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For

1 The equation of a curve is y = —x? + 3x + 5. Fxaminers

(a) Express —x? + 3x + 5 in the form a(x + b)? + ¢, where a, b and ¢ are constants.

(b) Hence, or otherwise, write down the coordinates of the turning point of
the curve.
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. : Examiner
2 (a) Solve the equation 3x?+ 5x +4 =6. Xazvsfgers

............................................................................................................................ [2]

(b) Hence solve the equation 3y + 5y% +4=6
............................................................................................................................ [2]
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For
Examiner’s

3 Given that the coefficient of x3 in the expansion of (1 — 3x)® + (1 + ax)* is — 1040. i

Find the value of the constant a.
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For
Examiner’s

4 The quadratic equation 2x2 — 5x + 8k = 0 has unequal real roots. o

Find the set of possible values of £.
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For
5 (a) In an arithmetic progression, the third term is 14 and the sum of the first eight E""”L’}’S’ge”s
terms is 148.

Find the first term and the common difference.

8227/1/22

321105



For

(b) Evaluate Examiner’s
Use
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F
6 The function fis defined by f:x— In (x - 2) forx > k. E""”L’?Zée”s
(@) Find the smallest possible value of k.
............................................................................................................................ [1]
(b) Find the inverse function, f-'.
............................................................................................................................ [2]
(c) Sketch the graphs of f and f ~' on the same diagram, clearly showing any
intersections with the axes.
[4]
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For
7 Acurve has equation y = x* - 5x — 3 and a line has equation y = -9x + a where a Fxaminers
is a constant.

If the line is a tangent to the curve at point P, find the coordinates of P and the
value of a.
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/ A
/ch
=5
B

A flexible piece of wire, 60 cm long, is bent to form the perimeter of a sector of a
circle AOB, as shown in the diagram.

The radius of the circle is ¥ cm and the angle AOB is 6 radians.

(@) Express @ in terms of » and show that the area, 4 cm?, of the sector is given by

A =30r - r2
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For
Examiner’s

(b) Given that » can vary, find the stationary value of 4 and determine its nature. o
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For
Examiner’s

9 (a) Show thatthe equation 3tanx =-2cos x can be written in the form, Use

2sin?2x-3sinx—-2=0.
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13

The diagram shows the curve y = asin(bx) + ¢ for 0° < x < 360°.

(@) Find the values of the integers a, b and c.

............................................................................................................................ [3]
(b) Write down the period of the curve.
............................................................................................................................ [1]
(c) If the curve is now reflected in the x-axis.
Write down the new equation of the curve.
............................................................................................................................ [1]
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P
The diagram shows a trapezium OPQR in which OP is parallel to RQ. The position
3 5
—> —>
vectors of P and Q relative to the origin O are given by OP =[-2 |and OQ =| 1
. == . . —> —1 2
The magnitude of RQ is twice the magnitude of OP.
-1
—>
(a) Show that the position vector of R is given by OR =| 5 |.
4
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For
Examiner’s

(b) Use a scalar product to calculate the size of angle POR. e
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The diagram shows a container in the shape of an inverted cone with its circular
base upright and horizontal. The height of the container is 30 cm and the base
radius is 18 cm. Water is flowing into the container. When the height of water is %
cm, the surface of the water has radius » cm and the volume of water is J cm?.

[The volume of a cone is 17rr2h.]
3 3
3nh®

(a) Express rinterms of 4 and hence show that V' = 55
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For

Water flows into the container at a rate of 36 cm? per second. Fxaminers

(b) Find, in terms of =, the rate of change of 4 when 4 =15 cm.
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F
6 Exam(l)';er’s
13 Afunction f(x) is defined for x > 0 and is such that f' (x) =4x + o Use

The curve y = f(x) passes through the point P(-2, -1).

Find the equation of the curve.
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J) 1 J/ - \/:3;f + :2
B
R, .

The diagram shows the curve y = v/3x + 2 meeting the x-axis at A and the y-axis at B.

(@) Write down the coordinates of 4 and B.

(b) The region AOB is rotated through 360° about the x-axis.

Find the volume of the shaded region, giving your answer in terms of =.

For
Examiner’s
Use
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Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the
question number(s) must be clearly shown.
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FORMULAE AND NOTATIONS LIST
PURE MATHEMATICS

Mensuration

Volume of sphere = gme

Surface area of sphere = 477

Volume of cone or pyramid = %x base area x height

Area of curved surface of cone = 7 X slant height
Arc length of circle =76 (0 in radians)

Area of a sector of a circle = %rzﬁ (0 in radians)

Algebra
For the quadratic equation: ax*+bx+c=0:
—bx/(b* - 4ac)
X =
2a
For an arithmetic series:
1 1
u=a+mn-1), Sn=5n(a+l)=5n{2a+(n—‘|)d}
For a geometric series:
1_ n
u =arv!, Szu(ril), s =4 (|r|<1)
" " 1-r o 1-r

Binomial expansion:

(a +b) =a" +(7Ja“b+@ja“b2 +(Zja”3b3+...+b”,

: o n !
where 7 is a positive integer and "
r) ri(n—r)!

n(n—1) [ n(n—1)(n-2) e
2!

3 ..., where n is rational

A +x)" =l+nx+

and |x| <1
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Trigonometry
sin &
tan 0 =
cosf
cos’0 +sin*0=1, 1+ tan’0 =sec?d, cot’d + 1 = cosec?

sin(4 = B) = sind cosB * cos4 sinB
cos(A4 = B) = cosA4 cosB F sind sinB

tan 4 t tan B
1¥tan Atan B

sin24 = 2sinA4 cos4

tan(4+ B) =

0824 = cos?A — sin?4 = 2cos?4 — 1 = 1— 2sin?4

2tan A4
tan24 =————
1—-tan“4
Principal values:
. 1 4 1 4 1
——x<sin” x<—r, 0<cos " x<7m; ——nm<tan x<—7x
2 2 2
Differentiation
f(x) 7(x)
X" nx !
1
In x —
X
e* er
sin x COS X
CcOoS X -sin x
tan x sec? x
sec x sec x tan x
cosec x — cosec x cot x
cotx —cosec? x
1
tan™! x 5
1+x
dv du
uv U—+v—
dx dx
du dv
V——u-—
u dx dx
v v?
dx

dy dy
If x =1(¢) and y = g(¢) then — = —+—
x=1(¢) and y = g(1) T s
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Integration
f(x) [f00ax
n+l
x" +c (n#-1)
n+l
1
— In |x| +c
X
e e t+c
sin x —cosxtec
cos X sinx +c
sec’ x tan x + ¢
1 1 af x
3 5 —tan | —
X" +a a a
1 1 Ix-a
L (x>a)
x* —a? 2anx"'a
1 1 atx
— Inl=—=Z xl<a
a’ —x* zal a-—x (l | )

J.u%dxzuv —J.V %dx

fl
J f(i))c) dx = In[f(x)] +

Vectors
Ifa=ai+aj+akandb=>bi+b,j+bkthenab=a b +a,b,+ab, = ab|cosd
Numerical integration

Trapezium rule:

b b—
‘[ f(x)dx z%h{yo +2(y,+y, +.ty, )+, ), where h = a
a

8227/1/22

321105



24

Operations
iai a ta +..ta
i=1
Ja the positive square root of the real number a
|a| the modulus of the real number a
n! n factorial forne N (0! =1)
!
the binomial coefficient L, for reN,0<r<n
n rl(n—r)
r n(n=1)..(n—r+1)

' ’forneQ,reN
r.
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