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Abstract—This study explored the application of Medical 

Llama-3-8B, a large language model pre-trained on the MIMIC-

III dataset, as a resource tool for assisting healthcare providers in 

drug and treatment selection based on patient diagnoses. The 

model was fine-tuned on data sourced (324 Updates for 2024) from 

Drugs@FDA, specifically the FDA’s Purple Book database, which 

provides comprehensive information on approved drugs, novel 

treatments, and biosimilars. 

To ensure the model remained current with the latest updates, 

an automated workflow was developed using Apache Airflow. 

This workflow facilitated periodic data pulls from the FDA 

database, processed and formatted the retrieved information, and 

incorporated it into the fine-tuning loop. 

The resulting fine-tuned model, termed PharMe, 

demonstrated the ability to provide valuable recommendations 

when prompted with medical conditions, achieving a perplexity 

score on average of 17.4, compared to GPT-Neo’s score of 21.7. 

PharMe not only suggested commonly prescribed treatments but 

also identified the latest advancements, including novel therapies, 

and biosimilars. 

This project demonstrated the potential of large language 

models when fine-tuned for specific applications in the field of 

medicine and serves as a promising example of how such models 

can support healthcare decision-making and leveraging AI in the 

medical industry. 

I. INTRODUCTION 

The rapid pace of pharmaceutical innovation and regulatory 
updates presents an unprecedented challenge in modern 
healthcare delivery. Providers are tasked with providing quality 
care in a timely manner, while simultaneously processing 
mountains of reporting and administrative duties. This makes it 
increasingly difficult to stay on top of novel drug approvals and 
existing drug modifications released by the Food and Drug 
Administration (FDA) on a monthly basis. In 2024 alone, the 
Food and Drug Administration (FDA) approved 44 novel drugs 
and over 10,000 updates to existing drugs [1]. With potential 
implications on patient care management and regulatory 
compliance, it is necessary to find a way to integrate novel drug 
information into clinical practice in a streamlined fashion.  

Healthcare providers are solely responsible for determining 
the most appropriate treatments for their patients, considering 
factors such as the current diagnosis, comorbidities, previous 
medical conditions, allergies, and preferences for brand-name 
drugs or biosimilars due to insurance coverage. Additionally, 
they must account for potential contraindications and 
incompatibilities, especially when a patient is undergoing 

multiple treatments. While modern electronic health record 
(EHR) systems can prepopulate drug options and flag critical 
issues, the responsibility for staying informed about the latest 
treatments ultimately lies with the providers. 

Healthcare providers are frequently visited by medical sales 
representatives whose primary role is to present information 
about their companies' products and services. In addition to 
providing educational materials, med reps often offer incentives 
such as department-wide meals or sponsorships for trips and 
conferences. While these interactions can help providers stay 
informed about new treatments and innovations, they may also 
introduce biases, as the information presented typically focuses 
on the products being promoted by the rep's company. 

One common method for staying updated on medical 
advancements is subscribing to relevant journals within one’s 
field. While this approach is more accessible and cost-effective, 
it places the burden of filtering through advancements on the 
provider. Furthermore, journal publications can sometimes be 
influenced by sponsorships from manufacturers, which may lead 
to selective reporting, leaving out updates from less-prominent 
companies or competitors. Additionally, physical journals are 
considered long lead outlets, requiring several months for 
research, writing, editing, and printing. As a result, the 
information may already be outdated by the time it reaches 
providers, typically lagging 2-3 months behind current 
developments. 

Another avenue for staying current is attending annual 
conferences, which provide opportunities to learn about the 
latest research, treatments, and technologies. However, these 
multi-day events are often costly and rely on financial support 
from medical sales representatives or employers. Conferences 
also tend to favor larger pharmaceutical and medical 
manufacturing companies with the resources to sponsor 
prominent displays and presentations, potentially 
overshadowing smaller, less funded organizations with novel 
contributions. 

In private practice, the challenge of staying up-to-date 
becomes even more demanding. Providers in these settings must 
take on the full responsibility of continuing education and 
staying informed about advancements in their field. This not 
only fulfills their professional obligations as practitioners but 
also reflects their commitment to delivering the highest standard 
of care to their patients. Balancing these demands with clinical 
responsibilities underscores the complexity of maintaining 
medical expertise in a rapidly evolving healthcare landscape. 



