clear Breakpoint’. When a component has a breakpoint 
set on it, it will be displayed with a thick red border.

• The ‘Stoppages’ menu lists service runners where components are waiting to be 
executed. It may contain different entries for the same service as the same service 
may be being executed by different service runners at the same time.

• The ‘Service Stack’ menu lists the service runner stack in the context of the 
currently select stoppage (if you haven’t selected a particular stoppage then it will 
default to displaying the service runner stack of the first stoppage found for the 
current service).

• You can select a service runner from the stack to see the inputs and outputs of 
executed components in the service call chain.



• The button runs any single ‘awaiting execution’ component in the current 
stoppage service (select a particular stoppage if the service is currently being run 
by different service runners). The icon will be greyed out if there are none to 
execute. To run a specific ‘awaiting execution’ component, right-click and select 
‘Execute’ (or ‘Execute Into’ if it’s a service call and you want to step into the service 
call).

• The button will resume executing all ‘awaiting execution’ components across all 
services and stop execution at the first component which is set with a breakpoint. If 
no breakpoint is hit then execution will continue without stopping. The icon will be 
greyed out if there are no breakpoints set across all services.

• The button will resume executing all ‘awaiting execution’ components across all 
services and continue without stopping (ie. breakpoints will have no effect).

• The button will terminate the debug session immediately and return you to the run
panel.

• Additionally, if you have a service with any ‘awaiting execution’ components then 
you can right-click on any component and select ‘Execute to Here’. This will resume
executing all ‘awaiting execution’ components in the current service runner and 
either stop at the selected component, or if it is not hit, execution will stop on the 
output component (giving you the opportunity to examine what just happened).

• During debugging, right-clicking a component will display component-related debug 
options, below the divider in the pop-up menu. These include:

a) Execute. This option is only available if the component is awaiting execution.

b) Execute Into. This option is only available if the component is awaiting 
execution and is a service invoker.

c) Set/Clear Breakpoint. This option is always available.

d) Execute to Here. This option is only available if you are in the context of a 
stopped service.

a) View Inputs/Modify Inputs. The View Inputs option is available if the 
component has already been executed. The View/Modify Inputs option is 
available if the component is awaiting execution.

a) View Outputs. This option is available if the component has already been 
executed.

• During debugging, if the execution of a component fails and it doesn’t have an error 
handler (resulting in a failed service), then the component incurs a stoppage so that
its inputs and call stack can be examined.



Service Security Model

• Slurp uses a permissions-based security model where the permissions granted to a 
request can be derive from either basic authentication (HTTP Authorization, type 
‘Basic’) or indirectly via an access token (HTTP Authorization, type ‘Bearer’).

• By default:

a) No system permissions, static access tokens, basic authentication or OAuth2 
services are pre-defined (menu Maintain>Security).

a) The default authentication for service endpoints is ‘None’ (menu 
Server>Configure).

a) Services cannot be stipulated to have ‘Required Permissions’, since none are 
pre-defined (menu Service>Create or when editing service properties).

A service cannot be called from outside of Slurp unless it has been given either an 
Endpoint and/or Restful path in menu Server>Configure, and which is ‘enabled’.

• If basic authentication is required for any service then go to menu 
Maintain>Security and select the ‘--- Create new ---’ option of the ‘Authentication 
Service’ drop-down. This will create a skeletal authentication service, then edit it to 
suit your needs. For any endpoint which is specified to use ‘Basic’ authentication, 
this service will be called to authenticate the value contained in the ‘Authorization’ 
(type Basic) request header. The authentication service does not need to supply 
any permissions to an authenticated user, unless the services they are attempting 
to call require them.

• If token-based authentication is required for any service then go to menu 
Maintain>Security and either create a static access token or configure the built-in 
OAuth2 server.

• To obtain a static token create a new row in the ‘Static Access Token’ table and then
use the ‘Copy Value’ button to get a copy of the value of the token into the 
clipboard.

• To configure the built-in OAuth2 server select the ‘--- Create new ---’ option of the 
‘Token Service’ drop-down. This will create a datastore-based token service 
(together with datastore and housekeeping service). You can update the 
implementation to suit your needs. Then, for each 3rd party service create a ‘Client 
Registration’ entry.

• To obtain an OAuth2 token, 3rd party clients must login at local server path 
‘/token_request’. Successful authentication will redirect the client to the ‘Redirection 
URI’ with the token.

• For token-based authentication, a service invoker must use either the static token 
value or, for OAuth2, the token delivered to the ‘Redirection URI’ as the value of the 
‘Authorization’ (type Bearer) request header. The access token does not necessarily



need to supply any permissions to the authenticated request, unless the services 
being called require them. 

