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Abstract�Neural activity in the sensorimotor cortices has 

been previously shown to correlate with kinematics, kinetics, 

and non-sensorimotor variables, such as reward. In this work, 

we compare the grip force offline Brain Machine Interface 

(BMI) prediction performance, of a simple artificial neural 

network (ANN), under two loss functions: the standard mean 

squared error (MSE) and a modified reward penalized mean 

squared error (RP_MSE), which penalizes for correlation 

between reward and grip force. Our results show that the ANN 

performs significantly better under the RP_MSE loss function in 

three brain regions: dorsal premotor cortex (PMd), primary 

motor cortex (M1) and the primary somatosensory cortex (S1) 

by approximately 6%.  

 

I. INTRODUCTION 

��	&�� for the restoration of movement decode neural 

activity, usually from the sensorimotor cortices, to drive 

external end effectors, such as robotic prosthetics, or 

computer cursors [1, 2, 3]. However, it has been shown by 

many groups that the activity in the sensorimotor cortices are 

not only related to motor variables, such as direction and 

force, but also non-movement variables, such as reward [4], 

reward prediction error [5], arousal [6], motivation [7] etc.  

This reward modulation of the sensorimotor cortices has 

been hypothesized to occur because of dopaminergic 

projections that connect known reward centers in the mid and 

deep brain such as the Ventral Tegmental Area (VTA) and 

Substantia Nigra (SNc) to the cortex [4]. Single unit (SU) 

activity [8, 9, 10, 11], local field potentials (LFP) [12,13] and 

pairwise correlation [14] between units have all been shown to 

be modulated by reward expectation.  

The goal of intention based BMIs is to translate movement 

intention from neural activity to actual movement in a robust 

and consistent manner. Since any action a subject makes, is 

linked to some sense of reward, either explicit or implicit, in 

the present or in the future, it makes intuitive sense to remove 

the effects of reward, and associated affect, to �.�������#���0B�

movement signal BMI decoding. 

  To this end, we hypothesized that the prediction of force 

from the neural activity can be improved if we remove the 
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effect of non-kinematic or non-kinetic variables. The aim of 

this work is to test whether the performance of a simple ANN 

is significantly improved when the correlation between the 

predicted grip force and reward level is penalized in the loss 

function.  

II. METHODS 

A. Surgery 

Two non-human primates (NHPs), one male rhesus macaque 

(NHP S) and one female bonnet macaque (NHP P) were 

implanted with chronic 96-channel platinum microelectrode 

arrays (Utah array, 10 × 10 array separated by 4���(5��� ��

mm electrode length, ICS-96 connectors, Blackrock 

Microsystems). The hand and arm region of M1 contralateral 

to their dominant hand was implanted with the same technique 

as our previous work [8,9]. All surgical procedures were 

conducted in compliance with guidelines set forth by the 

National Institutes of Health Guide for the Care and Use of 

Laboratory Animals and were approved by the State 

University of New York Downstate Institutional Animal Care 

and Use Committee. 

 

B. Neural Data Recording 

As explained in our previous work [8], after a 2"3 week 

recovery period, spiking activity was recorded with a 

multichannel acquisition processor system (MAP, Plexon 

Inc.) while the subjects performed the experimental task 

(described below). Neural signals were amplified and 

band-pass filtered between 170 Hz and 8 kHz to isolate single 

and multi-unit activity and sampled at 40 kHz, and each 

channel manually thresholded to detect single units. Single 

and multi-units were sorted offline based on their waveforms 

using principal component (PC)-based methods in offline 

sorter (Plexon Inc.). The number of units used for analysis 

after sorting were (87, 57, 81) and (87, 58, 85) for PMd, M1 

and S1 in block 1 and block 2 respectively for NHP S. 

Similarly, for NHP P, the number of units were (140, 77, 75) 

and (83, 67, 78).  