This project aims to address these challenges by developing 
a clinically trained, condition-aware large language model that 
incorporates continual updates from the FDA. The result is a 
real-time, dynamically updated platform designed to support 
clinical decision-making. This tool empowers healthcare 
providers by highlighting treatment options they might have 
overlooked, forgotten, or been unaware of, including cost-
effective biosimilars and generics. By doing so, it enhances 
prescribing accuracy and cost-efficiency, ultimately improving 
patient care. 

II. RELATED WORKS 

Several studies have explored the application of large 
language models (LLMs) in various facets of healthcare and the 
pharmaceutical industry. One study investigated the use of 
LLMs in drug recommendation systems [2], evaluating models 
such as RETAIN, G-Bert, GAMENet, SafeDrug, MICRON, 
COGNet, and REFINE. These models leveraged patient data 
from EHRs to generate drug recommendations. However, 
challenges emerged in making recommendations for new 
patients with limited or no prior medical history. The study’s 
best-performing model, LEADER, demonstrated superior 
accuracy and efficiency compared to other models, yet 
emphasized the need for further research to incorporate drug 
interactions, enhancing safety and precision. 

Another comprehensive study analyzed 7,402 research 
papers to explore the broader applications of LLMs across the 
pharmaceutical sector, including research and development 
(R&D), manufacturing, quality control, regulatory affairs, and 
clinical settings [3]. Similar to PharMe, this study examined the 
use of chatbots as consultants during surgical procedures, where 
natural language processing (NLP) was employed to assist 
surgeons in critical decision-making. These chatbots provided 
real-time recommendations based on clinical guidelines and 
medical literature. Additionally, the study highlighted the 
development of GA-DRUG, a genetic-awareness model 
designed to predict drug interactions by analyzing individual 
patient genetic profiles, thereby enabling personalized treatment 
plans. Other models examined in this research acted as 
diagnostic decision-support tools, analyzing patient data, 
generating insights, and flagging anomalies. While these 
systems align with PharMe's goals, their scope is broader and 
less focused on referencing specific drugs for particular medical 
conditions. 

A separate study delved into the applications of LLMs in the 
pharmaceutical supply chain [4]. This research underscored the 
potential of LLMs for inventory optimization, process 
automation, and systems integration. However, it also cautioned 
against risks such as AI hallucinations, where incorrect or 
misleading data could compromise operational integrity. The 
study emphasized that LLMs should complement human 
expertise rather than replace it, ensuring that decision-making 
remains robust and reliable. 

Interestingly, none of the aforementioned studies have fully 
addressed the challenges or opportunities posed by biosimilars 
and generics. These areas are critical in modern pharmaceutical 
practice due to their potential to reduce costs and increase 
accessibility depending on the patient's health insurance or lack 

thereof. LLMs, with their ability to analyze large datasets and 
extract insights, could play a pivotal role in identifying the most 
cost-effective options among biosimilars and generics while 
ensuring they align with a patient’s specific needs and genetic 
profile. 

What makes this project unique is that PharMe focuses 
specifically on referencing applicable drugs for medical 
conditions, going beyond the functionality of a simple dictionary 
or database. Unlike traditional systems, PharMe considers the 
contextual nuances of the medical condition and integrates this 
understanding into its recommendations. Furthermore, PharMe 
is not designed as a diagnostic tool. Instead, it relies on 
healthcare providers to make the final prescribing decisions, 
alleviating many of the ethical and practical concerns associated 
with other medical AI systems. This targeted, context-aware 
approach sets PharMe apart as a safer and more focused 
application of LLM technology in healthcare. 

III. DATA 

Data for this project includes two sources: one used 
indirectly (the MIMIC-III clinical database) and the other used 
directly (the FDA’s drug database). 
 

A. MIMIC-III: A freely accessible critical care database  

MIMIC-III (Medical Information Mart for Intensive Care 
III) is a large, freely-available dataset released by Meta that is 
composed of de-identified electronic health record (EHR) data 
from over 40,000 ICU patients with admissions at Beth Israel 
Deaconess Medical Center in Boston, MA between 2001 and 
2012 [5]. The dataset includes more than 40 million rows 
representing clinical data such as patient demographics, 
medications, diagnoses, vitals, and lab results. Although our 
team did not directly use this dataset during the training process, 
because of its importance to the fine-tuning process for the open-
sourced Medical LLaMA 3B-8B model, it felt necessary to 
include an overview.  

