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ABSTRACT—This study explored the application of 
Medical LLaMA-3-8B, a large language model pre-trained 
on the MIMIC-III dataset, as a resource tool for assisting 
healthcare providers in drug and treatment selection based 
on patient diagnoses. The model was fine-tuned on data 
sourced (324 Updates for 2024) from Drugs@FDA, 
specifically the FDA’s Purple Book database, which 
provides comprehensive information on approved drugs, 
novel treatments, and biosimilars. 

To ensure the model remained current with the 
latest updates, an automated workflow was developed using 
Apache Airflow. This workflow facilitated periodic data 
pulls from the FDA database, processed and formatted the 
retrieved information, and incorporated it into the 
fine-tuning loop. 

The resulting fine-tuned model, termed PharMe, 
demonstrated the ability to provide valuable 
recommendations when prompted with medical conditions, 
achieving a perplexity score on average of 17.4, compared 
to GPT-Neo’s score of 21.7. PharMe not only suggested 
commonly prescribed treatments but also identified the 
latest advancements, including novel therapies, and 
biosimilars. 
This project demonstrated the potential of large language 
models when fine-tuned for specific applications in the 
field of medicine and serves as a promising example of 
how such models can support healthcare decision-making 
and leveraging AI in the medical industry. 

I.​ INTRODUCTION 
The rapid pace of pharmaceutical innovation and regulatory 
updates presents an unprecedented challenge in modern 
healthcare delivery. Providers are tasked with providing 
quality care in a timely manner, while simultaneously 
processing mountains of reporting and administrative 
duties. This makes it increasingly difficult to stay on top of 
novel drug approvals and existing drug modifications 
released by the Food and Drug Administration (FDA) on a 
monthly basis. In 2024 alone, the Food and Drug 
Administration (FDA) approved 44 novel drugs and over 
10,000 updates to existing drugs [1]. With potential 

implications on patient care management and regulatory 
compliance, it is necessary to find a way to integrate novel 
drug information into clinical practice in a streamlined 
fashion.  
 
Healthcare providers are solely responsible for determining 
the most appropriate treatments for their patients, 
considering factors such as the current diagnosis, 
comorbidities, previous medical conditions, allergies, and 
preferences for brand-name drugs or biosimilars due to 
insurance coverage. Additionally, they must account for 
potential contraindications and incompatibilities, especially 
when a patient is undergoing multiple treatments. While 
modern electronic health record (EHR) systems can 
prepopulate drug options and flag critical issues, the 
responsibility for staying informed about the latest 
treatments ultimately lies with the providers. 
 
Healthcare providers are frequently visited by medical sales 
representatives whose primary role is to present 
information about their companies' products and services. 
In addition to providing educational materials, med reps 
often offer incentives such as department-wide meals or 
sponsorships for trips and conferences. While these 
interactions can help providers stay informed about new 
treatments and innovations, they may also introduce biases, 
as the information presented typically focuses on the 
products being promoted by the rep's company. 
 
One common method for staying updated on medical 
advancements is subscribing to relevant journals within 
one’s field. While this approach is more accessible and 
cost-effective, it places the burden of filtering through 
advancements on the provider. Furthermore, journal 
publications can sometimes be influenced by sponsorships 
from manufacturers, which may lead to selective reporting, 
leaving out updates from less-prominent companies or 
competitors. Additionally, physical journals are considered 
long lead outlets, requiring several months for research, 
writing, editing, and printing. As a result, the information 
may already be outdated by the time it reaches providers, 
typically lagging 2-3 months behind current developments. 
 



 

Another avenue for staying current is attending annual 
conferences, which provide opportunities to learn about the 
latest research, treatments, and technologies. However, 
these multi-day events are often costly and rely on financial 
support from medical sales representatives or employers. 
Conferences also tend to favor larger pharmaceutical and 
medical manufacturing companies with the resources to 
sponsor prominent displays and presentations, potentially 
overshadowing smaller, less funded organizations with 
novel contributions. 
 
In private practice, the challenge of staying up-to-date 
becomes even more demanding. Providers in these settings 
must take on the full responsibility of continuing education 
and staying informed about advancements in their field. 
This not only fulfills their professional obligations as 
practitioners but also reflects their commitment to 
delivering the highest standard of care to their patients. 
Balancing these demands with clinical responsibilities 
underscores the complexity of maintaining medical 
expertise in a rapidly evolving healthcare landscape. 
 
