
  

  

Abstract— A better understanding of reward signaling in the 
sensorimotor cortices can aid in developing Reinforcement 
Learning-based Brain-Computer Interfaces (RLBCI) for 
restoration of movement functions with fewer implants. Brain-
computer interfaces (BCIs) using local field potentials (LFPs) 
have recently achieved performance comparable to spike-BCIs 
[1]. With superior stability over time, LFPs may be the preferred 
signal for BCIs. We show that sensorimotor LFPs can provide 
reward level information (R1 – R3) like spikes[2]. We used a 
cued reward-level reaching task in which reward information 
was temporally dissociated from movement information. This 
allowed the study of reward- and movement-related modulations 
in LFPs. We recorded simultaneously from contralateral 
primary -somatosensory (S1), -motor (M1), and the dorsal 
premotor (PMd) cortices in a female Macaca Mulatta. We found 
that all three cortices’ average beta band (14-30 Hz) amplitude 
showed robust modulation with reward levels during the cue 
presentation period. Such modulation was consistently observed 
after controlling for cue color, differences in behavioral 
variables, and electromyogram (EMG) activity. Statistical 
amplitude analysis showed that reward level could be extracted 
from the simple LFP feature of beta band amplitude, even before 
a reaching target appeared, and no specific reach plan could be 
developed. 

 
Clinical Relevance— The availability of reward-related 

signals in the sensorimotor cortical (S1, M1, and PMd) LFPs’ 
prior to movement planning opens new avenues to build RLBCIs 
with fewer implants recording fewer sites among different 
cortices. Reward and motivational representations derived from 
LFPs, compared to spikes, allow the development of long-term 
clinical applications, given LFP’s stability and ease of recording 
over long periods.      

I. INTRODUCTION 

The response of dopaminergic neurons in the deep brain 
structures such as the Ventral Tegmental Area and Substantia 
Nigra to a rewarding stimulus is broadcasted to several 
cortical and sub-cortical regions via the dopaminergic 
projections. Among others, projections received by the 
sensorimotor areas provide access to reward-related 
processing that invigorate goal-directed movements [3]. 
Previous studies in monkeys have demonstrated the role of 
S1, M1, and PMd cortices in representing reward expectation 
[4], [5], reward value, and motivational signals [2], [6], [7] 
during different motor tasks using spike data. However, 
whether LFPs from these regions contribute to processing 
reward information is not completely known. Our previous 
work [8], [9] along these lines found that features derived 
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from M1 LFPs and spikes show consistent modulation with 
reward expectation across different motor tasks and modes of 
task execution. As the next step, this work aims to 
characterize the response of S1, M1, and PMd LFPs to 
multilevel reward information strictly during the cue 
presentation period devoid of any movement-related 
information and attempted movement. 

 The results of this study will further our knowledge of 
sensorimotor systems beyond motor control and lay a 
foundation for developing long-term clinical applications 
such as RLBCIs utilizing more stable neural signals, LFPs.    

II. METHODS 

A. Experimental task and data acquisition 
One nonhuman primate (Macaca Mulatta, female) 

performed a planar center-out reaching task (Figure 1) with 
her right arm using a robotic exoskeleton (KINARM lab, 
BKIN Technologies Ltd.) to earn a variable amount (1, 2, or 
3 drops, 0.24ml per drop) of juice reward. Each trial began 
with the presentation of a center hold position (gray, 0.8cm). 
To proceed, the NHP reached to and held on the center until 
its color changed, cueing the reward level (R1, R2, or R3) of 
the trial. Next, the monkey maintained a hold until the cue 
disappeared, and a peripheral target (Go-cue) of the same 
color was presented in one of four possible directions (0°- 
Right, 90°- Up, 180°- Left, or 270°- Down).  The monkey had  

 
Figure 1. Typical trial progression in the arm reaching task with 

variable reward levels (R1, R2, and R3) cued by color. 