• Basic and token-based authentication associate an authenticated user name, 
optional numeric Id and optional permissions to a request. These can be checked 
by:

a) Specifying which permissions are required to execute a particular service by 
setting the ‘Required Permissions’ property of the service in menu 
Service>Properties. Or,

b) A service can programmatically test for the user or their associated permissions 
by calling Function , either RequestUserName, RequestUserId or 
HasUserPermission.

• An unauthenticated request will have a blank user name, 0 for user id and empty list
of permissions.

• Slurp has a built-in login throttle in case of repeated authentication failures, to 
defeat brute-force attacks.



Menu Options

File Menu

• Preferences. To adjust GUI and runtime preferences.

• Help. Displays this PDF in your browser.

• About. The Slurp version and included software credits.

• Quit. To terminate the GUI (and embedded Jetty server if it is running, indicated by 
a green spot instead of red).

Workspace Menu

• Save. Writes the current configuration of services to its configuration file (slurp.xml 
in the current directory). Periodic snapshots are taken automatically every 5 
minutes while you are making changes and prior to events such as service deletion.

• Edit Log. Lists snapshots of your edited configuration since the Service Designer 
was started so that you can switch to a previous instance of your editing.

• Import. Imports service definitions that have been exported from another project into
the current project.

• Export. Exports service definitions so that they can be imported into another project.

• Check. Checks for errors/inconsistencies in the current configuration. Most of these 
checks are performed routinely during editing but this function will also warn you 
about service invokers that are missing their target services. Generally, missing 
services are allowed but they will cause a runtime error if you try to invoke them. A 
warning about them will be issued when you start the Service Designer.



Service Menu

• Properties. View/update the current service properties.

• Inputs/Outputs. View/update just the current service inputs and outputs.

• Run. Run or debug the current service.

• Duplicate. Make a clone of the current service. You can also clone a package using 
the left-hand service explorer window.

• New. Create a new service (also achieved by right-clicking canvas and selecting 
Create).

• List/Delete. View details of existing services and perform housekeeping.

• Save Changed Services. Save all changed services (those whose tab titles are 
preceded with a ‘*’).

• Close Unchanged Services. Close all unchanged service tabs (those whose tab 
titles are not preceded with a ‘*’).

Maintain Menu

• Constants. Are literal values that are used when configuring components, they can 
be defined and updated here (or while editing components). 



• Data Stores. This is where data stores can be created and updated. The structure 
of the data can be changed and whether it is persisted to file or not. Persistent data 
stores can be used to synchronise service activities across different JVMs to 
facilitate clustering. Operations on data stores can be added to a service by using 
the Access Data Store operation.

• Translators. A translator maps values between one simple type and another simple 
type. For instance, a number to a name, or a short name to a longer equivalent 
name. Translators can be defined and updated here. Translators act like functions 
and can be called from within a data flow (right-click ‘Add Function’) or on canvas 
via the Call Function operation.

• Plugins. The plugin architecture allows user-defined Java code to be integrated into 
a service. Having created a class for a plugin, it can be made known to the Service 
Designer here. See Writing and Using a Plugin. JDBC drivers must also be added 
here.

• Security. Here you can define system permissions, static access tokens, basic 
authentication service or OAuth2 configuration, see Security Model.

• License. A license is only required to run a production data service. Without a 
license the built-in Jetty server will stop serving after about 1 hour. But you don’t 
need a license to use Slurp as a non-production service for any number of 
collaborators, or to contact our support. We’re only too happy to help.

Server Menu

• Configure. Select which services are available to clients and with what type of 
authentication (none, basic or token-based), what service (if any) to use for basic 
authentication, and HTTP and/or HTTPS configuration.

• Start Local Server. To start the internal Jetty server (or use the Start/Stop button).

• Stop Local Server. To stop the internal Jetty server (or use the Start/Stop button).

• Create Deployment. To create a deployment WAR file which can be deployed on 
any Java web server, eg. Tomcat.

• Local Server Start/Stop button. A shortcut to stop and start the local Jetty web 
server. It’s colour will be red if the server is stopped and green if the server is 
running.

https://slurpdata.com/support


Programming Pallet

• Drag a component and drop it at the desired location on the canvas. Once on the 
canvas it can be relocated by dragging its title bar or resized by dragging its bottom 
right corner. A few components use their panel to describe themselves, but most 
don’t, leaving the panel available for documentation purposes. Generally, double-
click a component to (re)configure it or right-click it for other options.

• Initially, the component’s titles and borders are greyed out. This is because it 
doesn’t yet have any input flows to activate it. It is effectively commented out code 
until at least one input flow is passed to it.

• A component with a red background means it’s configuration is incomplete or 
invalid. Hover your mouse over the component to obtain the reason.

• Connect components together in a left to right manner by dragging flow lines from 
components to dependent components.

• There are two types of flow line, which together control the sequence of component 
execution. A control flow line is drawn finely dashed and used for conditional 
activation of one or more dependent components. On the other hand, a data flow 
line is used to map the output fields of one component to the input fields of a 
dependent component and is usually drawn as a continuous line [Note: a data flow 
line with no mapped fields is slightly dashed because it is only providing 
dependency control].