B. Drugs@FDA: FDA Approved Drugs 

The dataset used directly in order to finetune our large 
language models comes from the FDA in two forms.  

The first source is a consolidated list of FDA-Approved 
Biosimilar Products available for export on 
https://www.fda.gov/drugs/biosimilars/biosimilar-product-
information. As one may expect, this is a relatively small dataset 
given the extensive process new pharmaceuticals undergo in 
order to be approved for public use. As of December 2024, there 
are only 63 FDA-approved biosimilars listed on the FDA 
website linked above. Steqeyma, the most recent addition to this 
list, is a biosimilar for Stelara, a medication used to treat certain 
autoimmune conditions, particularly psoriasis and inflammatory 
bowel diseases.  

 

https://www.fda.gov/drugs/biosimilars/biosimilar-product-information
https://www.fda.gov/drugs/biosimilars/biosimilar-product-information


 

Fig. 1. Running total of approved biosimilars from 2015 to 2024 

The second source is the FDA’s Purple Book, an official 
publication that provides detailed information on 1) all FDA-
licensed biological products regulated by the Center for Drug 
Evaluation and Research (CDER) and 2) all FDA-licensed 
allergenic, cellular and gene therapy, hematologic, and vaccine 
products by the Center for Biologics Evaluation and Research 
(CBER). Purple Book Data is available on-demand via the 
FDA’s Drugs@FDA API and also in a monthly report uploaded 
directly to the FDA website as a CSV.  

For our project, we decided to leverage the monthly report 
uploaded to the FDA website due to the consistently recurring 
nature of the uploads. Each report is divided into 2 sections: 

1. The top section reports the changes made during the 
month in 3 categories.   

a) N: Newly approved products that received their 
initial FDA approval 

b) R: Products added in the current release which were 
previously approved products now included in the 
database 

c) U: FDA-approved products with changes to their 
information  

2. The bottom section of the report provides a 
comprehensive list of all products in the Purple Book 
database for that month, including those listed in the top 
section that were either added or updated. This ensures 
that the report reflects the full scope of changes and new 
inclusions for that month. 

We performed an analysis of the data available for 2024 and 
compiled our findings into the following graphs: 

 
Fig. 2. Count of total FDA-licensed biological products in 2024 

The number of total approved drugs grew from 1929 to 
2028, an increase of 5.14%. This figure is only projected to 
increase at an even more rapid rate given the introduction of 
artificial intelligence into the drug discovery process. 

Below, we see the variability in the number of NRU updates 
over the course of the year, ranging from a low of 17 in May to 
a high of 79 in August. The irregularity of the number of these 
updates adds to the challenge of keeping current for healthcare 
providers. 

   

 
Fig. 3. Count of total changes made during each month in 2024 

In terms of the actual data, the FDA provides structured 
CSVs which can be easily imported and processed as Pandas 
dataframes. The data includes information including product 
approval status, applicant, product details (e.g., name, strength, 
dosage form), marketing and licensure status, exclusivity 
expiration dates, and related reference product information. Due 
to the strict standards and regulations associated with biologics 
and pharmaceutical data, minimal preprocessing was necessary. 
Since not all of the data is relevant to our desired outcome (i.e. 
finetuning our clinical LLM to recommend biosimilars when 
providing clinical decision support based on a provided 



diagnoses and symptoms), we carefully filtered our dataset to 
only the columns related to a product’s identity, biosimilar 
status, and reference product information. A more detailed 
description of the dataset and its columns are provided below: 

1. NRU Date: the year and month in which the NRU update 

for a specific product was released  
2. NRU: the type of update (“N”, “R”, “U”) for the biologic 

product 
3. Applicant: the company that submitted the license 

application 
4. Proprietary Name: the brand name of the biologic 

product 
5. Proper Name: the generic name of the biologic product 
6. BLA Type: the type of Biologics License Application 

(original, biosimilar, interchangeable) 
7. Approval Date: the date the biologic product was 

approved by the FDA 
8. Ref. Product Proper Name: the generic name of the 

reference biologic product for a biosimilar 
9. Ref. Product Proprietary Name: the brand name of the 

reference biologic product for a biosimilar 

IV. METHODS 

Our methodology for this project consists of several parts, 
including data collection and preprocessing using Apache 
Airflow, exploratory data analysis (EDA), feature selection, 
model finetuning, and output presentation. These different 
components are brought together to develop a fine-tuned clinical 
LLM capable of generating medication recommendations 
including the most recently approved biosimilars. 

