## **Optimal Debt Maturity and Self-Fulfilling Crises**

Carlos Bolivar and Teerat Wongrattanapiboon

November 13, 2025

University of Minnesota

#### **Motivation: The Eurozone Crisis**

What drove the 2010-2012 spike in Italian sovereign spreads?

- Fundamentals View: Worsening economy, low GDP growth
- Self-Fulfilling View: Investors' beliefs triggered the crisis

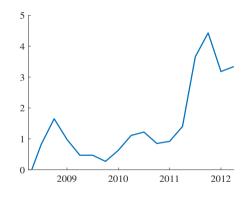


Figure 1: Italian Bond Spread (2008-2012)

## Bocola and Dovis (2019)

- Maturity choice reveals the government's perceived risk
- Find limited role for self-fulfilling risk
- Italy shortened maturity, which suggest confidence risk was low

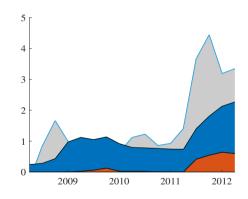


Figure 2: Spread Decomposition from BD's

## This Project

Revisit the question and propose a Calvo-style model (Lorenzoni and Werning (2019))

endogenous maturity structure and fiscal policy

Cole-Kehoe vs. Calvo

- CK (Bocola and Dovis (2019)): confidence crisis implies immediate default
- Calvo-style: crisis can occur without default

#### Result Preview

- Threat of self-fulfilling crisis leads government to
  - 1. cut next-period spending (Conesa and Kehoe (2024))
  - 2. lengthen maturity
- This framework reveals a larger role for self-fulfilling risk

## Model

## Timing

- Exogenous shocks are realized:  $(y_t, \chi_t, \lambda_t)$
- ullet Government chooses next-period spending  $g_{t+1}$  and short-term debt  $b_{S,t+1}$
- Sunspot,  $\omega_t \in \{0,1\}$ , is realized, then risk-averse investors bid on prices of long-term debt
- Given prices, government adjust long-term debt  $b_{L,t+1}$  to satisfy budget constraint or defaults  $d_t=1$

#### **Stochastic Processes**

■ Fundamental Shocks: Log-output,  $y_t = \log(Y_t)$ , and term premium shock,  $\chi_t$ , follow a correlated VAR(1) process:

$$\begin{bmatrix} y_{t+1} \\ \chi_{t+1} \end{bmatrix} = \begin{bmatrix} (1 - \rho_y)\mu_y \\ 0 \end{bmatrix} + \begin{bmatrix} \rho_y & 0 \\ 0 & \rho_\chi \end{bmatrix} \begin{bmatrix} y_t \\ \chi_t \end{bmatrix} + \begin{bmatrix} \epsilon_{t+1}^y \\ \epsilon_{t+1}^\chi \end{bmatrix}$$

- $[\epsilon^y, \epsilon^\chi]'$  normally distributed with covariance matrix  $\Sigma$ .
- Non-Fundamental Shocks: Probability of bad sunspot today,  $\lambda_t$ , is drawn i.i.d. from a fixed grid  $\Lambda$ 
  - Bad sunspot,  $\omega_t = 1$ , is realized with probability  $\lambda_t$

#### Government

#### **Preferences:**

$$\mathbb{E}\sum_{t}\beta^{t}\frac{g_{t}^{1-\sigma}}{1-\sigma},$$

- $\beta \in (0,1)$  discount factor
- g<sub>t</sub> spending chosen last period

## Short- and Long-term Bonds: (Arellano and Ramanarayanan (2012))

- *b<sub>S</sub>*: one-period bond
- $b_L$ : long-term bond with  $\kappa, (1-\delta)\kappa, (1-\delta)^2\kappa, ...$