• A control flow line can originate from the following icons, and at runtime is 
considered activated if the associated event occurred:

Conditional test or And/Or evaluates to ‘true’.

Default ‘false’ result when none of the conditional tests evaluate to 
‘true’.

If operation error is to be handled by a dependent component and an 
error occurred (otherwise unhandled errors result in service error exit).

Control flow lines do not require configuration, so double-clicking them is of no use.

• A data flow line on the other hand can only originate from the output of a preceding 
operation component, from icon At runtime, the data flow is activated if the 
preceding operation was activated and completed without error. The field mappings 
in the data flow can be edited by double-clicking on the data flow line. [Note: a data 
flow line might originate from a component that does not have an output container 
and is therefore only providing dependency control].

• So, the rules for a component to be activated are as follows:

a) It has at least 1 input control or data flow.



b) By default, ALL input flows must have been activated. But this can be changed 
to ‘1 or more’ by right-clicking the component and selecting ‘Set Activation by 
Flows: 1 or more’ and the icon will change to or . 

• The And/Or component is the only exception, where only condition a) applies.

• A component that successfully executes will activate its output flow(s) . However a
component that fails will active its error flow(s) .

• Hence, sections of programming can effectively be commented out by removing all 
of it’s input flows. However, if the result of this is that required fields in 
uncommented out components are no longer being set then you may have to make 
other changes to accommodate the commented out code. Commented out flows 
lines are ignored by the component activation mechanism.

• A component that incurs an unhandled error (ie. its not connected to a handler 
component) will cause service termination with an out-of-band message specifying 
the error. The format depends on the requested result type (XML, JSON or SOAP 
fault). To handle component errors (and not have the service terminated 
prematurely) simply connect one or more control lines from the component’s error 
icon to activate component(s) that will handle the error.

• A component that is activated but has any missing ‘required’ inputs will not actually 
be executed, so it’s output will not be set (makes allowance for missing optional 
elements and is equivalent to a mapping functions not called if one of its ‘required’ 
inputs is not set).

Comment

Can be added anywhere on the canvas for additional documentation.

Conditional Flow Control

Used to control execution flow as with If/Then/Else/Switch. Input fields contents can be 
tested to control execution flow. Multiple test conditions can be configured, which will be 
evaluated in sequence. Each has a ‘true’ control output and there is a default ‘false’ control
output from the bottom. The first condition that evaluates to ‘true’ (activated) completes the
evaluations, otherwise ‘false’ is activated.

And/Or Flow Control

Used to combine activations. Takes data and/or control flows as inputs and outputs a ‘true’ 
activation depending on the activation state of it’s inputs and the selected logic.

Flow Data

Copies it’s inputs to it’s outputs, so a that data flow can be activated by a control flow, or 
when an extra data merge step is required.

Invoke Service

Invoke another Slurp service. Once on the canvas, double-click to switch to the service.



Rerun Service

Reruns the current service with new inputs. Allows for repetition (see program iteration
constructs).

Service Error

Exit the current service with a formatted error message and optional HTTP status code 
(defaults to 500 if not set). If this service is called in a hierarchy of Slurp services which do 
not handle errors then the error is propagated to the ultimate caller of the initial Slurp 
service. As with any other unhandled service error, this will result in an out-of-band XML, 
JSON or SOAP fault message to the service caller. A Slurp service can choose to handle 
any error (including error by this mechanism) that might be generated in a call to another 
Slurp service.   

Operations Pallet

• As for the Programming Pallet: drag an operation and drop it at the desired location 
on the canvas.

• Connect operations together in a left to right manner by dragging flow lines from 
operations to dependent operations.

• Double-click data flow lines to specify the mapping of output fields to input fields.

• Double-click an operation to (re)configure it or right-click it for other options. In most
cases, (re)configuration just sets the default value of one or more input fields, which
if necessary could be overridden by suitable field mappings or setting a constant 
value.

• The operation panel can be written into, to describe its intended purpose.

• An operation with a red background means it’s configuration isn’t complete yet. 
Hover your mouse over the component to obtain the reason.

Text Parser/Generator

Parse or generate formatted text. There are 3 variants of this operation to choose from:

• Generate text from fields: Map input fields to the operation then double-click to 
configure, ie. format the desired output text. If you have a need for printf-style 
formatting then use function ‘TxtPrintf’ (functions can be called from within a data 
flow (right-click ‘Add Function’) or on canvas via Call Function ). 

• Generate text from list: Map a single input list (either simple list or container list) and
other input fields to the operation then double-click to configure, ie. format output 
text for the list.

• Parse text: Map a single input text field to the operation then double-click to 
configure, ie. specify how output text fields are scraped from the input text. You can 
parse by specifying a template or a regular expression.