A. Data Collection  

The data collection is a fundamental part of our methodology 
as it serves as the basis of the LLM finetuning process. We 
needed to decide between querying the Drugs@FDA API and 
scraping the Purple Book CSVs directly. Ultimately, the latter 
choice made more sense for our application given hardware 
limitations and the irregularity of NRU updates. Fine-tuning 
large models typically requires GPUs which we do not have 
unlimited access to as students. To find a balance between the 
most up-to-date data and cost-effectiveness, we decided to 
finetune on a monthly basis which aligns with how often the 
FDA releases its Purple Book CSVs. As a starting point, we 
collected all NRU updates from January 2024 to November 
2024 (11 months) and consolidated this data into a single Pandas 
dataframe to be used for an initial round of fine-tuning. 

The first step to aggregating data from all CSVs released in 
2024 was to download the data. Ultimately we decided on 
building the URL manually as each CSV is uploaded directly to 
the fda.gov web server using a consistent format: 

 

 

Fig. 4. Sample URL for January 2024 data 

Because the CSVs are split into 2 different sections, we 
needed to parse out the relevant NRU data from the first section. 
We accomplished this by locating the index of both header rows 
in the CSV, converting the entire CSV into a Pandas dataframe, 
and then parsing the data between each index giving us the NRU 
dataframe. This process is repeated for every month of interest 
before we consolidate the results into a single dataframe 
representing the entire year. This final NRU dataframe had a 
shape of (354, 26). 

B. Preprocessing and Feature Selection 

With the NRU dataframe, we leveraged Pandas to perform 
all of our pre-processing for the initial fine-tuning. This mainly 
included column filtering for this initial implementation. Based 
on insights from our background research and domain 
knowledge, we conducted a manual feature selection.  

C. LLM Fine Tuning 

We first fine-tuned our model using the FDA API, creating 
a custom function to request HTTP to the FDA API for drug 
labels within a given specified date range. Then we extracted 
this data into Pandas dataframe to operate with. After that, with 
the help of our second custom function that creates biosimilar 
datasets, we extracted the biosimilar name and the reference 
product name to generate a dataframe to proceed with fine-
tuning. To implement fine-tuning, we first created input-output 
pairs for the LLM model in the form of instruction which 
determines the reference product given a biosimilar name with 
the actual biosimilar name fetched from the dataset. We split our 
dataset into 90% training and 10% testing. As we have used in 
many coding sections for the initial model configuration, we 
used a 4-bit quantization configuration for efficient memory 
usage. After 50 epochs, we observed a training loss of 0.7213 
and a validation loss of 0.7294. 

D. Model Evaluation 

One of the most crucial parts of this project was to compare 
different models and identify the best one based on selected 
evaluation metrics. The first of our metrics is perplexity, a 
measurement of how well a probabilistic model predicts a given 
input. The lower the perplexity, the higher the accuracy and 
prediction of the model outputs. We evaluated different models 
using a custom dataset that included 200 medications and their 
corresponding diseases. More details can be found under the 
Experiments section.  

V. SYSTEM OVERVIEW 

The system architecture presents a comprehensive medical 
AI model pipeline that begins with an initial setup phase. This 
phase incorporates data from Drugs@FDA’s Purple Book 
which undergoes data preprocessing and feature selection before 
being used to train a pre-trained Medical-LLaMA3-8B model.  

The architecture then transitions into a recurring monthly 
operation phase, managed by Apache Airflow for automation. 
This phase maintains the same data sources and preprocessing 
pipeline but focuses on fine-tuning the existing model. The 
system culminates in a model output generation stage that 
incorporates additional input from symptoms & doctor 
diagnoses. 



 
Fig. 5. System Architecture Diagram 

A. Airflow 

We use Apache Airflow, an open-source platform for 
workflow orchestration, to automate the process of parsing and 
processing monthly updates from the FDA Purple Book. Our 
workflow is showcased below. NOTE: not all portions have 
been fully implemented due to time constraints and hardware 
limitations related to LLM fine-tuning, specifically the 
finetune_llm task. 

