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Abstract—This study explored the application of Medical
Llama-3-8B, a large language model pre-trained on the MIMIC-
111 dataset, as a resource tool for assisting healthcare providers in
drug and treatment selection based on patient diagnoses. The
model was fine-tuned on data sourced (324 Updates for 2024) from
Drugs@FDA, specifically the FDA’s Purple Book database, which
provides comprehensive information on approved drugs, novel
treatments, and biosimilars.

To ensure the model remained current with the latest updates,
an automated workflow was developed using Apache Airflow.
This workflow facilitated periodic data pulls from the FDA
database, processed and formatted the retrieved information, and
incorporated it into the fine-tuning loop.

The resulting fine-tuned model, termed PharMe,
demonstrated the ability to provide valuable recommendations
when prompted with medical conditions, achieving a perplexity
score on average of 17.4, compared to GPT-Neo’s score of 21.7.
PharMe not only suggested commonly prescribed treatments but
also identified the latest advancements, including novel therapies,
and biosimilars.

This project demonstrated the potential of large language
models when fine-tuned for specific applications in the field of
medicine and serves as a promising example of how such models
can support healthcare decision-making and leveraging Al in the
medical industry.

I. INTRODUCTION

The rapid pace of pharmaceutical innovation and regulatory
updates presents an unprecedented challenge in modern
healthcare delivery. Providers are tasked with providing quality
care in a timely manner, while simultaneously processing
mountains of reporting and administrative duties. This makes it
increasingly difficult to stay on top of novel drug approvals and
existing drug modifications released by the Food and Drug
Administration (FDA) on a monthly basis. In 2024 alone, the
Food and Drug Administration (FDA) approved 44 novel drugs
and over 10,000 updates to existing drugs [1]. With potential
implications on patient care management and regulatory
compliance, it is necessary to find a way to integrate novel drug
information into clinical practice in a streamlined fashion.

Healthcare providers are solely responsible for determining
the most appropriate treatments for their patients, considering
factors such as the current diagnosis, comorbidities, previous
medical conditions, allergies, and preferences for brand-name
drugs or biosimilars due to insurance coverage. Additionally,
they must account for potential contraindications and
incompatibilities, especially when a patient is undergoing
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multiple treatments. While modern electronic health record
(EHR) systems can prepopulate drug options and flag critical
issues, the responsibility for staying informed about the latest
treatments ultimately lies with the providers.

Healthcare providers are frequently visited by medical sales
representatives whose primary role is to present information
about their companies' products and services. In addition to
providing educational materials, med reps often offer incentives
such as department-wide meals or sponsorships for trips and
conferences. While these interactions can help providers stay
informed about new treatments and innovations, they may also
introduce biases, as the information presented typically focuses
on the products being promoted by the rep's company.

One common method for staying updated on medical
advancements is subscribing to relevant journals within one’s
field. While this approach is more accessible and cost-effective,
it places the burden of filtering through advancements on the
provider. Furthermore, journal publications can sometimes be
influenced by sponsorships from manufacturers, which may lead
to selective reporting, leaving out updates from less-prominent
companies or competitors. Additionally, physical journals are
considered long lead outlets, requiring several months for
research, writing, editing, and printing. As a result, the
information may already be outdated by the time it reaches
providers, typically lagging 2-3 months behind current
developments.

Another avenue for staying current is attending annual
conferences, which provide opportunities to learn about the
latest research, treatments, and technologies. However, these
multi-day events are often costly and rely on financial support
from medical sales representatives or employers. Conferences
also tend to favor larger pharmaceutical and medical
manufacturing companies with the resources to sponsor
prominent  displays and  presentations,  potentially
overshadowing smaller, less funded organizations with novel
contributions.

In private practice, the challenge of staying up-to-date
becomes even more demanding. Providers in these settings must
take on the full responsibility of continuing education and
staying informed about advancements in their field. This not
only fulfills their professional obligations as practitioners but
also reflects their commitment to delivering the highest standard
of care to their patients. Balancing these demands with clinical
responsibilities underscores the complexity of maintaining
medical expertise in a rapidly evolving healthcare landscape.



