Domestic Debt and Self-Fulfilling Crises

Carlos Bolivar

University of Minnesota and Federal Reserve Bank of Minneapolis

- Sovereign bonds are held by a mix of domestic and foreign investors
 - * Domestic investors are affected by local policy
 - * Government cares about domestic investors
 - * Composition of bondholders affects bond prices

- Sovereign bonds are held by a mix of domestic and foreign investors
 - * Domestic investors are affected by local policy
 - * Government cares about domestic investors
 - * Composition of bondholders affects bond prices
- Policymakers are concerned about confidence-driven fluctuations in prices
 - * Growing lit. analyzing conditions for multiplicity in sovereign debt models

- Sovereign bonds are held by a mix of domestic and foreign investors
 - * Domestic investors are affected by local policy
 - * Government cares about domestic investors
 - * Composition of bondholders affects bond prices
- Policymakers are concerned about confidence-driven fluctuations in prices
 - * Growing lit. analyzing conditions for multiplicity in sovereign debt models
- Confidence risk could depend on expectations about domestic demand

- Sovereign bonds are held by a mix of domestic and foreign investors
 - * Domestic investors are affected by local policy
 - * Government cares about domestic investors
 - * Composition of bondholders affects bond prices
- Policymakers are concerned about confidence-driven fluctuations in prices
 - * Growing lit. analyzing conditions for multiplicity in sovereign debt models
- Confidence risk could depend on expectations about domestic demand

- Q Is the share of domestic debt efficient?
- Can pessimistic expectations about domestic demand induce confidence-driven
- fluctuations in prices?

Today

- The standard Eaton and Gersovitz (1981) with domestic and foreign investors
- Study uniqueness and efficiency properties of the equilibria
- Analyze the implications for the optimal design of financial regulation

Preview of the results

- Domestic debt is inefficiently low
 - * Domestic inv. do not internalize the effect of their demand on bond prices

Preview of the results

- Domestic debt is inefficiently low
 - * Domestic inv. do not internalize the effect of their demand on bond prices
- Multiple equilibria, where the "bad" equilibrium is characterized by
 - * High foreign debt
 - * Low bond prices
 - * Contractionary fiscal policy
 - * Low domestic demand for bonds

Preview of the results

- Domestic debt is inefficiently low
 - * Domestic inv. do not internalize the effect of their demand on bond prices
- Multiple equilibria, where the "bad" equilibrium is characterized by
 - * High foreign debt
 - * Low bond prices
 - * Contractionary fiscal policy
 - * Low domestic demand for bonds
- Multiplicity provides a theory of financial regulation
 - * Optimal regulation should be contingent on all possible domestic demand

Model

Two-period model with domestic and foreign investors

- Domestic investors
 - * Constant endowment
 - * Get lump-sum taxes/transfers
 - * Save only using government bonds

Two-period model with domestic and foreign investors

- Domestic investors
 - * Constant endowment
 - * Get lump-sum taxes/transfers
 - * Save only using government bonds
- Foreign investors
 - * Risk neutral have a discount factor β

Two-period model with domestic and foreign investors

- Domestic investors
 - * Constant endowment
 - * Get lump-sum taxes/transfers
 - * Save only using government bonds
- Foreign investors
 - * Risk neutral have a discount factor β
- Benevolent government
 - * Initial foreign debt B_0
 - * Issues an exogenous amount of debt B_1
 - * Cannot do selective default

Uncertainty

- The exogenous utility cost ν the government would face in case of default, such that $\nu \in [\underline{\nu}, \overline{\nu}]$
- ullet u is drawn from a distribution independent of debt with p.d.f f(
 u)

Domestic investors

Preferences

$$U = u(c_0) + \beta \mathbb{E}[u(c_1(\nu)) - d(\nu)\nu]$$

Budget constraint of the first period

$$c_0 + qb_1 + T_1 = y$$
$$b_1 \ge 0$$

ullet Budget in period two at the state u

$$c_1(\nu) + T_2(\nu) = y + b_1(1 - d(\nu))$$

$$B_1^D$$
 is the aggregate debt held by domestic investors

Foreign investors

- There is a continuum of identical investors that are risk-neutral
- The asset pricing condition for government bonds is therefore

$$q = \mathbb{E}igl[1-d(
u)igr]eta$$

Government

• Issues a fixed B_1 . The fiscal budget in the first period

$$B_0 = qB_1 + T_1$$

 \bullet In the second period, the fiscal budget at each ν is:

$$(1-d(\nu))B_1=T_2(\nu)$$

Resource constraints

• Aggregate Resource Constraint.