 

Fig. 6. Monthly recurring data collection & fine-tuning DAG 

B. Medical-LlaMa3-8b 

The main base architecture of LLM models is known as 
transformers. It was first described in the paper “Attention Is All 
You Need” by Vaswani et al [6]. Although some of the older 
methods in neural networks, such as RNN and LTSM, can 
utilize sequential data, they depend on the mechanism called 
“self-attention”, to work with the different segments of the input 
rather than implementing it sequentially. 

LLaMA3-8b is a large language model that uses the 
transformer-only architecture. By utilizing the tokens the model 
has seen before, the model predicts the next output by 
individually processing the text tokens. LLama3-8b has 8 billion 
parameters and implements the byte-pair encoding (BPE) and 
Sentence Piece-based tokenizer [6]. In the deep stacks of this 
model, we can observe the multi-head self-attention and feed-
forward layers. Additionally, it has been previously trained on 
diverse text datasets which is essential for our project since we 
are delivering a medical chatbot system. The text has to be 
converted into a numeric form before entering the model and to 
achieve this, the first text is split into smaller sub-words called 
tokens. After that, the generated tokens are mapped to the 
corresponding embedded vector during the training process so 
similar embedded vectors end up with the tokens that represent 
words with similar context. Furthermore, positional embeddings 
help the model identify the tokens' positions [7]. LLaMA3-8b 

has been trained in pre-training and self-supervised learning to 
predict the next tokens using the context in the older ones [8]. In 
Figure 6, we can observe the general structure of the  LLaMA3-
8b model architecture. After the tokenization and embedding 
layer, 32 more layers follow this general structure before 
entering the final dense layer. 

 

Fig. 7. Architecture of LLaMA3-8b [8] 

Medical-LLaMA3-8b implements the same architecture as 
LLaMA3-8b, but is fine-tuned on several medical datasets, such 
as the AI Medical Chatbot dataset [9], LLaMA-3[8B]-
MeditronV1.0, Bio-Medical-LLaMA-3-8B dataset, and a large 
number of medical and general instructions. Variants of this 
model have outperforme the state-of-art models in benchmarks 
such as  MedQA and MedMCQA [10].   

C. Inference GUI 

The user interface for local implementation was developed 
using Tkinter, a Python GUI library. Tkinter provided a 
straightforward way to create a graphical interface for the model. 
However, its limitation is that it operates as a Python script, 
making it difficult to package into a standalone application like 
a .exe for Windows or .app for macOS for public deployment. 
Despite this, it offered a functional solution for local 
deployments. 

For web-based implementations, the HTTP interface was 
built using HTML5 and CSS, providing a modern and 
responsive design. The API also allowed the creation of mobile 
web apps and desktop applications with web connectivity. These 
apps simply needed to make HTTP requests to the server hosting 
the model. Additionally, we recognized the potential of pseudo-



app structures—applications that appear native but are 
essentially built on web technologies like HTML and CSS. This 
approach could mimic native app behavior while leveraging the 
web’s flexibility. 

VI. EXPERIMENTS 

A. Data Collection 

Initially, our approach to downloading data from the 
Drugs@FDA website involved using Selenium to scrape the 
URLs for the CSV files directly from the webpage. We planned 
to automate the navigation and retrieve the URLs from the page, 
then use Python's requests library to fetch the actual data. 
However, we encountered an issue where the page's JavaScript 
was not fully loading before the Selenium script attempted to 
extract the data. This likely happened because Selenium was not 
waiting long enough for the JavaScript-driven content to load 
dynamically, especially if the page used AJAX or other client-
side rendering techniques. As a result, the request to fetch the 
CSV links didn't retrieve the full set of data, leading to 
incomplete or missing URLs. 

After running into these issues, we explored a few different 
Python libraries designed to handle asynchronous loading of 
data, such as Playwright and Pyppeteer. However, after testing 
these options, we found that the most straightforward solution 
was to directly examine the structure of the URLs used to access 
the CSV files and see if we could manually generate them. By 
analyzing the webpage's network requests and identifying a 
consistent pattern in the URL structure, we were able to craft 
direct download links for the datasets. This approach bypassed 
the need for complex JavaScript rendering or asynchronous 
handling, allowing us to download the data directly and 
efficiently. 