<800ms to finish the movement towards the target. Once 
reached and held on target, feedback (300ms) was presented, 
indicating successful completion of the trial. Consequently, 
the cued number of juice drops were delivered with a 500ms 
delay between subsequent drops. The trial was reset (black 
screen) before the beginning the next trial. All hold times and 
inter-trial intervals were normally distributed with mean 
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900ms (SD 50ms) and 1000ms (SD 100ms), respectively. 
Trials were considered failed when the NHP’s hand velocity 
exceeded 1.5cm/s during the hold, or the reach wasn’t 
complete in 800ms. Failed trials were not rewarded and 
repeated until completed successfully. The reward level and 
target direction were varied pseudo-randomly from trial-to-
trial. The same experiment was conducted for two different 
color sets (color set 1, CS1, and color set 2, CS2). 
LFPs were simultaneously recorded from chronically 
implanted 96-channel Utah arrays in the arm region of S1, 
M1, and PMd and sampled at 2KHz. All surgical procedures 
followed in this study were approved by the Institutional 
Animal Care and Use Committee, University of Houston. 
Surface EMG signals recorded from six muscles (Right (R.) 
Biceps Brachii, R. Triceps Brachii, R. Pectoralis Major, R. 
Brachioradialis, R. Zygomaticus major and Left (L.) Biceps 
Brachii) using gold cup electrodes (10mm) and hand velocity 
were sampled at 2KHz. Among 32 LFP channels per cortical 
region, bad channels were rejected based on visual inspection 
leading to 30, 31, and 28 channels in S1, M1, and PMd 
cortices, respectively. All analyses were conducted on 
successful trials combined across multiple sessions (17 
sessions in CS1 and 5 sessions in CS2). Signal preprocessing 
and statistical analyses were performed in MATLAB 2016a. 

B. Signal preprocessing 
Hand velocities were smoothened using a Savitzky-Golay 

filter (3rd order, window length 100ms) downsampled to 
1KHz. All other filtering operations used Butterworth filter 
and was applied in the forward and reverse directions to 
eliminate phase shift. EMG signals were amplified, online 
low-pass filtered 1KHz, and processed in the following 
manner [10]. Each EMG channel was filtered 40-500Hz (4th 
order) to remove muscle movement artifacts and dc noise. IIR 
notch (2nd order) filters were applied to remove electrical 
noise (60Hz) and its harmonics. Next, the filtered signal was 
down-sampled to 1KHz, rectified and smoothened, low-pass 
filtered 5Hz (5th order) to get the EMG envelope. EMG 
envelope was normalized with respect to its maximum value 
during the movement periods across all trials of each session.  

Local detrending was done to remove low-frequency 
fluctuations from the recorded LFPs (function locdetrend, 
500ms window with 250ms step size, Chronux Toolbox [11]). 
Next, LFPs were filtered 1-250Hz (3rd order) and notch 
filtered to remove the electrical noise (60Hz and harmonics) . 
The filtered LFP signals corresponding to only successful 
trials were extracted and downsampled to 1KHz for further 
analysis. 

C. Analysis of behavioral variables 
The effect of reward cues on motor behavior was 

quantified using three variables, reaction time (the time from 
target presentation to the time when the hand speed was >= 
15% of the peak speed), peak speed (maximum hand speed 
achieved by the monkey during the reaching movement) and 
time to reward (the total time elapsed from cue presentation 
to the beginning of reward delivery). Trials with outlier RTs 
(rejection criterion: RT > (Median RT + 4.45* Median 
Absolute Deviation (MAD)) or RT < (Median RT – 

4.45*MAD) were removed from further analysis. The non-
parametric Kruskal-Wallis (KW) test was applied for 
comparing behavioral differences across reward levels. For 
statistical significance (p<0.05), the Wilcoxon ranksum test 
performed pairwise comparisons. P-values were corrected for 
multiple comparisons using the False Discovery Rate 
(Benjamini-Hochberg method, FDR-BH).   

