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A B S T R A C T

Background: Alzheimer's disease (AD) is projected to become one of the most expensive diseases in modern
history, and yet diagnostic uncertainties exist that can only be confirmed by postmortem brain examination.
Machine Learning (ML) algorithms have been proposed as a feasible alternative to the diagnosis of several
neurological diseases and disorders, such as AD. An ideal ML-derived diagnosis should be inexpensive and
noninvasive while retaining the accuracy and versatility that make ML techniques desirable for medical appli-
cations.
New Methods: Two portable modalities, Electroencephalography (EEG) and functional Near-Infrared
Spectroscopy (fNIRS) have been widely employed in constructing hybrid classification models to compensate for
each other's weaknesses. In this study, we present a hybrid EEG-fNIRS model for classifying four classes of
subjects including one healthy control (HC) group, one mild cognitive impairment (MCI) group, and, two AD
patient groups. A concurrent EEG-fNIRS setup was used to record data from 29 subjects during a random digit
encoding-retrieval task. EEG-derived and fNIRS-derived features were sorted using a Pearson correlation coef-
ficient-based feature selection (PCCFS) strategy and then fed into a linear discriminant analysis (LDA) classifier
to evaluate their performance.
Results: The hybrid EEG-fNIRS feature set was able to achieve a higher accuracy (79.31 %) by integrating their
complementary properties, compared to using EEG (65.52 %) or fNIRS alone (58.62 %). Moreover, our results
indicate that the right prefrontal and left parietal regions are associated with the progression of AD.
Comparison with existing methods: Our hybrid and portable system provided enhanced classification performance
in multi-class classification of AD population.
Conclusions: These findings suggest that hybrid EEG-fNIRS systems are a promising tool that may enhance the
AD diagnosis and assessment process.

1. Introduction

Alzheimer’s disease (AD), the most common and severe age-asso-
ciated neurodegenerative disease, currently affects 5.8 million
Americans and is expected to affect 13.8 million individuals in the US
alone by 2050, with individual end-of-life costs exceeding those of heart
disease and cancer (Assoc, 2018; Kelley et al., 2015). The only medi-
cally confirmed diagnosis for AD has been through autopsy, high-
lighting the urgent need to develop innovative and effective diagnostic
tools (Assoc, 2018). While deposits of aggregated amyloid beta (Aβ)
and neurofibrillary tangles of hyper-phosphorylated tau protein are the

two hallmarks of AD, disruption of synaptic spines due to the detri-
mental binding of small Aβ oligomers is key in triggering cognitive
decline (Serrano-Pozo et al., 2011). The synaptic failure induced by the
binding of Aβ oligomers is widely considered to be one of the first
dysfunctional events driving symptomatic AD, suggesting that cortical
imaging techniques could capture information that is unique to AD
patients (Selkoe, 2002; Teipel et al., 2015).

One of the main interests in machine learning (ML) research is the
rapid and accurate diagnosis and assessment of neurodegenerative
diseases, such as AD, through relatively simple experimental setups
(Ahmadian et al., 2018; An et al., 2018). Imaging modalities that can
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collect the data needed to train the classifiers are preferred to be non-
invasive, versatile, and inexpensive; qualities that would make them
realistically applicable in the clinical setting. Several groups have
shown that the implementation of an ML model in AD classification
studies could achieve clinically acceptable accuracies (Katako et al.,
2018; Klöppel et al., 2008; Wang et al., 2015). For instance, Klöppel
et al. were able to achieve 89 % accuracy when classifying patients as
AD positive or healthy controls by using magnetic resonance imaging
(MRI) data (Klöppel et al., 2008). Although they achieved a clinically
compatible result with their classification accuracy, the high cost and
environmental sensitivity associated with MR imaging can potentially
compromise the clinical applicability of their method (Biasutti et al.,
2012; Turner, 2016). Positron emission tomography (PET) has also
been investigated as a potential source of data with Katako et al.
achieving an accuracy of 84 % through the support vector machine
(SVM) (Katako et al., 2018). While PET imaging provided highly sen-
sitive and accurate data, it is difficult to effectively combine the tech-
nique with other imaging modalities such as computed tomography
(CT) and MRI (Vaquero and Kinahan, 2015). This therefore limits the
applicability of PET in hybrid models that combine data from various
imaging modalities to enhance overall classification performance.