CSV Parser/Generator

Parse or generate CSV (comma separated values) text. There are 2 variants of this 
operation to choose from:

• Generate CSV: Map a container list to the operation to generate the equivalent CSV
output for the list.

• Parse CSV: Map a CSV text to the operation and set the output container list fields 
as expected.

To generate no column titles use an empty list for input ‘Headings’. To optionally choose a 
specific CSV format set the ‘Flavour’ input to one listed in CSVFormat.Predefined. A null 
text field will be formatted as for an empty one. If you want to preserve the significance of 
null text then you can use Fn:ToNullValue and Fn:FromNullValue to replace null with a 
representation of null (can also be used for XLS if you want to avoid having blank cells).

List Operations

These are list operations which require a measure of configuration. As opposed to the 
generic list operations, such as Append Item, which are available via function calls 
(functions can be called from within a data flow (right-click ‘Add Function’) or on canvas via
Call Function ). There are 8 variants of this operation to choose from:

• Sort: map an input list (either simple list or container list) to the operation then 
double-click to set the sort key(s).

• Filter: configuration as for Sort except other input fields can also be used to set the 
filter condition(s).

• Convert container list to simple list: map an input container list then double-click to 
select the simple list(s) required.

• Convert simple list to container list: reverse of the previous variant. Doesn’t require 
any configuration.

• Group by fields: map an input container list then double-click to select the fields to 
group by.

• Ungroup fields: reverse of the previous variant. Double-click to select the container 
list that would be common to each group.

• Dedupe: de-duplicate list by selected fields, or return the duplicates.

• Enlist/delist fields. Enlist takes multiple input fields of the same type and puts them 
into a list of name/value pairs. Delist does the opposite, and can be simply achieved
by copy/pasting the enlist operation and reconfiguring it by double-click.

• Compile/decompile basic list. Compile takes multiple input fields of the same type 
and puts them into a basic list. Decompile does the opposite, and can be simply 
achieved by copy/pasting the Compile operation and reconfiguring it by double-
click.

https://commons.apache.org/proper/commons-csv/apidocs/org/apache/commons/csv/CSVFormat.Predefined.html


File Operations

Read/write binary or text files. Select file path to file and operation type (text/binary, 
read/write/append). Operation on directories are available via Call Function .

Database Operations

Execute an SQL statement or call a stored procedure. The JDBC driver (Java Database 
Connectivity) must be known to Slurp (add JAR file(s) using menu Maintain>Plugins). 
Query substitution parameters can be inserted from fields mapped to the ‘Parameters’ 
input container. If using any ‘?’ replacement parameters in the query then these must 
appear as the first items in the ‘Parameters’ input. For a non-select query, ‘Parameters’ is a
list so that eg. multiple inserts or deletes can be performed per operation (preferably within
a single transaction for efficiency). For select queries and stored procedure calls, the 
operation can optionally self-determine input/output fields and result set(s), or you can set 
them yourself.

By Default, database modification operations are auto-committed. To enable database 
transactions, modify the ‘DB Transactions’ setting in the service properties. Then, for 
subsequent database operations, the same transaction will be used to update the 
database, even if the operation is invoked by a called Slurp service (assuming it uses the 
same transaction isolation level). Then to commit or rollback all outstanding transactions, a
service can invoke the corresponding operation in Miscellaneou  s Operation  s  . Note1: some
databases do not support all transaction isolation levels and some also do not give a 
warning that a selected isolation level is not supported. Note2: For non-select queries, a 
transaction will be committed every 100 containers, even if a non-auto-commit transaction 
isolation level is in effect (for bulk inserts/deletes).

JSON Parser/Generator

Parse or generate JSON text. There are 2 variants of this operation to choose from:

• Generate JSON: Map arbitrary input containers/fields to JSON text.

• Parse JSON: Map a single input text field to the operation and set the output 
containers/fields as expected for the JSON text.

XML Parser/Generator

Parse or generate XML text. There are 2 variants of this operation to choose from:

• Generate XML: Generate XML text from arbitrary input containers/fields.

• Parse XML: Parse XML text into arbitrary output containers/fields.

A Java compiler is needed to analyse an XSD or WSDL (see this answer). Normally, Slurp 
should be able to determine the compiler from your Java installation, but if not then consult
that answer. A description of how Slurp maps XML to and from its fields/containers can be 
found in this answer.



Call Restful Service

Call a Restful web service, using either an Open API specification for a service (in YAML or
JSON) or by specifying the URL and manually formatting the request.

Call Webservice

Call a web service. Limited to web services that are document literal. First, specify the 
WSDL for the service, which can be a local file path or a URL stating with ‘http’. Then 
select the web service operation to be called. The input and output fields will be set 
automatically. A Java compiler is needed to analyse a WSDL (see this answer). Normally, 
Slurp should be able to determine the compiler from your Java installation, but if not then 
consult that answer. If you want to use a custom SOAP header it should be wrapped in 
elements <soap:Header 
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"></soap:Header>.