To control for behavioral differences between the reward 
levels, kinematic matching of trials was performed. A sub-set 
of successful trials was considered matched when their 
median reaction time, peak speed, and time to reward didn’t 
differ significantly (KW test, p>0.05) with reward. The 
process started with considering all successful trials for a 
chosen reference reward level among R1, R2, or R3. For the 
selected level, the median value (Mref) of a behavioral variable 
was computed for comparison with each trial of other reward 
levels. Next, the KW test was performed to identify if the 
variable varied across reward levels. If p-value <0.05, some 
trials (irrespective of their reward level) were truncated based 
on the criterion (x > (Mref + n* MAD) or x < (Mref - n* MAD)) 
in each iteration where n is a real number >0. This process 
was repeated for multiple iterations with a gradual reduction 
in the value of n until the trials in different reward categories 
had similar reaction times, peak speed, and time to reward.   

D. Extraction and analysis of beta-band amplitude 
Preprocessed LFPs were filtered to extract beta (14-30Hz) 

band oscillations, we then applied the Hilbert transform. The 
magnitude of the transformed signal represented the 
amplitude of filtered oscillations. For every LFP channel, the 
beta amplitude was normalized (z-scored) to their mean and 
standard deviation during each session before the combined 
analysis. Next, the amplitude of each trial was extracted and 
aligned to four trial events; cue presentation (CUE), target 
presentation (TARG), target hold (HOLD), and feedback 
presentation (FB). Amplitude during a trial was baseline 
corrected by subtracting the mean amplitude across all trials 
during the precue period (0.7 sec before CUE). Based on the 
Nyquist criterion, the trial-wise amplitude was binned into 
150ms non-overlapping bins. 

Statistical analyses were only performed for the postcue 
period (Figure 1). For each LFP channel, trial-to-trial binned 
beta amplitude was fit to independent predictors, reward level 
(Ri) and time bin (Bint), and their interaction (𝑅𝑅𝑖𝑖 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡) using 
a linear model described as  

 
𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡 ~ 1 + 𝑅𝑅𝑖𝑖 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 + 𝑅𝑅𝑖𝑖 ∗ 𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡 (1) 

where i represents trial and t represents bin number (1 to 7) in 
a trial. Significant (p<0.05) model coefficients for reward 
and/or reward-bin interaction reflected an effect of reward 
level on the postcue amplitude and were further analyzed 
using Wilcoxon rank-sum test. P-values from pair-wise tests 
(R1 vs. R2, R2 vs. R3, and R1 vs. R3) were corrected for  

multiple comparisons using the FDR-BH method. 

III. RESULTS 

A. Postcue Beta amplitude attenuates with reward level  
We found a significant effect of time-bin and reward-bin 

interaction on postcue beta amplitude of all LFP channels in 
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S1, M1, and PMd cortices (Figure 2, unmatched). Compared 
to baseline, mean beta amplitude was suppressed after cue 
presentation based on the cued reward level. Suppression was 
highest for maximum reward (R3, red) and lowest for 
minimum reward (R1, green). Additionally, in line with the 
previous reports [12], beta oscillations were suppressed 
during the movement period in all three cortices. Figure 3 
(color set 1, unmatched) shows the channel statistics. The y-
axis represents the number of LFP channels with significant 
pairwise reward differences in a time bin (x-axis) during the 
postcue period.  

 

 
Figure 2. Mean beta amplitude for sample channels in S1, M1, and 

PMd cortices for different reward levels for unmatched and matched trials 
(CS1).  

 
Figure 3. Channel statistics for color sets 1 and 2 for unmatched and 

matched cases. Each plot indicates the number of LFP channels that had 
significant differences in beta amplitude for a reward pair in a time bin. 