## **Budget Constraints**

#### **Under repayment:**

$$g_t + b_{St} + \kappa b_{Lt} = \tau Y_t + q_{St} b_{St+1} + q_{Lt} (b_{Lt+1} - (1 - \delta) b_{Lt})$$

ullet au constant tax rate

## **Budget Constraints**

#### **Under repayment:**

$$g_t + b_{St} + \kappa b_{Lt} = \tau Y_t + q_{St} b_{St+1} + q_{Lt} (b_{Lt+1} - (1 - \delta) b_{Lt})$$

ullet au constant tax rate

#### **Under default:**

$$g_D \le \tau Y_t$$

- $b_{St} = b_{Lt} = b_{St+1} = b_{Lt+1} = 0$
- $g_D < \tau Y_{\min}$  and  $g_D < g_{\min}$
- reenter market next period

#### International Investors

#### Non-arbitrage conditions:

$$egin{aligned} q_{St} &= \mathbb{E}_tigg[M_{t,t+1}(1-d_{t+1})igg] \ & \ q_{Lt} &= \mathbb{E}_tigg[M_{t,t+1}\Big\{(1-d_{t+1})(\kappa+(1-\delta)q_{Lt+1}) + d_{t+1}rac{
u_{t+1}}{b_{t+1}}\Big\}igg] \end{aligned}$$

- Stochastic discount factor  $M_{t,t+1}$
- Recovery value in default:  $\nu_t = \phi(\tau Y_t g_D)$  with  $\phi \in [0, 1]$ .

Details on SDF

## Recursive Formulation

### **Government's Problem**

Let 
$$S = (b_S, b_L, g, y, \chi)$$

#### Value function:

$$V(S,\lambda) = \max_{b'_{S},g'} \left\{ (1-d)u(g) + d(u(g_{D})) + \beta \mathbb{E}[V(S',\lambda')] \right\}$$
s.t.  $b'_{L} = B_{L}(S,\omega,b'_{S},g'), \quad d = D(S,b'_{S},g')$ 

• Solution gives  $\mathcal{B}_{S}(S,\lambda)$  and  $\mathcal{G}(S,\lambda)$ 

#### **Price Functions**

$$Q_{L}(y, \chi, b'_{S}, b'_{L}, g') = \mathbb{E}\left[M(y, \chi, y', \chi')\right]$$

$$\left\{(1 - d')(\kappa + (1 - \delta)Q_{L}(b''_{S}, b''_{L}, g'', \lambda'')) + d'\frac{\nu'}{b'_{L}}\right\},$$

$$Q_{S}(y, \chi, b'_{S}, b'_{L}, g') = \mathbb{E}\left[M(y, \chi, y', \chi')(1 - d')\right],$$

- $d' = D(S', b_S'', g'')$
- $b_S'' = \mathcal{B}_S(S', \lambda')$ ,  $g'' = \mathcal{G}(S', \lambda')$
- $b''_L = B_L(S', \omega', b''_S, g'')$

## The Solvency Constraint

#### Maximum revenue:

$$m(b_S, b_L, y, \chi, b_S', g') = \max_{\overline{b_L}} \left\{ Q_L(y, \chi, b_S', \overline{b_L}, g') (\overline{b_L} - (1 - \delta)b_L) + Q_S(y, \chi, b_S', \overline{b_L}, g')b_S' - b_S - \kappa b_L \right\}$$

#### **Default Rule:**

$$D(S, b_S', g') =$$

$$\begin{cases} 1 & \text{if} \quad g > \tau Y + m(b_S, b_L, y, \chi, b_S', g'), \\ 0 & \text{otherwise} \end{cases}$$

## Financing under Multiplicity

#### Long-term Debt Rule:

• If  $D(S, b'_{S}, g') = 0$  then

$$B_L(S, \omega, b_S', g') = egin{cases} \max \mathbb{B}_L(S, b_S', g') & ext{if} & \omega = 1, \\ \min \mathbb{B}_L(S, b_S', g') & ext{if} & \omega = 0 \end{cases}$$