$$c_0 + B_0 = y + q(B_1 - B_1^D)$$

 $c_1(\nu) = y - (1 - d(\nu))(B_1 - B_1^D)$

→ Competitive Equilibrium

Optimal Policy

Problem of the government

• The value function of the government in the second period

$$V(B_1^D, \nu) = \max_{d \in \{0,1\}} (1-d)u(y-B_1+B_1^D) + d(u(y)-\nu).$$

• I define:

$$\bar{V}(B_1^D) \equiv u(y) - u(y - B_1 + B_1^D)$$

• The government defaults function is

$$d(B_1^D,
u) = egin{cases} 1 & ext{if} &
u < ar{V}(B_1^D), \ 0 & ext{otherwise}. \end{cases}$$

Problem of foreign investors

• The probability of default is

$$F(ar{V}(B_1^D)) = \int_{
u}^{ar{V}(B_1^D)} f(
u) d
u$$

• Then, the break-even condition of foreign investors is

$$q(B_1^D) = \beta[1 - F(\bar{V}(B_1^D))]$$

Problem of the domestic investors

Value function

$$W(B_1^D) = \max_{b_1} u(c_0) + \beta \mathbb{E}[u(c_1(B_1^D, \nu)) - d(B_1^D, \nu)\nu]$$

subject to

$$c_0 + q(B_1^D)b_1 + T_1(B_1^D) = y$$
 $b_1 \ge 0.$ $c_1(B_1^D, \nu) + T_2(B_1^D, \nu) = y + (1 - d(B_1^D, \nu))b_1$

Problem of the domestic investors

Value function

$$W(B_1^D) = \max_{b_1} u(c_0) + \beta \mathbb{E}[u(c_1(B_1^D, \nu)) - d(B_1^D, \nu)\nu]$$

subject to

$$c_0 + q(B_1^D)b_1 + T_1(B_1^D) = y$$
 $b_1 \ge 0.$ $c_1(B_1^D, \nu) + T_2(B_1^D, \nu) = y + (1 - d(B_1^D, \nu))b_1$

FOC:

$$q(B_1^D)u'(c_0(B_1^D)) = \beta[1 - F(\bar{V}(B_1^D))]u'(c_1^R(B_1^D)) + \mu$$
$$0 = b_1\mu.$$

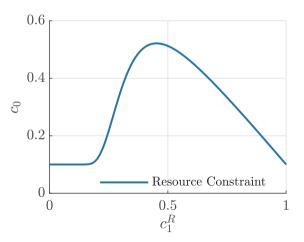
Problem of the domestic investors

Value function

$$W(B_1^D) = \max_{b_1} u(c_0) + \beta \mathbb{E}[u(c_1(B_1^D, \nu)) - d(B_1^D, \nu)\nu]$$

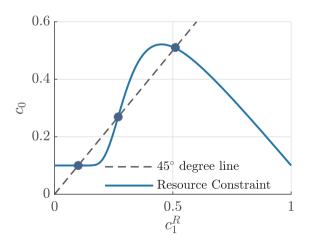
subject to

$$c_0 + q(B_1^D)b_1 + T_1(B_1^D) = y$$
 $b_1 \ge 0.$ $c_1(B_1^D, \nu) + T_2(B_1^D, \nu) = y + (1 - d(B_1^D, \nu))b_1$


• FOC:

$$c_0(B_1^D) = c_1^R(B_1^D)$$
 for $\mu = 0$

Multiplicity


Graphical illustration

$$c_0(B_1^D) = y + \beta[1 - F(\bar{V}(B_1^D))](B_1 - B_1^D) - B_0$$
 $c_1^R(B_1^D) = y - B_1 - B_1^D$

Graphical illustration

$$c_0(B_1^D) = y + \beta[1 - F(\bar{V}(B_1^D))](B_1 - B_1^D) - B_0$$
 $c_1^R(B_1^D) = y - B_1 - B_1^D$

Formalizing the result

Proposition 1. Assume for some level of external debt $B_1 - B_1^D = z \ge 0$

$$u'(y-z)f(u(y)-u(y-z))z - \frac{1-F(u(y)-u(y-z))}{R} > 1$$

Then, there exists a debt policy $\{B_0, B_1\}$, such that there are multiple Markov equilibria.