B. Model Evaluation 

 

Fig. 8. Perplexity values for different LLM models 

As can be seen in Figure 8, after the first evaluations, we 
observed that GPT-neo-2.7B had a perplexity of 21.3392 with a 
response time of 2.1917 seconds. The bloom-3b LLM model 
had a perplexity of 19.5437 and a response time of 1.5330. GPT-
j-6B, on the other hand, had a perplexity of 17.1130 and a 
response time of 2.4248. Finally, the last compared LLM model, 
Medical-LLaMA3-8B, had a perplexity value of 17.3792 with a 
response time of 1.7368. When we compare the results, GPT-j-

6B had the lowest perplexity level but a poor response time 
compared to the other models. 

On the other hand, bloom-3b had the lowest response time; 
however, the perplexity values were higher than the models' 
average. Medical-LLaMA3-8B was the most stable LLM 
model, with a low perplexity value and a low response time. To 
conclude these evaluations, the first input was “Q: Suggest 
therapies for managing severe Systemic Lupus Erythematosus 
(SLE) flares.” 

Additionally, we wanted to observe the perplexity values 
with more complex diseases as can be seen in Figure 9.  

 

 

Fig. 9.  Perplexity values for different LLM models 

To achieve this, we changed the input sequence to “What 
medications are used for managing Mixed Connective Tissue 
Disease flares?” to capture differences in the perplexity values. 
As anticipated, we observed a drop in perplexity values when 
utilizing Medical-LLaMA3-8B. Following these evaluations, 
we compared the accuracy, prediction, and F1-score based on a 
dataset we created containing 200 medications and their 
corresponding diseases. Based on these evaluations, we selected 
Medical-LLaMA3-8B as our baseline model, achieving over 
90% for each evaluation metric. After the evaluations, we 
initialized Medical LLaMA3-8b as our baseline model. 

C. Interface 

Interfacing with the model was designed to support inference 
locally or via an API, offering flexibility in its final deployment. 
The local implementation was the most straightforward to 
achieve. During the initial model buildout, we simply prompted 
the model using Jupyter Notebook, which provided a simple 
development environment. Similarly, hosting the model on a 
local HTTP server, such as Apache, enabled seamless 
interactions when both the server and client resided on the same 
virtual machine (VM). 

To extend the model deployment options, we explored 
remote access by developing an API around it. Using a simple 
HTTP script with Flask or FastAPI libraries with authentication, 
we created a mechanism for submitting requests to the model 
and receiving the expected responses. This approach ensured 
secure and efficient remote access while maintaining the 
flexibility to integrate with various systems. 



These design choices ensured maximum versatility in theory 
for delivering the model through various methods, whether as a 
local application, a remote API, or a hybrid web-based interface. 

VII.  CONCLUSION  

This study investigated the feasibility and effectiveness of 
creating a state of the art, condition-aware large language model 
(LLM), nicknamed PharMe.  Utilizing Medical LLaMA-3-8B, 
pre-tuned on the MIMIC-III dataset and further fine-tuned with 
data from the FDA's Drugs@FDA database and Purple Book, 
PharMe was able to create a solution for healthcare providers 
with actionable insights into traditional,cost-effective treatment 
options, including biosimilars and generics, that they may have 
otherwise overlooked or been unaware of, for any given 
diagnosis.  

In conclusion, PharMe demonstrated the potential of large 
language models in healthcare by addressing potential gaps in 
pharmaceutical knowledge dissemination. By combining some 
of the latest models in AI technologies with healthcare domain-
specific data, PharMe supports healthcare providers, not 
replacing them, in delivering informed, cost-effective, and high-
quality care.  

VIII. FUTURE WORK 

Future work could focus on expanding the model’s 
capabilities - specifically in condition awareness, enhancing its 
integration with electronic health record systems, and 
conducting further validation studies to ensure its applicability 
across diverse healthcare environments. 

Another promising area for future research lies in tailoring 
treatment recommendations based on a patient's existing 
comorbidities, conditions, and current medications. By 
incorporating an advanced understanding of pharmacology and 
drug delivery mechanisms, the model could identify 

opportunities where a single medication might replace multiple 
drugs a patient is currently prescribed. This approach could 
streamline treatment regimens, reduce potential drug 
interactions, and improve overall patient outcomes. 
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