• If  $D(S, b'_S, g') = 1$ , then  $B_L(S, \omega, b'_S, g') = 0$ 

#### Set of possible debt values:

$$\mathbb{B}_{L}(S, b'_{S}, g') = \left\{ b'_{L} : g + b_{S} + \kappa b_{L} = \tau Y + Q_{s}(y, \chi, b'_{S}, b'_{L}, g') b'_{S} + Q_{L}(y, \chi, b'_{S}, b'_{L}, g') (b'_{L} - (1 - \delta)b_{L}) \right\}$$

## Markov Perfect Equilibrium

## **Definition** A Markov perfect equilibrium consists of

- a value function for the government V
- a set of policies  $\mathcal{B}_S$ ,  $\mathcal{G}$ ,  $\mathcal{B}_L$ ,  $\mathcal{D}$
- and bond price functions Q<sub>S</sub>, Q<sub>L</sub>

#### such that:

- i Given bond price function  $Q_S$ ,  $Q_L$ , the policy functions  $\mathcal{B}_S$ ,  $\mathcal{G}$ ,  $\mathcal{B}_L$ ,  $\mathcal{D}$  and the value function V solve the Bellman equation.
- ii Given government policies, the bond price functions  $Q_S$ ,  $Q_L$  satisfies the non-arbitrage conditions.

**Quantitative Analysis** 

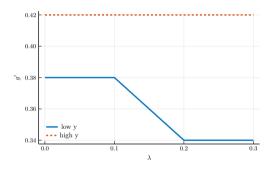
## Calibration

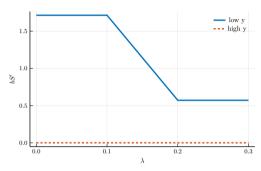
| Parameter                | Value   | Targets                     |  |  |
|--------------------------|---------|-----------------------------|--|--|
| Predetermined parameters |         |                             |  |  |
| $\sigma$                 | 2       | Conventional value          |  |  |
| δ                        | 0.033   | Long-term bond duration     |  |  |
| au                       | 0.41    | Tax revenues over GDP       |  |  |
| $\mu_{y}$                | -0.0002 | GDP process                 |  |  |
| $ ho_{\mathcal{Y}}$      | 0.9668  | GDP process                 |  |  |
| $\sigma_y$               | 0.008   | GDP process                 |  |  |
| Calibrated parameters    |         |                             |  |  |
| $\beta$                  | 0.98    | Method of simulated moments |  |  |
| $\phi$                   | 0.25    | Method of simulated moments |  |  |
| g <sub>D</sub>           | 0.026   | Method of simulated moments |  |  |

## **Empirical Targets**

| Moment                        | Data | Model |
|-------------------------------|------|-------|
| Average debt-to-GDP ratio (%) | 87.9 | 58.4  |
| Average spread (basis points) | 61   | 52    |
| Average debt maturity (years) | 6.8  | 7.4   |

## **State-Dependent Fiscal and Debt Policies**





Preemptive austerity as in Conesa and Kehoe (2024)

## **European Debt Crises**

## **Nonlinear State-Space System**

Following Bocola and Dovis (2019):

$$Y_t = g(S_t) + \eta_t,$$
  
 $S_t = f(S_{t-1}, \epsilon_t)$ 

- $Y_t$ : vector of observables (detrended GDP, data counterpart to  $\chi_t$ , maturity, spread)
- $S_t = [b_{St}, b_{Lt}, g_t, y_t, \chi_t, \lambda_t, \omega_t]$
- $\eta_t$ : measurement errors, set variance of  $\eta_{y,t}, \eta_{\chi,t}$  to zero
- $\epsilon_t$ : structural shocks

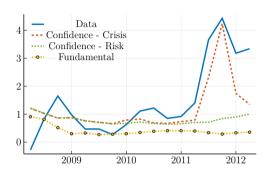
## Particle Filter (Sequential Monte Carlo)

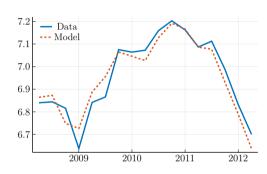
Goal: estimate unobserved states given the observed data