This project aims to address these challenges by developing 
a clinically trained, condition-aware large language model 
that incorporates continual updates from the FDA. The 
result is a real-time, dynamically updated platform 
designed to support clinical decision-making. This tool 
empowers healthcare providers by highlighting treatment 
options they might have overlooked, forgotten, or been 
unaware of, including cost-effective biosimilars and 
generics. By doing so, it enhances prescribing accuracy and 
cost-efficiency, ultimately improving patient care. 

II.​ RELATED WORKS 
Several studies have explored the application of large 
language models (LLMs) in various facets of healthcare 
and the pharmaceutical industry. One study investigated the 
use of LLMs in drug recommendation systems [2], 
evaluating models such as RETAIN, G-Bert, GAMENet, 
SafeDrug, MICRON, COGNet, and REFINE. These 
models leveraged patient data from EHRs to generate drug 
recommendations. However, challenges emerged in making 
recommendations for new patients with limited or no prior 
medical history. The study’s best-performing model, 
LEADER, demonstrated superior accuracy and efficiency 
compared to other models, yet emphasized the need for 
further research to incorporate drug interactions, enhancing 
safety and precision. 
 
Another comprehensive study analyzed 7,402 research 
papers to explore the broader applications of LLMs across 
the pharmaceutical sector, including research and 
development (R&D), manufacturing, quality control, 
regulatory affairs, and clinical settings [3]. Similar to 

PharMe, this study examined the use of chatbots as 
consultants during surgical procedures, where natural 
language processing (NLP) was employed to assist 
surgeons in critical decision-making. These chatbots 
provided real-time recommendations based on clinical 
guidelines and medical literature. Additionally, the study 
highlighted the development of GA-DRUG, a 
genetic-awareness model designed to predict drug 
interactions by analyzing individual patient genetic 
profiles, thereby enabling personalized treatment plans. 
Other models examined in this research acted as diagnostic 
decision-support tools, analyzing patient data, generating 
insights, and flagging anomalies. While these systems align 
with PharMe's goals, their scope is broader and less focused 
on referencing specific drugs for particular medical 
conditions. 
 
A separate study delved into the applications of LLMs in 
the pharmaceutical supply chain [4]. This research 
underscored the potential of LLMs for inventory 
optimization, process automation, and systems integration. 
However, it also cautioned against risks such as AI 
hallucinations, where incorrect or misleading data could 
compromise operational integrity. The study emphasized 
that LLMs should complement human expertise rather than 
replace it, ensuring that decision-making remains robust 
and reliable. 
 
Interestingly, none of the aforementioned studies have fully 
addressed the challenges or opportunities posed by 
biosimilars and generics. These areas are critical in modern 
pharmaceutical practice due to their potential to reduce 
costs and increase accessibility depending on the patient's 
health insurance or lack thereof. LLMs, with their ability to 
analyze large datasets and extract insights, could play a 
pivotal role in identifying the most cost-effective options 
among biosimilars and generics while ensuring they align 
with a patient’s specific needs and genetic profile. 
 
What makes this project unique is that PharMe focuses 
specifically on referencing applicable drugs for medical 
conditions, going beyond the functionality of a simple 
dictionary or database. Unlike traditional systems, PharMe 
considers the contextual nuances of the medical condition 
and integrates this understanding into its recommendations. 
Furthermore, PharMe is not designed as a diagnostic tool. 
Instead, it relies on healthcare providers to make the final 
prescribing decisions, alleviating many of the ethical and 
practical concerns associated with other medical AI 
systems. This targeted, context-aware approach sets 
PharMe apart as a safer and more focused application of 
LLM technology in healthcare. 

III.​ DATA 

 
 



 

Data for this project includes two sources: one used 
indirectly (the MIMIC-III clinical database) and the other 
used directly (the FDA’s drug database). 
 

A.​ MIMIC-III: A freely accessible critical care 
database  

 
MIMIC-III (Medical Information Mart for Intensive Care 
III) is a large, freely-available dataset released by Meta that 
is composed of de-identified electronic health record 
(EHR) data from over 40,000 ICU patients with admissions 
at Beth Israel Deaconess Medical Center in Boston, MA 
between 2001 and 2012 [5]. The dataset includes more than 
40 million rows representing clinical data such as patient 
demographics, medications, diagnoses, vitals, and lab 
results. Although our team did not directly use this dataset 
during the training process, because of its importance to the 
fine-tuning process for the open-sourced Medical LLaMA 
3B-8B model, it felt necessary to include an overview.  
 

