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 Abstract — Reinforcement learning (RL) models 
comprehensively describe neural dynamics of multiple brain regions 
at several spatiotemporal scales during reinforcement-based 
learning. One of the key components of RL models that capture the 
expected cumulative reward from a given state is the State-Value 
Function (SVF). We utilized a non-human primate (NHP) subject 
(Bonnet macaque) that was implanted with a 96-electrode array in 
the primary motor cortex. The NHP performed a reward level cued 
reaching task manually and passively observed such a task. Here we 
show that primary motor cortical (M1) activity in an NHP resembles 
an RL process, encoding a state value function. The motor cortex 
responds to reward delivery (US, unconditioned stimulus) and 
extends this state-value-related response earlier in a trial, becoming 
predictive of the expected reward when indicated by an explicit cue 
(CS, conditioned stimulus). This SVF is observed in tasks performed 
both manually and passively, that is, without agency. Here, we used 
the Microstimulus Temporal Difference RL (MSTD) model, reported 
to accurately capture RL-related dopaminergic activity, to 
parsimoniously account for both the phasic and tonic M1 reward-
related neural activity. In the future, we will use this state value 
information towards autonomously updating brain-machine 
interfaces (BMIs) to maximize the total subjective reward 
expectation of the NHP user.  

Keywords —reinforcement learning, motor cortex, BMI, reward, 
mirror neuron 

I. INTRODUCTION  

Primates can learn from observation and through direct 

experience. This learning leads to subjective environmental 

state-values and/or state action-values[1], where the individual’s 

internal state, such as level of hunger, thirst, and preferences, 

can be included in the full state-space that informs the animal’s 

(agent’s) behavior (policy). Where state-space is the space of all 

states, and a state gives us all the information needed to best 

predict the subsequent state. In this work, the state space will 

include task-relevant variables (see methods). Reinforcement 

learning (RL) provides a parsimonious theory and set of models 

for learning both state values and state-action values, for either 

direct experience by the agent or via observation of other agents. 

We wished to determine if neural activity in the primary motor 

cortex (M1) encoded a State-Value-Function (SVF) as expected 

for an RL agent, as reward modulation of M1 has been 

demonstrated by several groups [2]–[6]. In our previous 

publications, we reported on neural correlates of reward 

expectation and reward delivery without regard to the temporal 

structure of the neural correlates, which we start to rectify here.    

Dopaminergic neurons were one of the earliest reported 

brain structures to represent reward [7]. Dopaminergic neurons 

have been reported to respond initially to reward delivery (US, 

unconditioned stimulus) and, with experience in an operant 

conditioning task, shift their response earlier towards the 

reward-predicting stimuli (CS, conditioned stimulus)[1], [8]. 

Neural activity that predicts reward has been reported in the 

striatum[9]. As cortical structures communicate reciprocally 

with the basal ganglia directly (mesocortical pathway) or 

indirectly (nigrostriatal and striato-thalamo-cortical pathways), 

it is not surprising that reinforcement activity has been observed 

in cortical regions upstream of M1, such as orbitofrontal, 

prefrontal, frontal eye fields, supplementary eye fields, rostral 

supplementary motor areas and premotor cortices[10]. For 

example, the rat orbitofrontal cortex exhibits a shift in the 

initiation of chronic neural activation from the US to the CS with 

repeated performance of a discrimination-learning task with 

cued rewarding and aversive reinforcement[11]. These cortical 

regions continued to respond to the predicted reward delivery 
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post-conditioning, unlike dopaminergic neurons, which we see 

in the current work.  

Dopamine receptors are found in M1[12] and are necessary 

for long-term potentiation[13], [14] in M1. Tonic dopaminergic 

activity has been shown to act as a value function[15]. In this 

regard, dopamine can “charge” the nervous system, acting as a 

motivational signal[16]. Thus, dopamine could have at least two 

influences on M1 - gating synaptic plasticity toward 

sensorimotor learning and “charging” neural activity, possibly 

priming the system for action. This latter activity could resemble 

or be a product of the SFV, which may, in part, drive the 

arousal/motivational state of the agent. Our lab, and others, have 

shown that reward modulates units and local field potentials in 

the primary- and pre-sensorimotor cortices (M1, S1, PMd, PMv) 

of NHPs[2]–[6], [17], [18]. None of the above work addressed 

the derivation and temporal evolution of the state-value 

predictive signal in M1 during CS-US conditioning. The work 

presented here attempts to fill this gap. It explores the 

application of a temporal difference reinforcement learning 

model (TDRL), proficient in capturing the dynamics of 

dopaminergic neurons, to capturing reward-related M1 neural 

dynamics. The results of this work are also available in a pre-

print version [19].     