This project aims to address these challenges by developing
a clinically trained, condition-aware large language model that
incorporates continual updates from the FDA. The result is a
real-time, dynamically updated platform designed to support
clinical decision-making. This tool empowers healthcare
providers by highlighting treatment options they might have
overlooked, forgotten, or been unaware of, including cost-
effective biosimilars and generics. By doing so, it enhances
prescribing accuracy and cost-efficiency, ultimately improving
patient care.

Il. RELATED WORKS

Several studies have explored the application of large
language models (LLMs) in various facets of healthcare and the
pharmaceutical industry. One study investigated the use of
LLMs in drug recommendation systems [2], evaluating models
such as RETAIN, G-Bert, GAMENet, SafeDrug, MICRON,
COGNet, and REFINE. These models leveraged patient data
from EHRs to generate drug recommendations. However,
challenges emerged in making recommendations for new
patients with limited or no prior medical history. The study’s
best-performing model, LEADER, demonstrated superior
accuracy and efficiency compared to other models, yet
emphasized the need for further research to incorporate drug
interactions, enhancing safety and precision.

Another comprehensive study analyzed 7,402 research
papers to explore the broader applications of LLMs across the
pharmaceutical sector, including research and development
(R&D), manufacturing, quality control, regulatory affairs, and
clinical settings [3]. Similar to PharMe, this study examined the
use of chatbots as consultants during surgical procedures, where
natural language processing (NLP) was employed to assist
surgeons in critical decision-making. These chatbots provided
real-time recommendations based on clinical guidelines and
medical literature. Additionally, the study highlighted the
development of GA-DRUG, a genetic-awareness model
designed to predict drug interactions by analyzing individual
patient genetic profiles, thereby enabling personalized treatment
plans. Other models examined in this research acted as
diagnostic decision-support tools, analyzing patient data,
generating insights, and flagging anomalies. While these
systems align with PharMe's goals, their scope is broader and
less focused on referencing specific drugs for particular medical
conditions.

A separate study delved into the applications of LLMs in the
pharmaceutical supply chain [4]. This research underscored the
potential of LLMs for inventory optimization, process
automation, and systems integration. However, it also cautioned
against risks such as Al hallucinations, where incorrect or
misleading data could compromise operational integrity. The
study emphasized that LLMs should complement human
expertise rather than replace it, ensuring that decision-making
remains robust and reliable.

Interestingly, none of the aforementioned studies have fully
addressed the challenges or opportunities posed by biosimilars
and generics. These areas are critical in modern pharmaceutical
practice due to their potential to reduce costs and increase
accessibility depending on the patient's health insurance or lack

thereof. LLMs, with their ability to analyze large datasets and
extract insights, could play a pivotal role in identifying the most
cost-effective options among biosimilars and generics while
ensuring they align with a patient’s specific needs and genetic
profile.

What makes this project unique is that PharMe focuses
specifically on referencing applicable drugs for medical
conditions, going beyond the functionality of a simple dictionary
or database. Unlike traditional systems, PharMe considers the
contextual nuances of the medical condition and integrates this
understanding into its recommendations. Furthermore, PharMe
is not designed as a diagnostic tool. Instead, it relies on
healthcare providers to make the final prescribing decisions,
alleviating many of the ethical and practical concerns associated
with other medical Al systems. This targeted, context-aware
approach sets PharMe apart as a safer and more focused
application of LLM technology in healthcare.

I11. DATA

Data for this project includes two sources: one used
indirectly (the MIMIC-III clinical database) and the other used
directly (the FDA’s drug database).

A. MIMIC-III: A freely accessible critical care database

MIMIC-III (Medical Information Mart for Intensive Care
I11) is a large, freely-available dataset released by Meta that is
composed of de-identified electronic health record (EHR) data
from over 40,000 ICU patients with admissions at Beth Israel
Deaconess Medical Center in Boston, MA between 2001 and
2012 [5]. The dataset includes more than 40 million rows
representing clinical data such as patient demographics,
medications, diagnoses, vitals, and lab results. Although our
team did not directly use this dataset during the training process,
because of its importance to the fine-tuning process for the open-
sourced Medical LLaMA 3B-8B model, it felt necessary to
include an overview.