Advanced neuroimaging techniques, including
Electroencephalography (EEG), functional near-infrared spectroscopy
(fNIRS) and functional magnetic resonance imaging (fMRI), have been
extensively utilized by the research community to develop high-per-
formance classification models (Houmani et al., 2018; Karamzadeh
et al., 2016; Li et al., 2017; Sato et al., 2015; Wang et al., 2015). All
these imaging modalities present specific challenges which can often
compromise their applicability in a clinical setting. Electro-
encephalography (EEG) utilizes scalp electrodes to measure fluctuations
in voltage caused by the electrical activity of the neurons present on the
cortical surface of the brain (Binnie and Prior, 1994). EEG recordings
offer a high temporal resolution while suffering from a relatively low
spatial resolution that is primarily caused by the conductivity dis-
tribution of the human head (Lachaux et al., 1999; Schoffelen and
Gross, 2009). EEG is also noted for being sensitive to environmental
noise and easily corruptible by motion artifacts (Reis et al., 2014),
making the technique difficult to independently implement in the field
of neurodegenerative disease research.

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging
technique that measures hemodynamic responses on the cortical sur-
face associated with neuronal behavior. It accomplishes this by dyna-
mically measuring the changes in both oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR) concentrations with optical sig-
nals of distinct wavelengths (Scholkmann et al., 2014). The portability
and low cost of fNIRS systems have accentuated the potential clinical
value of this imaging modality in the research community (Arenth
et al., 2007; Mihara et al., 2010; Obrig, 2014). In contrast to EEG, fNIRS
is noted for having a higher spatial resolution but a lower temporal
resolution (Quaresima et al., 2012). A significant advantage that fNIRS
holds over EEG is the negligible cross-talk effect when the activation
region distance is greater than one centimeter (Strangman et al., 2003).
The imaging modality is made resilient to motion artifacts through
signal processing, making it an attractive tool to collect clinical data
from patients with neurological illnesses (Balardin et al., 2017). How-
ever, a critical shortcoming of fNIRS with respect to EEG is the delay in
the captured hemodynamic signal; for instance, it usually takes four to
six seconds after stimulus onset to reach its peak response and another
six to ten seconds to reach its negative post-stimulus undershoot (PSU)
peak (Buxton et al., 2004; Cohen, 1997; Mayer et al., 2014). The low
penetration of infrared light further limits the detection of the hemo-
dynamic response to the superficial volume of the cortical mass
(Quaresima et al., 2012).

Despite the limitations of these two imaging modalities, EEG cou-
pled with fNIRS yields an augmented temporal and spatial resolution,
thus allowing researchers to develop novel ML algorithms that utilize

the complementary information that is collected (Li et al., 2017). In
addition, both the EEG and fNIRS systems are highly portable and
compatible with each other, which greatly reduce the measurement
constraints to the patients and significantly expand the application
scenarios of the multi-modal system (Li et al., 2019). Therefore, in-
tegrated EEG and fNIRS data has been applied in a number of classifi-
cation studies, including workload assessment, motor function and
auditory function (Hong and Santosa, 2016; Li et al., 2017; Omurtag
et al., 2017).

Several groups using EEG have been able to accurately distinguish
between healthy controls and mild cognitive impairment (MCI) sub-
jects, or AD patients (Houmani et al., 2018; Wang et al., 2015). Other
groups have shown that fNIRS could be a valuable source of informa-
tion for AD studies (Li et al., 2018a, b). Houmani et al. were able to
achieve a binary (AD and Subjective Cognitive Impairment (SCI))
classification accuracy of 91.6 % using EEG data while achieving a
three class (AD, SCI, and other patients) classification accuracy of
81.8%–88.8% (Houmani et al., 2018). Li et al. were able to show that
fNIRS data could be utilized to distinguish between various stages of AD
when comparing the hemodynamic response of mild and severe cases
(Li et al., 2018b). These works highlight the importance of the AD-
specific information that can be captured using the EEG and fNIRS
imaging modalities. Utilizing fNIRS and EEG to train multiclass ML
models should, therefore, be investigated further to expand upon pre-
vious findings in the field.

The primary objective of this study is to evaluate the feasibility of
utilizing hybrid EEG-fNIRS data to classify subjects at different stages of
AD. Specifically, subjects from four groups were recruited, including
healthy controls (HC), patients with mild cognitive impairment (MCI),
mild AD (MAD), and moderate/severe AD (MSAD). Concurrent EEG and
fNIRS measurement were employed to collect data from subjects during
a random digit memorization task. We utilized a computationally in-
expensive Pearson correlation coefficient-based feature selection
(PCCFS) algorithm to optimize feature selection and achieve higher
classification accuracy using hybrid EEG-fNIRS features. To our
knowledge, this is the first hybrid EEG-fNIRS-based study to perform
classification among healthy controls and patients at different stages of
AD.