II. METHODS 

A. Experimental design  
The data utilized in this paper comes from 1 NHP’s data 

(NHP A, male, Bonnet macaque) that has been reported 

previously, showing static differences between rewarding (R1) 

and non-rewarding (R0) trials[2]. Our work utilized a Reward 

Cued Reaching Task (ReCRT). NHP A sat in a primate chair 

with his right arm in an exoskeletal robotic manipulandum 

(KINARM BKIN). NHP A was proficient at performing an 8-

target CRT task manually with his right arm before implantation 

in the left M1. NHP A was then introduced to the ReCRT (Fig.1) 

[2]. A hand-feedback cursor was displayed on a screen in the 

horizontal plane just above his right arm in alignment with his 

right hand during the manual task. In ReCRT, the reward level 

was cued first via the color of the center hold target, hold time 

325ms, and subsequently by the peripheral reaching target, 

while the disappearance of the center hold target acted as the go 

cue.  

Figure.1. Observational Reward Cued Reaching Task (ReCRT). A color cue 

indicated the reward level for that trial, and the NHP simply had to watch the 

white cursor move to the right-hand target to receive a reward or complete a 

non-rewarding trial.  

   The NHP was required to move its hand to the peripheral 

target following the go cue and hold that position for 300ms in 

the manual ReCRT. In the observational ReCRT the NHP 

passively observed the cursor’s constant speed movement to the 

peripheral target without any hold times. A successful reach to 

and hold on the peripheral target resulted in either a juice reward 

delivery (R1) or no reward (R0) depending on the color cue, the 

conditioned stimulus (CS), representing the current trial reward 

level (R0 vs. R1). Juice was delivered via a straw-like tube 

attached to a gravity feed dispenser with a control solenoid, Crist 

Instruments, at the end of rewarding trials. Progression from the 

current reward level trial to the next was only allowed following 

successful trials. We had to utilize this repetition scheme; 

otherwise, the NHP would skip R0 trials and wait for R1. NHP 

A performed manual and observational ReCRT with similar 

results for both. We only present the observational data here due 

to space limitations.  

B. Implantation and neurophysiology 
Micro-electrode arrays (4 MEAs 1.5mm length, 96 active 

channels, Blackrock microsystems) were implanted after NHP 

A could perform the manual version of the non-reward-level 

cued reaching task proficiently. Chhatbar et al.[20] describes the 

implantation procedure in detail. In summary, electrode arrays 

were implanted in rostral M1 corresponding to the contralateral 

arm/hand region. The array implantation procedure was as 

follows - 1) dissection of the skin above the skull, 2) craniotomy, 

3) durotomy, 4) cortical probing in the primary sensory cortex 

(S1) to accurately locate the hand and the arm region 5) 

implantation of the electrode array in the forearm and hand 

region of the primary motor cortex and 6) closure. All surgical 

procedures were performed under the guidance of the State 

University of New York Downstate Medical Center Division of 

Comparative Medicine and were approved by the Institutional 

Animal Care and Use Committee in compliance with National 

Institutes of Health guidelines for the care and use of laboratory 

animals. Aseptic conditions were maintained throughout the 

surgery. Ketamine was used to induce anesthesia, and 

isofluorane and fentanyl were used to maintain the animal under 

anesthesia during the surgery. Possible cerebral swelling was 

controlled by using mannitol and furosemide, whereas 

dexamethasone was used to prevent inflammation during the 

surgery. 

C.  Data Analysis 
The correlation of units with 'reward', a variable defined as 

+1 or -1, was assigned to each bin of R and NR trials, 

respectively. Data from cue presentation to the corresponding 

trial completion was considered for each trial. The correlation 

coefficient (corrcoef, MATLAB) was computed between each 

unit’s firing rate and the reward variable in each block. The 

units were then sorted in a descending manner with respect to 

the correlation coefficient values. The unit with the highest 

positive correlation coefficient correlated most with rewarding 

trials. In contrast, the unit with the highest negative correlation 

coefficient correlated most with non-rewarding trials. The 

significance of the correlation coefficient was set at p <0.05; 

see Fig.2.b.2-3. 