Access Data Store

Perform an operation a data store (datastores can be defined via menu 
Maintain>Datastores). Select a datastore and the operation to be performed upon it. The 
input and output fields will be set automatically. A data store can be defined to be 
persisted, to have it’s contents saved to file in a directory specified by a Slurp property 
(menu>Preferences). For a persisted data store:

• Locking it includes a lock on the store file itself. This can be used to synchronize 
activities between services or across multiple Slurp server instances.

• If you change the definition of the data store then you should remove or edit the 
store file to match your changes.

Call Function

Call one of a number of predefined functions or translators. A function library. These 
functions are also available in a data flow (double-click a data flow then right-click to ‘Add 
Function’). They include generic list functions and lots more.

Miscellaneous

Other operations that do not fall into the main operation categories, including:

• Sleep. Suspend execution for the specified number of milliseconds, using the output
to (potentially) activate another component when done.

• Send Mail. Send email to one or more recipients.

• Log Message. Log a formatted message to the logging system.

• Run Program. Run an ad-hoc program and potentially collect the results.

• DB Commit. Commits all outstanding database transactions, where connections 
were opened by a service (or one of its parent services) having transaction isolation
level (‘DB Transactions’) set to anything but ‘Auto Commit’ when the connection 
was first used. This operation does not have to be called for a service with ‘DB 

http://schemas.xmlsoap.org/soap/envelope/


Transactions’ set to ‘Auto Commit’ as each data base operation is committed 
automatically.

• DB Rollback. As for ‘DB Commit’ but performs a transaction rollback for all 
outstanding database transactions.

• Parse Properties. From properties text to a list of name/value pairs.

• Format Properties. From a list of name/value pairs to properties text.

• Calculate. Evaluate an arithmetic expression using field values, literal numbers or 
constants.

Invoke Java Plugin

Call a defined plugin operation. To build and add a plugin to the Service Designer, follow 
the steps described in Writing and Using a Plugin. Once the plugin has been dropped on 
the canvas, it is treated like any other operation: configuration and execution are the same.

Running Slurp as a Stand-alone Data Service

Windows (Service)

• Download the version of prunsrv.exe for your platform from Apache Commons 
Daemon.

• Place prunsrv.exe with slurp.exe (and slurp.xml, slurp.properties), in their own 
directory.

• Determine the full path to the JVM DLL to be used to run Slurp. The DLL is normally
contained in the bin\server directory of the JRE installation.

• From a command prompt in the same directory as prunsrv.exe execute the 
following command (having substituted the texts in {}’s with your values and making
sure the double-quote characters are the correct characters):

prunsrv install {service name} --StartClass=com.slurp.Slurp --
StopClass=com.slurp.Slurp --Classpath=slurp.exe --StopMethod=stop --
StartMethod=start --Jvm=”{full path to jvm.dll}” --StartMode=jvm –
StopMode=jvm --StdOutput=stdout.log --StdError=stderr.log

• In the Windows Services list, right-click on the new Slurp service and select 
Properties. Set LogOn as Local System Account and, if required, set StartUp Type 
to Automatic.

• Start and stop the service as normal.

• The service can be removed as follows. From a command prompt in the same 
directory execute the command:

prunsrv delete {service name}

https://downloads.apache.org/commons/daemon/binaries/
https://downloads.apache.org/commons/daemon/binaries/


• To set particular JVM properties for the service add the option to the prunsrv install 
command when installing the service. Eg. to set maximum heap size to 1024Mb 
append “ --JvmMx=1024” (lookup description of prunsrv).

• While the service is running it will be working from an in-memory version of 
slurp.xml and slurp.properties. During this time you can still run Slurp’s GUI to make
changes to your Slurp services, but the new configuration will not be used until you 
restart the Slurp service.

Windows (Command Line)
• Run a Slurp server from a command shell with the command java -jar slurp.exe 

start. The command remains in the foreground so can be terminated with control-c, 
or when the user session is logged out [Note: DO NOT use the command slurp start
as this will confuse the executable wrapper].

• To set particular JVM properties, eg. to set maximum heap size to 1024Mb start 
server with java -Xmx1024m -jar slurp.exe start.

Unix (Daemon)

• Slurp.exe is also in JAR (Java Archive) format so the Unix daemon can be run with:

nohup java -jar slurp.exe start&

• Slurp still expects to find slurp.xml and slurp.properties in the same directory as 
itself.

• To stop the daemon gracefully:

java -jar slurp.exe stop

• To set particular JVM properties, eg. to set maximum heap size to 1024Mb start 
server with nohup java -Xmx1024m -jar slurp.exe start&.