B. Drugs@FDA: FDA Approved Drugs

The dataset used directly in order to finetune our large
language models comes from the FDA in two forms.

The first source is a consolidated list of FDA-Approved
Biosimilar Products available for export  on
https:/iwww.fda.gov/drugs/biosimilars/biosimilar-product-
information. As one may expect, this is a relatively small dataset
given the extensive process new pharmaceuticals undergo in
order to be approved for public use. As of December 2024, there
are only 63 FDA-approved biosimilars listed on the FDA
website linked above. Stegeyma, the most recent addition to this
list, is a biosimilar for Stelara, a medication used to treat certain
autoimmune conditions, particularly psoriasis and inflammatory
bowel diseases.



https://www.fda.gov/drugs/biosimilars/biosimilar-product-information
https://www.fda.gov/drugs/biosimilars/biosimilar-product-information

Running Total of FDA-Approved Biosimilars

80

60

40

Total Count

20

0
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Year

Fig. 1. Running total of approved biosimilars from 2015 to 2024

The second source is the FDA’s Purple Book, an official
publication that provides detailed information on 1) all FDA-
licensed biological products regulated by the Center for Drug
Evaluation and Research (CDER) and 2) all FDA-licensed
allergenic, cellular and gene therapy, hematologic, and vaccine
products by the Center for Biologics Evaluation and Research
(CBER). Purple Book Data is available on-demand via the
FDA’s Drugs@FDA API and also in a monthly report uploaded
directly to the FDA website as a CSV.

For our project, we decided to leverage the monthly report
uploaded to the FDA website due to the consistently recurring
nature of the uploads. Each report is divided into 2 sections:

1. The top section reports the changes made during the
month in 3 categories.

a) N: Newly approved products that received their
initial FDA approval

b) R:Productsadded in the current release which were
previously approved products now included in the
database

c) U: FDA-approved products with changes to their
information

2. The bottom section of the report provides a
comprehensive list of all products in the Purple Book
database for that month, including those listed in the top
section that were either added or updated. This ensures
that the report reflects the full scope of changes and new
inclusions for that month.

We performed an analysis of the data available for 2024 and
compiled our findings into the following graphs:
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Fig. 2. Count of total FDA-licensed biological products in 2024

The number of total approved drugs grew from 1929 to
2028, an increase of 5.14%. This figure is only projected to
increase at an even more rapid rate given the introduction of
artificial intelligence into the drug discovery process.

Below, we see the variability in the number of NRU updates
over the course of the year, ranging from a low of 17 in May to
a high of 79 in August. The irregularity of the number of these
updates adds to the challenge of keeping current for healthcare
providers.
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Fig. 3. Count of total changes made during each month in 2024

In terms of the actual data, the FDA provides structured
CSVs which can be easily imported and processed as Pandas
dataframes. The data includes information including product
approval status, applicant, product details (e.g., name, strength,
dosage form), marketing and licensure status, exclusivity
expiration dates, and related reference product information. Due
to the strict standards and regulations associated with biologics
and pharmaceutical data, minimal preprocessing was necessary.
Since not all of the data is relevant to our desired outcome (i.e.
finetuning our clinical LLM to recommend biosimilars when
providing clinical decision support based on a provided



diagnoses and symptoms), we carefully filtered our dataset to
only the columns related to a product’s identity, biosimilar
status, and reference product information. A more detailed
description of the dataset and its columns are provided below:

1. NRU Date: the year and month in which the NRU update
for a specific product was released
2. NRU: the type of update (“N”, “R”, “U”) for the biologic

product

3. Applicant: the company that submitted the license
application

4. Proprietary Name: the brand name of the biologic
product

5. Proper Name: the generic name of the biologic product

6. BLA Type: the type of Biologics License Application
(original, biosimilar, interchangeable)

7. Approval Date: the date the biologic product was
approved by the FDA

8. Ref. Product Proper Name: the generic name of the
reference biologic product for a biosimilar

9. Ref. Product Proprietary Name: the brand name of the
reference biologic product for a biosimilar

IVV. METHODS

Our methodology for this project consists of several parts,
including data collection and preprocessing using Apache
Airflow, exploratory data analysis (EDA), feature selection,
model finetuning, and output presentation. These different
components are brought together to develop a fine-tuned clinical
LLM capable of generating medication recommendations
including the most recently approved biosimilars.