Normative Analysis

Constrained efficiency

Value function

$$V = \max_{\mathcal{B}_{1}^{D}} u(c_{0}) + \beta \mathbb{E}[u(c_{1}(\nu, \mathcal{B}_{1}^{D})) - d(\nu, \mathcal{B}_{1}^{D})\nu]$$

subject to

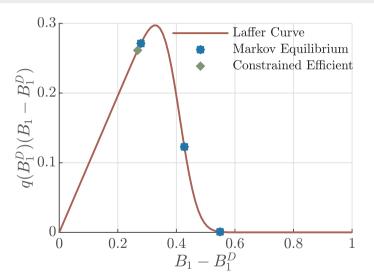
$$c_0 + q(B_1^D)(B_1 - B_1^D) = y - B_0$$

 $c_1(\nu, B_1^D) + (1 - d(\nu, B_1^D))(B_1 - B_1^D) = y$
 $B_1^D > 0$

Constrained efficiency

Value function

subject to


$$V = \max_{\mathcal{B}_1^D} u(c_0) + \beta \mathbb{E}[u(c_1(\nu, B_1^D)) - d(\nu, B_1^D)\nu]$$

$$c_0 + q(B_1^D)(B_1 - B_1^D) = y - B_0$$

$$c_1(\nu, B_1^D) + (1 - d(\nu, B_1^D))(B_1 - B_1^D) = y$$

$$B_1^D > 0$$

FOC

$$\left[\frac{\partial q(B_1^D)}{\partial B_1^D} B_1^D + q(B_1^D) \right] u'(c_0(B_1^D)) = \beta [1 - F(\bar{V}(B_1^D))] u'(c_1^R(B_1^D)) + \mu^{SP}$$

$$0 = B_1^D \mu^{SP}.$$

Value of external debt

Proposition 2. The decentralized Markov Equilibrium is not constrained efficient.

Policy Implications

Financial repression

The budget constraint of the government in the first period would be

$$B_0 + qB_1^D \tau(B_1^D) = T_1(B_1^D) + qB_1.$$

Financial repression

The budget constraint of the government in the first period would be

$$B_0 + qB_1^D \tau(B_1^D) = T_1(B_1^D) + qB_1.$$

The problem of the domestic investor

$$W = \max_{c} u(c_0)$$

$$W = \max_{L} u(c_0)$$

$$W = \max u(c_0) \dashv$$

 $W = \max_{b_1} u(c_0) + \beta \mathbb{E}[u(c_1(\nu)) - d(\nu)\nu],$

$$c_0 + (1 - \tau(B_1^D))ab_1 + T_1(B_1^D) = v$$

 $b_1 > 0$.

$$qb_1 + T_1(B_1^D) = y$$

 $c_1(\nu) + T_2(\nu) = y + (1 - d(\nu))b_1$

$$(\lambda_1)$$
 (λ_2)

 (μ)

18/20

Efficiency of financial regulation

• State-contingent subsidy on debt

Proposition 3. The Markov equilibrium of a regulated economy with a state-contingent subsidy on government bonds is not, in general, constrained efficient.

Subsidy contingent on all possible domestic demand

Proposition 4. The constrained efficient allocations can be implemented with an appropriate subsidy on debt contingent on the domestic demand for government bonds, with revenue collected with lump-sum taxes.

Conclusions

- Domestic debt is inefficiently low
- The model supports multiple equilibria
- Multiplicity comes from the reinforcement loop between bond prices and the composition of bondholders
- The existence of multiple equilibria provides a theory of financial regulation
- The government requires a complex set of policy tools to select the best outcome

Competitive Equilibrium

Definition 1. Given a debt policy $\{B_0, B_1\}$, an equilibrium consists of a price, government policies, and household policies such that

i households solve their problem at every state, and $\{W\}$ attains the maximum;

 $ii\ q$ satisfies the break-even condition of international investors;

iii the government budget is balanced;

iv market clears: $B_1^D = b_1$.

Markov equilibrium

Given a debt policy $\{B_0, B_1\}$, a Markov perfect equilibrium is defined by a set of strategies, value functions, and a price such that

- i domestic investors solve their problem at every state;
- ii q satisfies the break-even condition of international investors;
- iii the government solves problem at every state;

Eaton, J. and Gersovitz, M. (1981). Debt with Potential Repudiation: Theoretical and

Empirical Analysis. Review of Economic Studies, 48(2):289-309.