B.​ Drugs@FDA: FDA Approved Drugs 
 
The dataset used directly in order to finetune our large 
language models comes from the FDA in two forms.  
 
The first source is a consolidated list of FDA-Approved 
Biosimilar Products available for export on 
https://www.fda.gov/drugs/biosimilars/biosimilar-product-i
nformation. As one may expect, this is a relatively small 
dataset given the extensive process new pharmaceuticals 
undergo in order to be approved for public use. As of 
December 2024, there are only 63 FDA-approved 
biosimilars listed on the FDA website linked above. 
Steqeyma, the most recent addition to this list, is a 
biosimilar for Stelara, a medication used to treat certain 
autoimmune conditions, particularly psoriasis and 
inflammatory bowel diseases.  
 

 
Figure 1: Running total of approved biosimilars from 2015 

to 2024 
 

The second source is the FDA’s Purple Book, an official 
publication that provides detailed information on 1) all 
FDA-licensed biological products regulated by the Center 
for Drug Evaluation and Research (CDER) and 2) all 
FDA-licensed allergenic, cellular and gene therapy, 
hematologic, and vaccine products by the Center for 
Biologics Evaluation and Research (CBER). Purple Book 
Data is available on-demand via the FDA’s Drugs@FDA 
API and also in a monthly report uploaded directly to the 
FDA website as a CSV.  
 
For our project, we decided to leverage the monthly report 
uploaded to the FDA website due to the consistently 
recurring nature of the uploads. Each report is divided into 
2 sections: 

1.​ The top section reports the changes made during 
the month in 3 categories.   

a.​ N: Newly approved products that 
received their initial FDA approval 

b.​ R: Products added in the current release 
which were previously approved products 
now included in the database 

c.​ U: FDA-approved products with changes 
to their information  

2.​ The bottom section of the report provides a 
comprehensive list of all products in the Purple 
Book database for that month, including those 
listed in the top section that were either added or 
updated. This ensures that the report reflects the 
full scope of changes and new inclusions for that 
month. 

 
We performed an analysis of the data available for 2024 
and compiled our findings into the following graphs: 

 
Figure 2: Count of total FDA-licensed biological products 

in 2024 
 
The number of total approved drugs grew from 1929 to 
2028, an increase of 5.14%. This figure is only projected to 
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increase at an even more rapid rate given the introduction 
of artificial intelligence into the drug discovery process. 
 
Below, we see the variability in the number of NRU 
updates over the course of the year, ranging from a low of 
17 in May to a high of 79 in August. The irregularity of the 
number of these updates adds to the challenge of keeping 
current for healthcare providers. 
   

 
Figure 3: Count of total changes made during each month 

in 2024 
 
In terms of the actual data, the FDA provides structured 
CSVs which can be easily imported and processed as 
Pandas dataframes. The data includes information 
including product approval status, applicant, product details 
(e.g., name, strength, dosage form), marketing and 
licensure status, exclusivity expiration dates, and related 
reference product information. Due to the strict standards 
and regulations associated with biologics and 
pharmaceutical data, minimal preprocessing was necessary. 
Since not all of the data is relevant to our desired outcome 
(i.e. finetuning our clinical LLM to recommend biosimilars 
when providing clinical decision support based on a 
provided diagnoses and symptoms), we carefully filtered 
our dataset to only the columns related to a product’s 
identity, biosimilar status, and reference product 
information. A more detailed description of the dataset and 
its columns are provided below: 

1.​ NRU Date: the year and month in which the NRU 
update for a specific product was released  

2.​ NRU: the type of update (“N”, “R”, “U”) for the 
biologic product 

3.​ Applicant: the company that submitted the license 
application 

4.​ Proprietary Name: the brand name of the 
biologic product 

5.​ Proper Name: the generic name of the biologic 
product 

6.​ BLA Type: the type of Biologics License 
Application (original, biosimilar, interchangeable) 

7.​ Approval Date: the date the biologic product was 
approved by the FDA 

8.​ Ref. Product Proper Name: the generic name of 
the reference biologic product for a biosimilar 

9.​ Ref. Product Proprietary Name: the brand name 
of the reference biologic product for a biosimilar 