2. Materials and method

2.1. Participants

Twenty-nine subjects were recruited and participated in the study,
including eight healthy controls, eight MCI patients, six mild AD pa-
tients, and seven moderate/severe AD patients. All subjects were right-
handed and above 50 years of age. The experiment was approved by the
local ethics committee (Guangdong Provincial Work Injury
Rehabilitation Center, China), and was performed in accordance with
the Declaration of Helsinki. Each subject (or caregivers in severe cases)
was fully informed about the purpose of the research and provided
written, informed consent prior to the beginning of the experiment. All
patients recruited in this study were able to follow the study instruc-
tions independently. All participants were naïve to the experimental
task and to the recording systems. The mental state of each subject was
examined using the Mini-Mental State Examination (MMSE), and all
rating scores were recorded. The demographic information and clinical
rating scores of all subjects are summarized in Table 1.

2.2. Experimental paradigm

All experiments were conducted in a shielded room meant to
minimize environmental noise. The subjects were instructed to sit in a
comfortable chair and were told to remain still and relaxed. The sub-
jects were given visual instruction from a screen placed one meter in
front of their eyes. The paradigm used in this study consisted of 30
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random trials. Each trial began with a ten-second encoding task, where
the subject was asked to memorize a number sequence (four, five, and
six digits, ten trials for each digit length) presented on the screen fol-
lowed by a ten second resting period. The subject would then be in-
structed to retrieve the number sequence from the previous encoding
task and verbally repeat the sequence within ten seconds, followed by
an additional ten seconds of rest (Fig. 1(A)). We define patient per-
formance as being the number of correct responses during the retrieval

task. We defined a block of data as the EEG and fNIRS signals collected
for each of the memorization digit lengths (for a total of 3 blocks × 10
trials).

2.3. Experimental setup

EEG and fNIRS data were simultaneously recorded during the entire
experiment. EEG data were recorded using a BrainAmp DC EEG re-
cording system (Brain Products GmbH, Germany) with a sampling rate
of 500 Hz. As shown in Fig. 1(B), we selected channel FCz as the re-
ference and CPz as the ground channel. Thirty-two additional EEG
electrodes were placed on the scalp over the left and right hemispheres.
A NIRScout system (NIRx Medizintechnik GmbH, Germany) with 16
sources and 15 detectors was used to collect fNIRS data. The inter-op-
tode distance was 3 cm, and a total of 46 fNIRS channels were sym-
metrically distributed over the left and right hemispheres, encom-
passing the frontal and parietal regions of the cortical surface (Hong
et al., 2018). Lights with wavelengths of 760 and 850 nm were used to
detect the change in oxygenated and deoxygenated hemoglobin

Table 1
Demographic information of all subjects.

Characteristic HC (n = 8) MCI (n =
8)

MAD (n= 6) MSAD (n = 7)

Ages (years) 63.6± 6.5 70.3± 5.4 72.5±7.3 76.0± 4.8
Gender (M/F) 6/2 6/2 2/4 3/4
MMSE 28.2± 2.2 26.0± 2.2 19.7±3.0 9.4± 1.7
Education (years) 11.0± 2.5 10.0± 3.1 11.2±2.8 10.3± 2.9
Performance 30.0± 0.0 27.6± 1.8 24.0±6.0 19.0± 2.8

Fig. 1. Experimental Paradigm and setup. (A) The paradigm used for this experiment. (B) The locations of the EEG electrodes (grey), fNIRS sources (red) and fNIRS
detectors (green).
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concentrations. fNIRS data were collected at a sampling rate of 3.91 Hz.

2.4. Data preprocessing

Raw EEG signals were preprocessed using BrainVision Analyzer
software (Brain Products GmbH, Germany). Data was first filtered from
0.5–40 Hz using a third order Butterworth band-pass filter. Powerline
noise (50 Hz) was removed using a third order notch filter. Ocular ar-
tifact correction was accomplished using independent component
analysis (ICA) followed by the manual removal of the artifact signals.
Re-referencing was conducted using the common average reference
method and data from the FCz channel was retrieved for further ana-
lysis. Single-trial EEG data for each encoding task was segmented from
two seconds before task onset to ten seconds after the task onset. All
segmented trails were manually inspected; trials with large spikes were
considered “noisy” and were excluded from further analysis. On
average, fewer than 10 % of the total trials (4.14 %±5.09 %) were
rejected for each subject. Baseline correction was performed by sub-
tracting the mean value of each baseline interval (-2 to 0 s) from each
EEG channel’s corresponding segmented trial. Block averaging was
done for each EEG channel with respect to different digit lengths, in-
cluding 4-digit, 5-digit, 6-digit and all number sequences, yielding 33
× 4 (channels × blocks) averaged EEG signals for each subject.