• While the service is running it will be working from an in-memory version of 
slurp.xml and slurp.properties. During this time you can still run Slurp’s GUI to make
changes to your Slurp services, but the new configuration will not be used until you 
restart the Slurp daemon.

Unix (Command Line)

• You can run a Slurp server in the foreground from a command shell with command 
line: java -jar slurp.exe start. To terminate the server use command line: java -jar 
slurp.exe stop, or control-c.

• To set particular JVM properties, eg. to set maximum heap size to 1024Mb start 
server with java -Xmx1024m -jar slurp.exe start.



Writing and Using a Plugin
1) The plugin class must implement the com.slurp.PluginAPI interface. The 4 methods to 

implement are:
a) getName(). Should return a non-null string, preferably formatted as <plugin 

package name>:<plugin operation name>, eg. sftp:put
b) getDescription(). A brief description of the operation. Full documentation should 

be provided elsewhere.
c) configure(). Called to configure the input/output fields when the component is 

dropped onto the canvas.
d) execute(). Called when the component is executed.

2) The plugin can make use of the com.slurp.schema.interFace classes to define fields for 
configure() and the com.slurp.runtime.service.data classes to obtain and set data for 
execute().

3) An exception thrown during execute() will invoke the standard error handling for a 
component. Ie. if the error output of the component is used then the error can be 
handled by another component. Otherwise, the service will be prematurely 
terminated with a corresponding out-of-band error return.

4) References to Slurp classes will be satisfied by putting slurp.exe itself on the build 
path (it is also in JAR format).

5) Package one or more plugins into a JAR file.
6) Configure the plugins into the Service Designer by using menu Maintain>Plugins. 

First, specify the JAR files containing the plugins, then add the plugins themselves 
using the Add... button.

7) To use the plugin, drag the Invoke Java Plugin operation onto the canvas and 
select the plugin. Then treat it as any other operation with regard to connecting to 
its inputs/outputs and conditions for activation.

Example Plugin

package my.plugins.maths;

import com.slurp.PluginAPI;
import com.slurp.runtime.service.data.RunData;
import com.slurp.runtime.service.data.RunInteger;
import com.slurp.schema.interFace.SlpDataField;
import com.slurp.schema.interFace.SlpFieldContainer;
import com.slurp.schemagen.interFace.FieldType;

public class Add implements PluginAPI {
    private static final String ARG1 = "Arg1";
    private static final String ARG2 = "Arg2";
    private static final String RESULT = "Result";

    @Override
    public String getName() { return "Maths:Add"; }
    
    @Override
    public String getDescription() { return "My add plugin"; }

    @Override
    public void configureIO(SlpFieldContainer input, SlpFieldContainer output) {
        input.getFields().add(SlpDataField.newInstanceRO(ARG1, FieldType.INTEGER, true, false));
        input.getFields().add(SlpDataField.newInstanceRO(ARG2, FieldType.INTEGER, true, false));
        output.getFields().add(SlpDataField.newInstanceRO(RESULT, FieldType.INTEGER, true, false));
    }



    @Override
    public void execute(RunData input, RunData output) throws Exception {
        RunInteger int1 = (RunInteger)input.getElement(ARG1);
        RunInteger int2 = (RunInteger)input.getElement(ARG2);
        long sum = int1.getValue()+int2.getValue();
        output.setElement(RESULT, new RunInteger(sum));
    }
}

Server Clustering

• Multiple instance of Slurp can be run at the same time, either as Unix daemons or 
Windows services. For each instance, follow the previous instructions for running 
Slurp as a stand-alone data service for your platform.

• For each instance, the install directory can have symbolic links to a single version of
slurp.exe and slurp.xml, but each install requires it’s own copy of slurp.properties, to
contain it’s own values for ‘localServerHttpPort’ and/or ‘localServerHttpsPort’. You 
may also want to adjust other properties for each instance.

• Sharing of data between instances can be achieved by sharing persistent 
datastores. Synchronization of activities between instances can be achieved by 
using the Lock/Unlock operations on a shared persistent datastore.



Frequently Asked Questions

• Running slurp.exe on Windows does not find Java JRE, why not?

There are 2 possible reasons for this. Either a Java JRE has not been installed at 
all, or it has NOT been installed as a stand-alone product (as part of another 
installation). The first issue requires you to download and install a Java JRE 
(version 1.8+). The second issue is because Windows Registry keys have not been 
set up because the Java installation program was not used. To compensate for this 
issue you either have to set your JAVA_HOME environment to the directory of your 
Java JRE or add the path to the java.exe to your PATH environment variable.

• How to run Slurp Designer when I only have Putty access to my server?

a) Firstly, download an X Server for your desktop. For Windows you can download 
Xming from https://sourceforge.net/projects/xming. It will only show a window 
once you run Slurp from a Putty session.

b) Secondly, set X11 forwarding in Putty. In Putty settings tab 
Connection/SSH/X11, check ‘Enable X11 forwarding’ and set ‘X Display location’
to ‘localhost:0’. Then open a Putty session to your server. The Putty session 
should have the DISPLAY environment variable set.