A. Data Collection

The data collection is a fundamental part of our methodology
as it serves as the basis of the LLM finetuning process. We
needed to decide between querying the Drugs@FDA API and
scraping the Purple Book CSVs directly. Ultimately, the latter
choice made more sense for our application given hardware
limitations and the irregularity of NRU updates. Fine-tuning
large models typically requires GPUs which we do not have
unlimited access to as students. To find a balance between the
most up-to-date data and cost-effectiveness, we decided to
finetune on a monthly basis which aligns with how often the
FDA releases its Purple Book CSVs. As a starting point, we
collected all NRU updates from January 2024 to November
2024 (11 months) and consolidated this data into a single Pandas
dataframe to be used for an initial round of fine-tuning.

The first step to aggregating data from all CSVs released in
2024 was to download the data. Ultimately we decided on
building the URL manually as each CSV is uploaded directly to
the fda.gov web server using a consistent format:
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https://purplebooksearch.fda.gov/files/2024/purplebook-search-january-data-download.csv

Fig. 4. Sample URL for January 2024 data

Because the CSVs are split into 2 different sections, we
needed to parse out the relevant NRU data from the first section.
We accomplished this by locating the index of both header rows
in the CSV, converting the entire CSV into a Pandas dataframe,
and then parsing the data between each index giving us the NRU
dataframe. This process is repeated for every month of interest
before we consolidate the results into a single dataframe
representing the entire year. This final NRU dataframe had a
shape of (354, 26).

B. Preprocessing and Feature Selection

With the NRU dataframe, we leveraged Pandas to perform
all of our pre-processing for the initial fine-tuning. This mainly
included column filtering for this initial implementation. Based
on insights from our background research and domain
knowledge, we conducted a manual feature selection.

C. LLM Fine Tuning

We first fine-tuned our model using the FDA API, creating
a custom function to request HTTP to the FDA API for drug
labels within a given specified date range. Then we extracted
this data into Pandas dataframe to operate with. After that, with
the help of our second custom function that creates biosimilar
datasets, we extracted the biosimilar name and the reference
product name to generate a dataframe to proceed with fine-
tuning. To implement fine-tuning, we first created input-output
pairs for the LLM model in the form of instruction which
determines the reference product given a biosimilar name with
the actual biosimilar name fetched from the dataset. We split our
dataset into 90% training and 10% testing. As we have used in
many coding sections for the initial model configuration, we
used a 4-bit quantization configuration for efficient memory
usage. After 50 epochs, we observed a training loss of 0.7213
and a validation loss of 0.7294.

D. Model Evaluation

One of the most crucial parts of this project was to compare
different models and identify the best one based on selected
evaluation metrics. The first of our metrics is perplexity, a
measurement of how well a probabilistic model predicts a given
input. The lower the perplexity, the higher the accuracy and
prediction of the model outputs. We evaluated different models
using a custom dataset that included 200 medications and their
corresponding diseases. More details can be found under the
Experiments section.

V. SYSTEM OVERVIEW

The system architecture presents a comprehensive medical
Al model pipeline that begins with an initial setup phase. This
phase incorporates data from Drugs@FDA’s Purple Book
which undergoes data preprocessing and feature selection before
being used to train a pre-trained Medical-LLaMA3-8B model.

The architecture then transitions into a recurring monthly
operation phase, managed by Apache Airflow for automation.
This phase maintains the same data sources and preprocessing
pipeline but focuses on fine-tuning the existing model. The
system culminates in a model output generation stage that
incorporates additional input from symptoms & doctor
diagnoses.
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Fig. 5. System Architecture Diagram

A. Airflow

We use Apache Airflow, an open-source platform for
workflow orchestration, to automate the process of parsing and
processing monthly updates from the FDA Purple Book. Our
workflow is showcased below. NOTE: not all portions have
been fully implemented due to time constraints and hardware
limitations related to LLM fine-tuning, specifically the
finetune_lIm task.
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Fig. 6. Monthly recurring data collection & fine-tuning DAG

B. Medical-LIaMa3-8b

The main base architecture of LLM models is known as
transformers. It was first described in the paper “Attention Is All
You Need” by Vaswani et al [6]. Although some of the older
methods in neural networks, such as RNN and LTSM, can
utilize sequential data, they depend on the mechanism called
“self-attention”, to work with the different segments of the input
rather than implementing it sequentially.