Raw fNIRS signals were preprocessed using the nirsLAB software
(NIRx Medizintechnik GmbH, Germany). We applied a fourth order
Butterworth band-pass filter from 0.01 to 0.2 Hz to remove artifacts
such as EKG (∼0.8 Hz) and respiration (0.2-0.3 Hz). The changes in
HbO and HbR concentrations were calculated according to the Modified

Beer-Lambert Law with a differential path length factor of 7.25 and
6.38 for the 760 nm and 850 nm wavelengths, respectively (Essenpreis
et al., 1993; Scholkmann et al., 2014). We then segmented the single
trial fNIRS data from the onset of the encoding task to 20 s after the
onset (0–20 seconds). All segmented trails were manually inspected,
and trials with apparent motion artifacts were excluded. On average,
fewer than 10 % of the total trials (1.95 %±6.93 %) were rejected for
each subject. Baseline correction was performed by subtracting the data
point before the onset from each fNIRS channel’s corresponding seg-
mented trial. Block average was then performed for each fNIRS channel
with respect to different digit lengths, including 4-digit, 5-digit, 6-digit,
and all number sequences, resulting in 46 × 4 × 2 (channels × blocks
× Hb) averaged fNIRS signals for each subject.

2.5. Feature extraction and selection

Block averaged EEG data (10 s) was used to compute the relative
band power for each channel across six bands of interest (Delta: 0.5–4
Hz, Theta: 4–7 Hz, low Alpha: 8–10 Hz, high Alpha: 10–13 Hz, Beta:
14–25 Hz, Gamma: 26–40 Hz). The power spectrum density (PSD) of
the signal was calculated based on a 2-second window (with no over-
lapping) for four different block averaged signals. PSD was calculated
using the Fast Fourier Transform (FFT). The relative band power of a
specific frequency band, defined as the percentage of that frequency’s
band power with respect to the total power power from 0.5 Hz to 40 Hz,
was extracted as features for classification. In summary, 3960 EEG
features (33 channels × 6 bands × 5-time windows × 4 blocks) were
extracted for each of the subjects.

For the fNIRS signals, we focused on the main time frame from 3 to
12 s after the onset of the encoding task as suggested by the literature
(Buxton et al., 2004; Cohen, 1997; Mayer et al., 2014). Average changes
of HbO and HbR concentrations were then calculated as features by
taking the average of the data every 3 s with no overlapping for four
different block averaged signals. This yielded a total of 1104 fNIRS
features (46 channels × 2 Hb × 3 time windows × 4 blocks) per
subject.

2.6. Feature optimization and classification

After the feature extraction, we ended up with two different feature
sets to evaluate the classifier performance: EEG band power 29 subjects
× 3960 features and fNIRS hemoglobin concentrations 29 subjects ×
1104 features. To select the optimal feature set for classification and to
enhance the computational efficiency, we implemented a Pearson cor-
relation coefficient-based feature selection (PCCFS) strategy with the
EEG and fNIRS feature sets prior to the classification. The principle of
PCCFS is demonstrated in Fig. 2 (Aghajani et al., 2017; Guyon and
Elisseeff, 2003). The Pearson correlation coefficient between each fea-
ture and all class labels (Healthy = 0, MCI = 1, MAD = 2, MSAD = 3)
were individually calculated. All features were then sorted based on
their absolute Pearson correlation coefficients in a descending manner,
wherein the features that yielded a higher coefficient were given higher
priority in the classification of the four groups. With the sorted feature
set, we then iteratively (in a forward manner) added the features and
evaluated the classifier performance of each iteration. The optimal
feature set was defined as the subset that yielded the highest accuracy.
The optimal EEG feature set and fNIRS feature set were then combined
and re-sorted using PCCFS to form the EEG-fNIRS sorted hybrid feature
set. The optimal hybrid feature set was defined in the same way as the
optimal unimodal feature sets. In this study, considering the large
number of features, the classification accuracy was assessed using the
Leave One Out Cross Validation (LOOCV) with a Linear Discriminant
Analysis (LDA) classifier due to its simplicity and low computational
requirements as well as high popularity in EEG/fNIRS classification
studies (Hong et al., 2018; Lahmiri et al., 2018). A flowchart is shown in
Fig. 3 to summarize the overall design of the study.