B. Arm kinematics didn’t contribute to LFP amplitude 
differences  

We observed a significant effect (p<0.05) of reward level 
on behavior variables (Figure 4, black plots) consistent with 
previous studies on human ([13]) and animal subjects ([14]). 
Both reaction time and time to reward are reduced with an 
increase in reward with no significant effect on peak speed. 
Multiple studies have previously shown that premovement 
beta power in the motor and premotor regions can predict 
behavioral performance and reaction times of upcoming 
movement [15], [16]. Accordingly, we controlled for the 
possible contribution of behavioral changes to reward-related 
beta suppression by performing kinematic matching of trials. 
(Figure 4, green plots). The analysis of beta amplitude for 
only matched trials revealed a similar reward-related 
suppression as observed with all trials shown in Figure 2 

(matched) with statistics in Figure 3 (color set 1, matched). 
 

 
Figure 4. Change in median behavioral variables with reward level 

(unmatched trials, CS2). Black asterisk (*) without horizontal bars indicates 
significant differences between all reward pairs and n.s. indicates no 

significant differences. Green plots show median values after matching, 
which have no significant differences.   

C. Choice of cue color doesn’t affect reward-dependent beta 
amplitude modulation 

To investigate whether the choice of cue color led to 
observed differences in beta amplitude with reward levels, we 
conducted the same experiment with another set of 
isoluminant colors (CS2). We performed the LFP analysis in 
the unmatched and matched cases (Figure 5). We observed a 
similar reward to beta amplitude relationship (amplitude 
decreases with higher reward) during the postcue period as in 
CS1. Channel statistics in Figure 3 (CS 2) show the specific 
reward pairs at each time bin (0.15s period) where beta 
amplitude differed significantly. 

 
 

 
Figure 5. Modulation in beta amplitude with reward level (CS2) for 

unmatched and matched trials. 

D. Graded suppression in beta amplitude not related to arm 
kinetics (EMG) 

After controlling for the effects of differences in 
behavioral variables and choice of cue color, we analyzed 
EMG activity during the postcue period shown by the double 
arrow in Figure 6. Although the monkeys were not allowed to 
move their hand (> 1.5 cm/s) during the hold cue, residual 
EMG activations could have contributed to the observed beta 
amplitude. To address this possibility, we fit a similar linear 
model to trial-to-trial EMG amplitude as for beta amplitude 
and asked if the independent predictors explained the signal 
variance during the postcue period using only kinematically 
matched trials (CS2). No significant main effect of reward or 
reward-bin interaction on binned EMG amplitude was seen 
for any channel, indicating postcue EMG didn’t vary with 
reward level and thus not  related to the observed differences  
in beta amplitude.  
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Figure 6 Mean EMG amplitude of different muscles for R1, R2, and R3 

trials in the matched case (CS2).    

IV. DISCUSSION AND CONCLUSION 

We designed an arm-reaching task with variable reward 
levels (R1, R2 and R3) to study the role of S1, M1, and PMd 
cortical LFPs in reward processing. Beta band amplitude in 
all three cortices showed reward-dependent modulations 
beginning ~300ms after cue presentation and continued until 
the movement onset. A higher expected reward level was 
associated with more postcue amplitude suppression 
compared to baseline. Amplitude differences were robustly 
detected from M1 and S1 cortices compared to the PMd 
region, as indicated by the number of channels exhibiting 
reward differences. It is unlikely that such beta amplitude 
modulation with reward was due to differences in behavioral 
variables, as beta differences continued to exist even after the 
variables were matched. We also showed that neither EMG 
activity nor choice of cue color changes the response of beta 
amplitude to reward level.   However, prior to movement, beta 
reduction in our case could represent a preparatory response 
initiated by the presentation of reward predicting cue, in 
agreement with the previous report [17]. A decrease in beta 
power with an increase in reward level may also be related to 
gating of sensorimotor processes leading to increased cortical 
[18] and corticospinal excitability [19]. It could also represent 
differences in the level of motor preparation [20] and 
attention.  Overall, we demonstrate that a simple LFP feature 
such as S1, M1, and PMd beta amplitude can consistently 
differentiate between reward levels even before any 
movement information is available. The presence of this 
signal in multiple cortices presents the potential of building 
RLBCI using fewer recording sites and implants. 
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