Run Slurp with ‘java -jar slurp.exe’ and the forwarded GUI output will be 
displayed by an Xming window.

• There are some input/output fields that I can’t modify/delete, why?

These are fields (in italic font) that the component has configured for itself and that 
it depends on. Normally, such fields and their default values are set when the 
component is (re)configured. For an input field that is read-only, you can 
nonetheless change its default value.

• How are date/time values treated?

The date/time type represents a local date/time as would be represented by a 
calendar date combined with a time, and normally input/displayed as ‘yyyy-MM-
ddThh:mm:ss’. On input, only the date part is required, which will assume a time of 
‘00:00:00’. The precision of a date/time is actually to the nearest nanosecond, so if 
a date/time requires fractions of a second then it can be input/displayed with a dot 
and up to 9 digits after the seconds part. There are functions to convert the 
date/time type between time zones. These use zone ids instead of plain time zones 
so that daylight savings time can be taken into account (java.time package).

• How to format/parse dates/times?

The pattern codes for formatting or parsing dates/times are described at 
DateTimeFormatter. Example: to format a date/time value as ‘day/month/year’ use 
the format string ‘dd/MM/yyyy’.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/time/format/DateTimeFormatter.html#patterns
https://sourceforge.net/projects/xming


• How do I control program flow?

This is achieved by using control flows:

a) Control flows can only emanate from Conditional Flow Control outputs and
the error output of operations (the And/Or   Flow Control   can be used to 
amalgamate them if necessary). None of these control flows have to be used but
they can be used to activate dependent components.

b) By default a dependent component is only activated if ALL input control and data
flows have been activated (this can be changed to 1 or more by right-clicking the
component and selecting ‘Set Activation by Flows: 1 or more’).

• Where are the program iteration constructs?

a) Service flow should not be looped. It will be stuck forever or until service 
timeout.

b) Field mappings can be used to apply transformations to fields in a field 
hierarchy. These mappings apply iteratively to the fields of a container list.

c) However, if more sophisticated transformations are required then to iterate over 
the containers in a top-level container list, right-click a sequence of one or more 
operations and ‘Turn Container List Iteration ON’. If the container list is not at the
top-level then make it the top-level by iterating the container list(s) above it. [To 
iterate over a basic data list, use a List Operation to convert it to a container list, 
iterate the container list, then use another List Operation to convert it back to a 
basic data list].

d) Re-run the same service with different inputs by activating the Rerun Service 
component . [Note: container list iteration works on each container 
separately. If you want to accumulate information during iteration then use this 
method]

e) Set ‘Schedule Expression (cron)’ in the service properties to have the service 
automatically re-run at specified times.

• Input fields: what’s the relationship between a field with a mapping, setting a 
field with a constant value and setting the default value for the field?

Applying a mapping to an input field is mutually exclusive with setting a constant on 
the input field. You cannot have both at the same time, and you can have neither. 
The default value of the field comes into play if neither a field mapping nor constant 
have been specified or if a mapping to the field has been specified but it didn’t result
in the field being set (because the data flow wasn’t activated). Setting a field with a 
constant value will always override its default value if both have been specified.

• How to create a streaming data flow (for unlimited data transfers)?

Connect a data flow/field mappings between a component that support streamed 
output to a component that supports streamed input (output/input field icons marked
with an ‘s’). If the field mapping(s) are point-to-point only and don’t split, merge or 
include a mapping function then the data flow line(s) will be rendered with a thick 



black line and, at runtime, data will be streamed between the components. The 
components that currently support streaming are:

a) DB Select List (output result set).

b) DB Query (input parameter list).

c) CSV Reader (input CSV text and output container list).

d) CSV Writer (input container list and output CSV text).

e) File Reader (output text/binary).

f) File Writer (input text/binary).

Thus there is no limit to: a) the size of a CSV file resulting from a database query, or
b) the volume of data that can be transferred between database tables. More 
streaming capabilities can be made available upon request.

Note: because streamed data is point-to-point only, then if two streamed inputs are 
flowed to a component then at runtime only one of the inputs will be selected as the 
streamed input and the component must be set to ‘Activation by 1 or more flows’ (or
the component will not be activated and result in service hang/timeout). 

• What are the supported XML Renderings?

If you don’t use XML anywhere then you can ignore the ‘XML Rendering’ field 
property. For XML, you have the option of ELEMENT, ATTRIBUTE, SIMPLE_TYPE 
or CDATA_SECTION. The first 2 are fairly self explanatory if you have any 
familiarity with XML, and are the most commonly used. The SIMPLE_TYPE is 
equivalent to xsd:simpleType and CDATA_SECTION iwill render its contents 
between “<![CDATA[“ and “]]” so text can be included without need to escape XML 
syntax. The special field named ‘SimpleContent’ (reserved field name) should be 
used to represent the value contained in an xsd:simpleContent (which is allowed to 
contain attributes and a value but no sub-elements). This field can have rendering 
SIMPLE_TYPE or CDATA_SECTION, and only one of these should be present in a 
container that has attributes and no sub-elements.