Neural data were binned at 50ms. The average activity 

across R and NR trials for each unit was causally smoothed 

(500ms window) and concatenated to form a vector   for a 

given unit. Subsequently, normalization was performed by 

using the below equation, resulting in a range from 0 to 1.

NIH 1R01NS092894-01, NSF IIS-1527558, DARPA N66001-10-C-2008   
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 N   
. ‘   ’ 

was decatenated to obtain the normalized average activity of the 

same unit across R and NR trials. The process was repeated for 

all units in the neural ensemble.  

Microstimulus (MS) Temporal Difference (TD) 

Reinforcement Learning (RL) (MSTD-RL): We wished to 

determine if the neural activity changes we observed in M1 

could be related to an RL process. We tested the MSTD-RL 

model against the real neural data, as seen in Figs.2-3. An RL 

agent’s goal is to maximize its cumulative temporally 

discounted reward from the environment. The agent uses 

sensory information of states to complete this reward 

optimization task. During our observational task, the agent 

(NHP’s brain) can use the state information, such as color cues, 

to build associations between states and value as the state value 

function, even when there is no agency, such as in the 

observational task. Dopaminergic centers of the brain have 

been shown to represent reward probabilities, the value of 

reward-predicting stimuli, and errors in reward expectation [1], 

[16], [21]. Recent work has reported a ramping up of 

dopaminergic activity as an animal approaches its goal [22]. All 

such modulations observed in the dopaminergic centers have 

been modeled and predicted using basic and modified TD-RL 

models [23]–[26]. In many RL learning scenarios, rewards are 

delayed with respect to the actions that caused them or the states 

that predict them. This leads to the credit assignment problem, 

which describes how an agent knows what actions and states to 

assign the credit for later rewards. Under the basic TD model, 

the stimulus, such as the conditioned stimulus, cue/CS, in our 

tasks, is represented as a complete serial compound [26], 

suggesting that the agent is aware of the exact amount of time 

that has elapsed since the CS. Such an assumption led to an 

incomplete encapsulation of dopaminergic neurodynamics 

[23]. The premise of a perfect clock was replaced with a coarse 

temporal stimulus representation using a temporal basis set 

representation in the MSTD-RL[23], [27], which we use here. 

We tested MSTD simulations, which mimicked the 

experiments of NHP A. For a comprehensive explanation of the 

MSTD model, please see [19], [23] 

The temporal basis functions are defined as Gaussians, 

fy, μ, σ  
√ exp #$ %&

'& (, where y is the trace height, μ is 

the center, and σ is the standard deviation of a particular basis 

function. Each stimulus (CS for R (CSR) and NR (CSNR), and 

US for R (USR) and NR (USNR) has its own memory trace and 

associated microstimuli. The trace height y was set to 1 at the 

onset of the corresponding stimulus and decayed at a rate of 

0.985 on each time step.  The level of the ith microstimulus for 

a jth stimulus at time t is given by x)
*+i 

 
√ exp #$ /.&

'& ( y)
*+, where  j  1,2, … , m, and  m →

number of stimuli ∈ BCSR, CSNR, USR, USNRH.   i 
1, … , k , where;  i → four microstimuli per stimulus, k 
4, and SN  Stimulus j. For more information on the MSTD 

model we used, please see [19]. 

MSTD simulations: Simulated ReCRT trial parameters 

were tailored to match the timelines of each trial experienced 

by NHP A while performing multiple blocks of the 

observational ReCRT. The first three observation ReCRT 

blocks performed by the NHP were considered for this analysis. 

Three simulated blocks were designed to match these three 

observations ReCRT blocks. The simulated and actual 

experimental blocks performed by the NHP had the same 

number of rewarding and non-rewarding trials. The length of 

each trial, the time of the cue presentation, and reward delivery 

in each trial were extracted for all observation ReCRT blocks. 

The trial length of the simulated trials was set as the trial length 

experienced by the NHP in each block. There were 4 stimuli 

and 4 microstimuli for each stimulus in the MSTD-RL 

simulations. Each microstimulus had a standard deviation (σ) 

that changed from one block to the next (block 1 = 0.1, block 2 

= 0.2, block 3 = 0.3). The decay rate for the memory trace was 

maintained at 0.985, with the discount factor (γ) set at 0.98. The 

decay rate of the eligibility trace (λ) was set at 0.7 with a 

learning rate (α) of 0.7. The simulations mimicking each of the 

three experimental blocks were run separately. The immediate 

reward was 1 and -0.1 at the reward delivery time point in the 

R and NR trials, respectively. Every other time point was 

awarded an immediate reward of -0.001. 