 

C. Behavioral Task 

The NHP&�� 0�0 trained to perform a reach-grasp-transport- 

release task [15,16] where aspects of a simulated 

anthropomorphic robotic arm were controlled using a physical 

grip-force transducer.  
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The task consisted of 6 scenes (as shown in Figure 1). 1) Cue 

Display: A colored cue was displayed intimating the animal 

about how much reward it was going to receive on successful 

completion of the trial, 2) Reaching: The simulated arm 

automatically reached for the target, 3) Grasping:  The NHP 

squeezed the physical manipulandum to exert force. The 

amount of force exerted by the animal was shown visually 

using a rectangle which changed its area in proportion to the 

force exerted. The amount of force that the NHP should exert 

and maintain was shown using the blue rectangles which 

appeared on opposite sides of the red rectangle. If the animal 

exerts more force than necessary, the trial was considered 

failed. 4) Transporting: The simulated arm automatically 

moved to a target destination, seen as a pink target.  

It is this part of the trial where the animal needed to maintain 

its exerted force within the blue rectangles. 5) Releasing: The 

animal released its grip on the force transducer when the 

robotic arm reached the pink target. 6) Reward: The animal 

received 0,1,2 or 3 juice delivery periods, each 0.5 s in 

duration, depending on the number of green squares shown 

during the cuing period.  

 

 

 

D. Neural Network Architecture 

 

The neural network used to predict grip force from neural 

spiking activity utilized a simple feedforward architecture 

with one hidden layer with 50 units [17]. The input to the 

network was the neural activity binned at 50 ms and fully 

connected to the hidden layer. The activation function used 

was the Rectified Linear Unit (ReLU) [18]. The output was 

the predicted grip force from the grip-force task. Since the aim 

was to predict the grip force, we only use the neural activity 

corresponding to the part of the trial when the NHP exerts 

force on the force sensor, i.e. between scenes 3 and 4.   

E. Reward structures 

 

As described previously, the animal received a reward of 0, 1, 

2 or 3 juice delivery periods depending on what was initially 

shown to it during the Cue Display. To denote the reward level 

of a particular bin of data in a trial, we use two kinds of reward 

structures 1) Non-Linear, where the reward values were [-10, 

10, 20, 30], 2) Linear, with reward values [10, 20, 30, 40] 

corresponding to number of juice delivery periods that would 

be obtained by the NHP. The reason behind using a Linear 

structure is very straightforward as each additional delivery 

period might corresponds to a linear increase in subjective 

reward-value, however the rationale behind using the 

Non-Linear reward was to separate the Non-Reward condition 

(0 juice delivery periods) from the other conditions, where at 

least one drop of juice would be delivered, as R0 might 

represent punishment.  

 

F. Loss Functions 

We compare the performance of the neural network under two 

loss functions defined as 

 

                     MSE = (X-D)2                             (1) 

 

                    RP_MSE= (X- D)2  ����D.R)2   (2) 

 

Where X  is an array corresponding to the actual grip force, D 

is the predicted grip force, R is an array with the reward level 

values associated with the corresponding grip force values in 

D and ' is a constant. MSE is the standard mean squared error 

function and RP_MSE is the reward correlation penalized loss 

function where (D.R) refers to the correlation coefficient 

between the predicted grip force and the reward level.  

 

III. RESULTS 

The datasets consisted of neural activity binned at 50 ms (the 

firing rate of the unit within a 50 ms period) and the 

corresponding grip force value exerted by the NHP which is a 

normalized value. The neural data was analyzed from three 

brain regions: Dorsal Premotor Cortex (PMd), Primary motor 

cortex (M1), and Primary Somatosensory cortex (S1). The 

grip force was also predicted from all the regions combined. 

Each of the datasets was divided into training, validation and 

testing sets with the percentage ratio of 70:15:15.  