• Why does a Slurp generated XSD sometimes have a top-level element named 
‘root’?

An XML document is required to have a root element, having xs:minoccurs=1 and 
xs:maxoccurs=1. For a Slurp input or output container to satisfy this constraint, it 
must have a single top-level field (container or data field with ‘XML Rendering’ set to
‘ELEMENT’) with attributes ‘Required’ and not ‘List’: If such a data or container field 
is the sole top-level field in the input or output container then the generated XSD will
NOT have a ‘root’ element added. For all other cases a ‘root’ element will be 
inserted at the top-level. Whether a ‘root’ element is inserted or not, the XSD is the 
correct schema for the XML that can be used to populate the input container or that 
would be generated for an output container.



• How are XML namespaces specified?

The Web Service Component will use the targetNamespaces specified in the WSDL
that was used to configure it. The XML Parser/  Generator Component   will use the 
targetNamespaces (if any) specified via the XSD used to configure it: if no XSD was
used to configure it, and in all other cases, the namespace applied will be 
https://slurpdata.co  m/io  .

If you happen to want to generate XML without namespace then configure the XML 
Generator with an XSD that doesn’t specify a targetNamespace. This can be 
achieved as follows: having set the input fields for the XML Generator as you 
desire, then right-click on the actual input fields (not the operation inputs) and select
‘Generate XSD for Field(s)’. Edit the XSD to remove 
targetNamespace="https://slurpdata.com/io" then use it to finally set the XML 
Generator.

• Can I have a service-local variable?

This can be achieved by defining an optional service input field, where its default 
value is effectively the initial value of the ‘variable’. If you don’t want to expose the 
field then wrap the service with another service that doesn’t expose the ‘variable’ 
field. This caters for any type or shape of variables.

• Why does Service Designer need a compiler to parse XSDs and WSDLs?

The Service Designer uses the Jakarta JAXB and JAXWS tools to parse these file 
types, avoiding bespoke parsing and ensuring more accurate results. But these 
tools only create the equivalent Java classes that then need to be compiled so that 
they can be introspected. It’s not a runtime requirement, and is the only 
dependency on the JDK (Java Development Kit). The Service Designer will use the 
compiler in the version of Java being used to run it. However, if you are only using a
JRE (Java Runtime Environment) to run the Service Designer then you will have to 
tell it where to find the compiler in an installation of the JDK. You can use the Java 
compiler provided by OpenJDK without having to pay a license fee. The JDK 
version used should be the same or less than that used to run the Service Designer
(which itself requires Java 1.8 or greater). Then specify the path for ‘Java Compiler’ 
in menu File>Preferences. Only a JRE is required to run Slurp services, not a JDK.

• How to headlessly generate a license request string?

From a command shell run: java -jar slurp.exe license

• What to do if I can’t or don’t know how to implement some logic?

You don’t need a license to get help from support, we’re only too happy to help. In 
particular, if the function you need isn’t currently built into Slurp when it should be 
then we’ll build it into the next version (either natively or as a plugin), which will be 
available for download within hours (depending on your timezone). We envisage 
that larger/niche functionality will be provided as a plugin so as not to bloat the 
standard binary. There are currently plugins for SSH/SFTP, LDAP, SMB/CIFS and  
reading/writing Excel files.

https://slurpdata.com/support
https://openjdk.java.net/
https://jakarta.ee/
https://slurpdata.com/io
https://slurpdata.com/
https://slurpdata.com/

	Overview
	The Service Designer
	Creating a Service
	Defining Service Inputs and Outputs
	Adding Components to a Service
	Deleting a Service
	Testing a Service
	Field Mapping Editor
	Debugging a Service
	Service Security Model
	Menu Options
	File Menu
	Workspace Menu
	Service Menu
	Maintain Menu
	Server Menu

	Programming Pallet
	Comment
	Conditional Flow Control
	And/Or Flow Control
	Flow Data
	Invoke Service
	Rerun Service
	Service Error

	Operations Pallet
	Text Parser/Generator
	CSV Parser/Generator
	List Operations
	File Operations
	Database Operations
	JSON Parser/Generator
	XML Parser/Generator
	Call Restful Service
	Call Webservice
	Access Data Store
	Call Function
	Miscellaneous
	Invoke Java Plugin


	Running Slurp as a Stand-alone Data Service
	Windows (Service)
	Windows (Command Line)
	Unix (Daemon)
	Unix (Command Line)

	Writing and Using a Plugin
	Server Clustering
	Frequently Asked Questions