III. RESULTS  

We first show results from a single M1 unit’s activity while 

the NHP performed the observational reward-cued reaching task 

(ReCRT) in Fig.2.a-b. These Peri-Event-Time-Histograms 

(PSTHs) are triggered by the cue presentation indicating 

rewarding (R) or non-rewarding (NR) trial types. The solid red 

line is for rewarding trials with the standard error of the mean 

shaded, while blue is for NR trials. The red dotted line is the time 

of reward delivery for R trials and the comparable time for NR 

trials. Notice as time within blocks and between blocks the 

region with significantly different (Wilcoxon rank sum test, p < 

0.05) median firing rates between R and NR at a given time point 

(i.e. bin number, bin = 50ms), indicated by the black dots, moves 

further towards the cue presentation time from its initial post-

reward time, Fig.2.a.1-b.6. This progression of reward level 

representation towards the CS is expected for an RL agent’s 

representation of the state value function as we show in Fig.3. In 

Fig.2.b.1 we have plotted the percent of significantly different 

 

 

 

 

 

 

 

 

 

 

Figure.2. Single unit PSTH examples over the first (a.1 – a.3) and the second 

block of trials (a.4-a.6). Black dots indicate significant differences between 

rewarding (red) and non-rewarding (blue) trials. b.1 shows the number of units 

with significant differences between R and NR trials over the given blocks 1-6. 
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The average population PSTHs and the population of PSTHs in pseudocolor 

are shown in b.2 and b.3 for blocks one and two.   

units between R and NR trials. Note that in block one, only a 

small percentage of units show such significance (Wilcoxon 

rank sum test, p < 0.05), but in subsequent blocks, the percentage 

is raised with phasic increases in the immediate post-cue and 

post-reward periods. Fig.2.b.2-3 show results from the 

population average PSTH between R and NR trials as line plots 
for a subpopulation that was from the top 10% of units with 

respect to their correlation with the reward sequence (see 

Methods). The population of PSTHs for all individual units is 

shown in pseudocolor separately for R and NR trials. The black 

lines are the average of all units’ activity.  Units were sorted for 

each block in decreasing order with respect to the time required 

for a given unit to reach the maximum average firing rate across 

R or NR trials (Fig.2.b.2-3). Therefore, units at the top of the 

PSTHs ‘neurograms’ reach the maximum average firing rate 

later in the trial, whereas the units at the bottom of the 

neurogram reach the maximum average firing rate earlier in the 

trial. There was no requirement for maintaining the sorting order 

across blocks. 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3. Results from MSTD-RL simulations’ value functions are in the left 

column for blocks 1-3, while the actual neural activity from the top 10% of 

reward correlated units are shown in the right column. Note the similarities 

between the simulated value functions and the neural data.  

IV. DISCUSSION 

In work presented here we have shown what appears to be 

a state-value function in neural activity from the primary motor 

cortex of an NHP, observing relationships between 

environmental states and actions from an external agent that 

predict differing values to the subject. We have shown that this 

state-value activity changes with experience over blocks of 

trials, such that the reward-modulated neural activity first 

shows significant separability between the R and NR trials in 

the post-reward period Fig.2.a, and with experience, this 

significant separability extends into the post-cue period. 

Looking at the percentage of units with such significant 

separability at a bin-by-bin level, we showed that with learning, 

the peak in separability moves from the post-reward period to 

the post-cue period Fig.2.b.1 block one as compared to the 

remaining blocks.  

In addition to showing significant changes in the reward-

modulated activity with experience, that is, learning of a 

putative state-value function, we have modeled this neural 

behavior with the MSTD-RL model. The model shows that 

such a state-value function is consistent with TD-RL. There are 

clear limitations to work presented here. One is the lack of 

changes in behavioral variables, such as shorter reaction times 

or times in trials between the R and NR trials with state-value 

learning. We have seen such associated changes in trial time for 

the manual version of the ReCRT (data not shown); however, 

such data is unavailable for the observational task shown here. 

The data used in this report was taken for brain-machine-

interface work and was not optimized to answer questions on 

RL. We are currently analyzing data from choice-based 

experiments that will more clearly address the behavioral 

aspects of RL in the primary motor cortex.       

Our future work will utilize this M1 state-value activity to 

autonomously update a brain-machine interface (BMI), such 

that the BMI works towards maximizing the user’s cumulative 

subjective reward.   
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