LLaMA3-8b is a large language model that uses the
transformer-only architecture. By utilizing the tokens the model
has seen before, the model predicts the next output by
individually processing the text tokens. LLama3-8b has 8 hillion
parameters and implements the byte-pair encoding (BPE) and
Sentence Piece-based tokenizer [6]. In the deep stacks of this
model, we can observe the multi-head self-attention and feed-
forward layers. Additionally, it has been previously trained on
diverse text datasets which is essential for our project since we
are delivering a medical chatbot system. The text has to be
converted into a numeric form before entering the model and to
achieve this, the first text is split into smaller sub-words called
tokens. After that, the generated tokens are mapped to the
corresponding embedded vector during the training process so
similar embedded vectors end up with the tokens that represent
words with similar context. Furthermore, positional embeddings
help the model identify the tokens' positions [7]. LLaMA3-8b

has been trained in pre-training and self-supervised learning to
predict the next tokens using the context in the older ones [8]. In
Figure 6, we can observe the general structure of the LLaMA3-
8b model architecture. After the tokenization and embedding
layer, 32 more layers follow this general structure before
entering the final dense layer.
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Fig. 7. Architecture of LLaMA3-8b [8]

Medical-LLaMA3-8b implements the same architecture as
LLaMA3-8b, but is fine-tuned on several medical datasets, such
as the Al Medical Chatbot dataset [9], LLaMA-3[8B]-
MeditronV1.0, Bio-Medical-LLaMA-3-8B dataset, and a large
number of medical and general instructions. Variants of this
model have outperforme the state-of-art models in benchmarks
such as MedQA and MedMCQA [10].

C. Inference GUI

The user interface for local implementation was developed
using Tkinter, a Python GUI library. Tkinter provided a
straightforward way to create a graphical interface for the model.
However, its limitation is that it operates as a Python script,
making it difficult to package into a standalone application like
a .exe for Windows or .app for macOS for public deployment.
Despite this, it offered a functional solution for local
deployments.

For web-based implementations, the HTTP interface was
built using HTML5 and CSS, providing a modern and
responsive design. The API also allowed the creation of mobile
web apps and desktop applications with web connectivity. These
apps simply needed to make HT TP requests to the server hosting
the model. Additionally, we recognized the potential of pseudo-



app structures—applications that appear native but are
essentially built on web technologies like HTML and CSS. This
approach could mimic native app behavior while leveraging the
web’s flexibility.

V1. EXPERIMENTS

A. Data Collection

Initially, our approach to downloading data from the
Drugs@FDA website involved using Selenium to scrape the
URLSs for the CSV files directly from the webpage. We planned
to automate the navigation and retrieve the URLs from the page,
then use Python's requests library to fetch the actual data.
However, we encountered an issue where the page's JavaScript
was not fully loading before the Selenium script attempted to
extract the data. This likely happened because Selenium was not
waiting long enough for the JavaScript-driven content to load
dynamically, especially if the page used AJAX or other client-
side rendering techniques. As a result, the request to fetch the
CSV links didn't retrieve the full set of data, leading to
incomplete or missing URLS.

After running into these issues, we explored a few different
Python libraries designed to handle asynchronous loading of
data, such as Playwright and Pyppeteer. However, after testing
these options, we found that the most straightforward solution
was to directly examine the structure of the URLS used to access
the CSV files and see if we could manually generate them. By
analyzing the webpage's network requests and identifying a
consistent pattern in the URL structure, we were able to craft
direct download links for the datasets. This approach bypassed
the need for complex JavaScript rendering or asynchronous
handling, allowing us to download the data directly and
efficiently.