4 ​ METHODS 
Our methodology for this project consists of several parts, 
including data collection and preprocessing using Apache 
Airflow, exploratory data analysis (EDA), feature selection, 
model finetuning, and output presentation. These different 
components are brought together to develop a fine-tuned 
clinical LLM capable of generating medication 
recommendations including the most recently approved 
biosimilars. 
 

a.​ Data Collection  
 
The data collection is a fundamental part of our 
methodology as it serves as the basis of the LLM finetuning 
process. We needed to decide between querying the 
Drugs@FDA API and scraping the Purple Book CSVs 
directly. Ultimately, the latter choice made more sense for 
our application given hardware limitations and the 
irregularity of NRU updates. Fine-tuning large models 
typically requires GPUs which we do not have unlimited 
access to as students. To find a balance between the most 
up-to-date data and cost-effectiveness, we decided to 
finetune on a monthly basis which aligns with how often 
the FDA releases its Purple Book CSVs. As a starting 
point, we collected all NRU updates from January 2024 to 
November 2024 (11 months) and consolidated this data into 
a single Pandas dataframe to be used for an initial round of 
fine-tuning. 
 
The first step to aggregating data from all CSVs released in 
2024 was to download the data. Ultimately we decided on 
building the URL manually as each CSV is uploaded 
directly to the fda.gov web server using a consistent format: 
 

 
Figure 4: Sample URL for January 2024 data 

 
 
Because the CSVs are split into 2 different sections, we 
needed to parse out the relevant NRU data from the first 
section. We accomplished this by locating the index of both 
header rows in the CSV, converting the entire CSV into a 
Pandas dataframe, and then parsing the data between each 

 
 



 

index giving us the NRU dataframe. This process is 
repeated for every month of interest before we consolidate 
the results into a single dataframe representing the entire 
year. This final NRU dataframe had a shape of (354, 26). 
 

b.​ Preprocessing and Feature Selection 
 
With the NRU dataframe, we leveraged Pandas to perform 
all of our pre-processing for the initial fine-tuning. This 
mainly included column filtering for this initial 
implementation. Based on insights from our background 
research and domain knowledge, we conducted a manual 
feature selection.  
 

c.​ LLM Fine Tuning 
 

We first fine-tuned our model using the FDA API, creating 
a custom function to request HTTP to the FDA API for 
drug labels within a given specified date range. Then we 
extracted this data into Pandas dataframe to operate with. 
After that, with the help of our second custom function that 
creates biosimilar datasets, we extracted the biosimilar 
name and the reference product name to generate a 
dataframe to proceed with fine-tuning. To implement 
fine-tuning, we first created input-output pairs for the LLM 
model in the form of instruction which determines the 
reference product given a biosimilar name with the actual 
biosimilar name fetched from the dataset. We split our 
dataset into 90% training and 10% testing. As we have used 
in many coding sections for the initial model configuration, 
we used a 4-bit quantization configuration for efficient 
memory usage. After 50 epochs, we observed a training 
loss of 0.7213 and a validation loss of 0.7294. 

d.​ Model Evaluation 

One of the most crucial parts of this project was to compare 
different models and identify the best one based on selected 
evaluation metrics. The first of our metrics is perplexity, a 
measurement of how well a probabilistic model predicts a 
given input. The lower the perplexity, the higher the 
accuracy and prediction of the model outputs. We evaluated 
different models using a custom dataset that included 200 
medications and their corresponding diseases. More details 
can be found under the Experiments section.  

5​ SYSTEM OVERVIEW 

The system architecture presents a comprehensive medical 
AI model pipeline that begins with an initial setup phase. 
This phase incorporates data from Drugs@FDA’s Purple 
Book which undergoes data preprocessing and feature 
selection before being used to train a pre-trained 
Medical-LLaMA3-8B model.  

The architecture then transitions into a recurring monthly 
operation phase, managed by Apache Airflow for 
automation. This phase maintains the same data sources 
and preprocessing pipeline but focuses on fine-tuning the 
existing model. The system culminates in a model output 
generation stage that incorporates additional input from 
symptoms & doctor diagnoses. 

 
Figure 5: System Architecture Diagram 

a.​ Airflow 

We use Apache Airflow, an open-source platform for 
workflow orchestration, to automate the process of parsing 
and processing monthly updates from the FDA Purple 
Book. Our workflow is showcased below. NOTE: not all 
portions have been fully implemented due to time 
constraints and hardware limitations related to LLM 
fine-tuning, specifically the finetune_llm task. 