 

The performance of the two loss functions was compared 

using the R2 scores in the test set. Specifically, the neural 

network was run 25 times for each ' value from 0 to 10000 

and the median R2 scores on the test set were compared using 

the Wilcoxin signed rank test to check for significant 

improvement in prediction. It should also be noted that 

cross-validation was performed for each run such that all data 

points were used in the test set and the median R2 score was  

 

Figure 1: Visual depiction of the 6 stages of the 

reach-grasp-transport-release task.   

Figure 2: Architecture of a simple fully connected neural network with 

input layer size of N where N is the number of units. The hidden layer is 

of size 50 and an output layer with the output force at a time bin.  
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chosen as the metric of comparison between the two loss 

functions. The performance of RP_MSE with the best ��value 

is plotted in Figure 2. Our results clearly show that 1) The 

neural network with reward correlation penalization 

significantly (p<0.01) outperformed the standard MSE by 

approximately 6% in all three brain regions across both 

��&� except for PMd in NHP P.  2) S1 shows the best 

performance among the three regions for NHP S and PMd 

shows the highest performance for NHP P. 4) Combining all 

the regions together to predict yielded slightly higher 

performance than the best predicting regions.  5) There are 

block level differences in performances in both NHP&�. 6) 

Both linear and non-linear reward structures show similar 

performance. 

 

IV. DISCUSSION  

We tested and proved our hypothesis that a simple neural 

network can predict grip force significantly better from neural 

activity when the reward-correlation is penalized. There are 

however some limitations in our work that need to be 

addressed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, the linear and non-linear reward structures that we used 

may not be the way the brain encodes reward values. Our 

previous work has shown the existence of a divisive 

normalized relationship between neural activity and reward 

[16]. Also, the dopamine system in the brain has been shown 

to represent a belief state system [19]. A belief state system 

could also explain the subject wise differences in this study as 

well as our previous studies [8,15,16]. Once such a belief state 

can be incorporated to a decoding model, optimal reward 

structures can be elucidated and subsequently penalized in a 

similar way as shown in our work hopefully improving the 

performance of a decoding network.  

 

Second, in our work, each time bin is assumed to be 

independent of the others. However, it has been shown that 

neural activity evolves in a time dependent manner and 

temporal sequence of reward history plays an important role in 

predicting current reward [20]. This time dependent activity 

can also occur across different timescales [21]. Complex 

�0������0� �������1��0����0�����1����
�,�&� [22] 

automatically account for the time dependencies between the 

input and output and may boost the performance of the neural 

network. 

Figure 3: Comparison of median R2 scores on test set using mean squared error (MSE) and reward penalized mean squared error 

(RP-MSE) loss functions. The top and bottom figures refer to Block 1 and 2 respectively. Block refers to one session and the NHP gets 

a break of 5 mins between blocks. The median R2 scoreds for RP-MSE are from the best ��values ([500,1000,2000,500] for NHP S and 

[1000,2000,500,500] for NHP P where each value refers to the best ��value for PMd, M1 and S1 respectively). The black error bars are 

the absolute deviations around the median R2 scores.  
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Third, it has been shown that a given area of the brain rarely 

acts in isolation and that the different brain areas interact with 

one another during vision, movement, and other cognitive 

tasks [13,14]. Interactions between different brain regions is 

likely to be modulated by reward. This reward modulation of 

the interaction could further help predict grip force more 

accurately.  

 

Although our analysis has shown only a 6% improvement in 

performance, it is still a step towards designing decoders for 

��	&���1��������!0 ANNs along with the reward encoding 

capacity of the sensorimotor cortices (PMd, M1 and S1). Such 

a paradigm shift in BMI decoder design has potential for 

greater clinical relevance in the future [15].  

 

 
V. CONCLUSION 

 

From our work, it can reasonably be concluded that reward 

affects the prediction of grip force from neural activity and 

that this effect can be minimized by penalizing the reward 

correlation. Future work should incorporate belief state about 

rewards, time dependencies in neural activity and the 

interaction between different brain areas to improve    

predictive performance of neural networks from a BMI 

perspective.  
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