B. Model Evaluation

Model Comparison: Perplexity
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Fig. 8. Perplexity values for different LLM models

As can be seen in Figure 8, after the first evaluations, we
observed that GPT-neo-2.7B had a perplexity of 21.3392 with a
response time of 2.1917 seconds. The bloom-3b LLM model
had a perplexity of 19.5437 and a response time of 1.5330. GPT-
j-6B, on the other hand, had a perplexity of 17.1130 and a
response time of 2.4248. Finally, the last compared LLM model,
Medical-LLaMA3-8B, had a perplexity value of 17.3792 with a
response time of 1.7368. When we compare the results, GPT-j-

6B had the lowest perplexity level but a poor response time
compared to the other models.

On the other hand, bloom-3b had the lowest response time;
however, the perplexity values were higher than the models'
average. Medical-LLaMA3-8B was the most stable LLM
model, with a low perplexity value and a low response time. To
conclude these evaluations, the first input was “Q: Suggest
therapies for managing severe Systemic Lupus Erythematosus
(SLE) flares.”

Additionally, we wanted to observe the perplexity values
with more complex diseases as can be seen in Figure 9.

Model Comparison: Perplexity

Perplexity (Lower is Better)

Fig. 9.

Perplexity values for different LLM models

To achieve this, we changed the input sequence to “What
medications are used for managing Mixed Connective Tissue
Disease flares?” to capture differences in the perplexity values.
As anticipated, we observed a drop in perplexity values when
utilizing Medical-LLaMA3-8B. Following these evaluations,
we compared the accuracy, prediction, and F1-score based on a
dataset we created containing 200 medications and their
corresponding diseases. Based on these evaluations, we selected
Medical-LLaMA3-8B as our baseline model, achieving over
90% for each evaluation metric. After the evaluations, we
initialized Medical LLaMA3-8b as our baseline model.

C. Interface

Interfacing with the model was designed to support inference
locally or via an API, offering flexibility in its final deployment.
The local implementation was the most straightforward to
achieve. During the initial model buildout, we simply prompted
the model using Jupyter Notebook, which provided a simple
development environment. Similarly, hosting the model on a
local HTTP server, such as Apache, enabled seamless
interactions when both the server and client resided on the same
virtual machine (VM).

To extend the model deployment options, we explored
remote access by developing an API around it. Using a simple
HTTP script with Flask or FastAPI libraries with authentication,
we created a mechanism for submitting requests to the model
and receiving the expected responses. This approach ensured
secure and efficient remote access while maintaining the
flexibility to integrate with various systems.



These design choices ensured maximum versatility in theory
for delivering the model through various methods, whether as a
local application, a remote API, or a hybrid web-based interface.

VII. CONCLUSION

This study investigated the feasibility and effectiveness of
creating a state of the art, condition-aware large language model
(LLM), nicknamed PharMe. Utilizing Medical LLaMA-3-8B,
pre-tuned on the MIMIC-111 dataset and further fine-tuned with
data from the FDA's Drugs@FDA database and Purple Book,
PharMe was able to create a solution for healthcare providers
with actionable insights into traditional ,cost-effective treatment
options, including biosimilars and generics, that they may have
otherwise overlooked or been unaware of, for any given
diagnosis.

In conclusion, PharMe demonstrated the potential of large
language models in healthcare by addressing potential gaps in
pharmaceutical knowledge dissemination. By combining some
of the latest models in Al technologies with healthcare domain-
specific data, PharMe supports healthcare providers, not
replacing them, in delivering informed, cost-effective, and high-
quality care.

VIIl. FUTURE WORK

Future work could focus on expanding the model’s
capabilities - specifically in condition awareness, enhancing its
integration with electronic health record systems, and
conducting further validation studies to ensure its applicability
across diverse healthcare environments.

Another promising area for future research lies in tailoring
treatment recommendations based on a patient's existing
comorbidities, conditions, and current medications. By
incorporating an advanced understanding of pharmacology and
drug delivery mechanisms, the model could identify

opportunities where a single medication might replace multiple
drugs a patient is currently prescribed. This approach could
streamline treatment regimens, reduce potential drug
interactions, and improve overall patient outcomes.
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