 

Figure 6: Monthly recurring data collection & fine-tuning 
DAG 

b.​ Medical-LlaMa3-8b 

The main base architecture of LLM models is known as 
transformers. It was first described in the paper “Attention 
Is All You Need” by Vaswani et al [6]. Although some of 
the older methods in neural networks, such as RNN and 
LTSM, can utilize sequential data, they depend on the 
mechanism called “self-attention”, to work with the 
different segments of the input rather than implementing it 
sequentially. 

 



 

LLaMA3-8b is a large language model that uses the 
transformer-only architecture. By utilizing the tokens the 
model has seen before, the model predicts the next output 
by individually processing the text tokens. LLama3-8b has 
8 billion parameters and implements the byte-pair encoding 
(BPE) and Sentence Piece-based tokenizer [6]. In the deep 
stacks of this model, we can observe the multi-head 
self-attention and feed-forward layers. Additionally, it has 
been previously trained on diverse text datasets which is 
essential for our project since we are delivering a medical 
chatbot system. The text has to be converted into a numeric 
form before entering the model and to achieve this, the first 
text is split into smaller sub-words called tokens. After that, 
the generated tokens are mapped to the corresponding 
embedded vector during the training process so similar 
embedded vectors end up with the tokens that represent 
words with similar context. Furthermore, positional 
embeddings help the model identify the tokens' positions 
[7]. LLaMA3-8b has been trained in pre-training and 
self-supervised learning to predict the next tokens using the 
context in the older ones [8]. In Figure 6, we can observe 
the general structure of the  LLaMA3-8b model 
architecture. After the tokenization and embedding layer, 
32 more layers follow this general structure before entering 
the final dense layer. 

 

Figure 6: Architecture of LLaMA3-8b [8] 
 

Medical-LLaMA3-8b implements the same architecture as 
LLaMA3-8b, but is fine-tuned on several medical datasets, 
such as the AI Medical Chatbot dataset [9], 
LLaMA-3[8B]-MeditronV1.0, Bio-Medical-LLaMA-3-8B 
dataset, and a large number of medical and general 
instructions. Variants of this model have outperforme the 
state-of-art models in benchmarks such as  MedQA and 
MedMCQA [10].   

c.​ Inference GUI 
The user interface for local implementation was developed 
using Tkinter, a Python GUI library. Tkinter provided a 
straightforward way to create a graphical interface for the 
model. However, its limitation is that it operates as a 
Python script, making it difficult to package into a 
standalone application like a .exe for Windows or .app for 
macOS for public deployment. Despite this, it offered a 
functional solution for local deployments. 
 
For web-based implementations, the HTTP interface was 
built using HTML5 and CSS, providing a modern and 
responsive design. The API also allowed the creation of 
mobile web apps and desktop applications with web 
connectivity. These apps simply needed to make HTTP 
requests to the server hosting the model. Additionally, we 
recognized the potential of pseudo-app 
structures—applications that appear native but are 
essentially built on web technologies like HTML and CSS. 
This approach could mimic native app behavior while 
leveraging the web’s flexibility. 

6​ EXPERIMENTS 
 

a.​ Data Collection 
 
Initially, our approach to downloading data from the 
Drugs@FDA website involved using Selenium to scrape 
the URLs for the CSV files directly from the webpage. We 
planned to automate the navigation and retrieve the URLs 
from the page, then use Python's requests library to fetch 
the actual data. However, we encountered an issue where 
the page's JavaScript was not fully loading before the 
Selenium script attempted to extract the data. This likely 
happened because Selenium was not waiting long enough 
for the JavaScript-driven content to load dynamically, 
especially if the page used AJAX or other client-side 
rendering techniques. As a result, the request to fetch the 
CSV links didn't retrieve the full set of data, leading to 
incomplete or missing URLs. 
 