**Algorithm:** For t = 1, ..., T, we have N particles  $\{S_{t-1}^{(k)}\}_{k=1}^{N}$ :

- 1. **Prediction:** For each k, draw new shocks  $(\lambda_t^{(k)}, \omega_t^{(k)})$  and combine with previous state to form  $\{S_{t|t-1}^{(k)}\}_{k=1}^{N}$ .
- 2. **Weighting:** For each k, use model to compute implied observables,  $Y_t^{(k)} = g(S_{t|t-1}^{(k)})$ . Assign weight based on likelihood of observed data, and normalize.
- 3. **Resampling:** Draw N new particles  $\{S_t^{(k)}\}_{k=1}^N$  by sampling from  $\{S_{t|t-1}^{(k)}\}_{k=1}^N$  with normalized weights.

## **Spread Decomposition**





- Set  $\omega_t = 0$  to obtain "good-sunspot component"
- The difference between observed and filtered is "unexplained"



#### Conclusion

- Proposed a Calvo-style model
  - endogenous maturity and fiscal policy
  - crises can occur without default
- Found a larger role for self-fulfilling risk during the Eurozone crisis
- Underlying crisis mechanism is critical for quantitative findings and has important implications for policy

## **Appendix**

## **Stochastic Discount Factor (SDF)**

The SDF,  $M_{t,t+1}$ , follows a log-normal process:

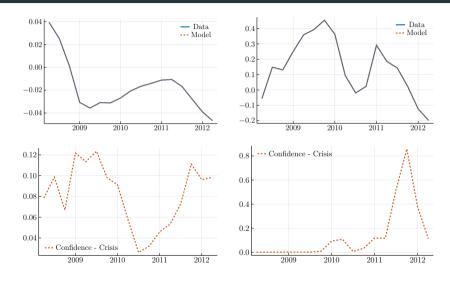
$$\log(M_{t,t+1}) = -(\phi_0 + \phi_1 \chi_t) - \frac{1}{2} \kappa_t^2 + \kappa_t \epsilon_{t+1}^{\chi},$$

where  $\kappa_t$  depends on term premium shock,  $\chi_t$ :

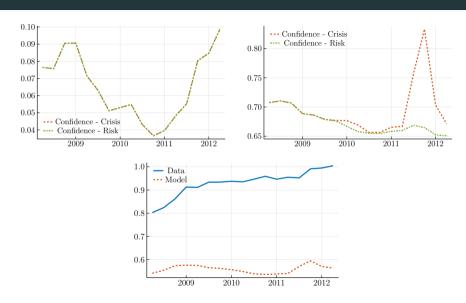
$$\kappa_t = \kappa_0 + \kappa_1 \chi_t$$

- A high realization of  $\chi_t$  increases the market price of risk,  $\kappa_t$
- This makes the SDF more volatile and increases the term premium investors demand for holding long-term debt

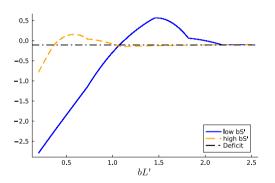
#### Other Variables

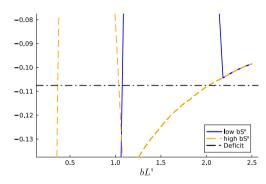


#### Other Variables Cont. Boack



## **Laffer Curves**





# References

- Arellano, C. and Ramanarayanan, A. (2012). Default and the maturity structure in sovereign bonds. *Journal of Political Economy*.
- Bocola, L. and Dovis, A. (2019). Self-fulfilling debt crises: A quantitative analysis.
- American Economic Review, 109(12):4343–4377.

  Conesa, J. C. and Kehoe, T. J. (2024). Preemptive austerity with rollover risk. Journal
- of International Economics, 150:103914.

  Lorenzoni, G. and Werning, I. (2019). Slow moving debt crises. American Economic
- Review, 109(9):3229–3263.