After running into these issues, we explored a few different 
Python libraries designed to handle asynchronous loading 
of data, such as Playwright and Pyppeteer. However, after 

 
 



 

testing these options, we found that the most 
straightforward solution was to directly examine the 
structure of the URLs used to access the CSV files and see 
if we could manually generate them. By analyzing the 
webpage's network requests and identifying a consistent 
pattern in the URL structure, we were able to craft direct 
download links for the datasets. This approach bypassed 
the need for complex JavaScript rendering or asynchronous 
handling, allowing us to download the data directly and 
efficiently. 
 

b.​ Model Evaluation 
 

 

Figure 4: Perplexity values for different LLM models 

As can be seen in Figure 4, after the first evaluations, we 
observed that GPT-neo-2.7B had a perplexity of 21.3392 
with a response time of 2.1917 seconds. The bloom-3b 
LLM model had a perplexity of 19.5437 and a response 
time of 1.5330. GPT-j-6B, on the other hand, had a 
perplexity of 17.1130 and a response time of 2.4248. 
Finally, the last compared LLM model, 
Medical-LLaMA3-8B, had a perplexity value of 17.3792 
with a response time of 1.7368. When we compare the 
results, GPT-j-6B had the lowest perplexity level but a poor 
response time compared to the other models. 

On the other hand, bloom-3b had the lowest response time; 
however, the perplexity values were higher than the models' 
average. Medical-LLaMA3-8B was the most stable LLM 
model, with a low perplexity value and a low response 
time. To conclude these evaluations, the first input was “Q: 
Suggest therapies for managing severe Systemic Lupus 
Erythematosus (SLE) flares.” 

Additionally, we wanted to observe the perplexity values 
with more complex diseases as can be seen in Figure 6.  

​

 

​ Figure 5.: Figure 4: Perplexity values for different 
LLM models 

To achieve this, we changed the input sequence to “What 
medications are used for managing Mixed Connective 
Tissue Disease flares?” to capture differences in the 
perplexity values. As anticipated, we observed a drop in 
perplexity values when utilizing Medical-LLaMA3-8B. 
Following these evaluations, we compared the accuracy, 
prediction, and F1-score based on a dataset we created 
containing 200 medications and their corresponding 
diseases. Based on these evaluations, we selected 
Medical-LLaMA3-8B as our baseline model, achieving 
over 90% for each evaluation metric. After the evaluations, 
we initialized Medical LLaMA3-8b as our baseline model. 

c.​ Interface 
 
Interfacing with the model was designed to support 
inference locally or via an API, offering flexibility in its 
final deployment. The local implementation was the most 
straightforward to achieve. During the initial model 
buildout, we simply prompted the model using Jupyter 
Notebook, which provided a simple development 
environment. Similarly, hosting the model on a local HTTP 
server, such as Apache, enabled seamless interactions when 
both the server and client resided on the same virtual 
machine (VM). 
 
To extend the model deployment options, we explored 
remote access by developing an API around it. Using a 
simple HTTP script with Flask or FastAPI libraries with 
authentication, we created a mechanism for submitting 
requests to the model and receiving the expected responses. 
This approach ensured secure and efficient remote access 
while maintaining the flexibility to integrate with various 
systems. 
 
These design choices ensured maximum versatility in 
theory for delivering the model through various methods, 

 



 

whether as a local application, a remote API, or a hybrid 
web-based interface. 
 

7​ CONCLUSION  
 
This study investigated the feasibility and effectiveness of 
creating a state of the art, condition-aware large language 
model (LLM), nicknamed PharMe.  Utilizing Medical 
LLaMA-3-8B, pre-tuned on the MIMIC-III dataset and 
further fine-tuned with data from the FDA's Drugs@FDA 
database and Purple Book, PharMe was able to create a 
solution for healthcare providers with actionable insights 
into traditional,cost-effective treatment options, including 
biosimilars and generics, that they may have otherwise 
overlooked or been unaware of, for any given diagnosis.  

In conclusion, PharMe demonstrated the potential of large 
language models in healthcare by addressing potential 
gaps in pharmaceutical knowledge dissemination. By 
combining some of the latest models in AI technologies 
with healthcare domain-specific data, PharMe supports 
healthcare providers, not replacing them, in delivering 
informed, cost-effective, and high-quality care.  

8 Future Work 
Future work could focus on expanding the model’s 
capabilities - specifically in condition awareness, 
enhancing its integration with electronic health record 
systems, and conducting further validation studies to ensure 
its applicability across diverse healthcare environments. 
 
Another promising area for future research lies in tailoring 
treatment recommendations based on a patient's existing 
comorbidities, conditions, and current medications. By 
incorporating an advanced understanding of pharmacology 
and drug delivery mechanisms, the model could identify 
opportunities where a single medication might replace 
multiple drugs a patient is currently prescribed. This 
approach could streamline treatment regimens, reduce 
potential drug interactions, and improve overall patient 
outcomes. 
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