Fig. 2. The flowchart of feature optimization using the Pearson correlation
coefficient-based feature selection (PCCFS) method.
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3. Results

The goal of this study was to effectively classify subjects based on
the degree of their dementia and to evaluate the performance of the
hybrid EEG-fNIRS model relative to the EEG and fNIRS standalone
model. Fig. 4 demonstrates the changes in classification performance
during the PCCFS processing for the EEG feature set, the fNIRS feature
set and the hybrid feature set, respectively. After PCCFS optimization,
we were able to reduce the size of each respective feature set according
to the optimal classification performance. Overall, the hybrid EEG-
fNIRS feature set provided the best performance (Mean: 79.31 %,
Standard Error: 7.66 %), outperforming the EEG unimodal feature set
(Mean: 65.52 %, Standard Error: 8.98 %) and fNIRS unimodal feature
set (Mean: 58.62 %, Standard Error: 8.98 %). Specifically, the PCCFS-
sorted EEG feature set (Fig. 4(a)) achieved its highest accuracy with the
top 21 features, while the PCCFS-sorted fNIRS feature set (Fig. 4(b))
reached its highest accuracy with the top 48 features. Finally, the
PCCFS-sorted hybrid feature space (Fig. 4(c)) achieved its highest ac-
curacy with the top 31 features, including all 21 optimal EEG features
and the top 10 optimal fNIRS features. The confusion matrix and sev-
eral commonly used metrics (precision, sensitivity, specificity and F-
score) were calculated manually to evaluate the performance of each
model further, as displayed in Tables 2,3 and 4 . Precision is defined as
the ratio of true positives over true positives and false positives, sen-
sitivity is defined as the ratio of true positives over true positives and
false negatives, specificity is defined as the ratio of true negatives over
false positives and true negatives, and F-score is defined as the har-
monic mean of precision and recall.

Apart from the evaluation of the performance of the hybrid EEG-
fNIRS model, we also attempted to identify the key regions of interest
that are associated with cognitive decline based on the optimal hybrid
feature set. Fig. 5 shows the brain regions that contributed most to the
performance of the classifiers based on the PCCFS-sorted features. To
determine the activation sites on the cortical surface, we first projected
the 3D coordinates of the EEG and fNIRS channels that yielded the
optimal hybrid model features to a template brain model obtained from
the MNI305 space (publicly available at: http://surfer.nmr.mgh.
harvard.edu/). The size of the clusters (colored circles) is based on
the number of top hybrid features derived from each channel, which
ranged from one to four features per channel. Interestingly, among the
21 hybrid EEG features, most features were derived from the channels
located in the left parietal region (yellow markers), while the 10 hybrid
fNIRS features were mainly derived from the channels located in the
right frontal region (blue markers).

4. Discussion

Multi-modal imaging techniques have been previously reported to
enhance classification performance over unimodal methods in binary
classification tasks, yet the hybrid approach we presented in this work
has received little research focus with multiple classes (Li et al., 2017).
In this work, our goal was to evaluate the feasibility of utilizing hybrid
EEG-fNIRS data to classify, with a clinically relevant accuracy, between
four groups of subjects that included patients with varying degrees of
AD. We elected to use a hybrid EEG-fNIRS model that was expected to
outperform the EEG and fNIRS unimodal approach. The result suggests
that the hybrid model is a superior and effective way to accurately
classify and assess AD patients, with LOOCV accuracy approaching
79.31 % in the four-class hybrid model. It is important to note that
chance in our model is defined as the ratio of the largest group over the
total sample size (∼27.6 %), which we exceed by a significant margin
(Combrisson and Jerbi, 2015).

Due to the similar symptomologies shared by mild AD and other
neurological pathologies (Kalaria, 2002; Mendez, 2006; Rodrigues
et al., 2014), the difficulty in diagnosing and monitoring early-onset AD
has been a major problem for clinicians. These diagnostic uncertainties
further delay more definitive AD diagnoses until the disease has pro-
gressed, thus reducing the potential efficacy of treatment and costing an
estimated 7.9 trillion USD in medical and patient care costs (Assoc,
2018). By capitalizing on the advantages of hybrid neuroimaging
modalities, we were interested in presenting an ML-based system that
was capable of accurately distinguishing between various stages of AD
as a source of supplemental information for physicians in clinical set-
tings. Overall, the high classification accuracy achieved in this study
through the hybrid EEG-fNIRS feature set suggests that it is (compared
to the unimodal approach) beneficial to combine these imaging mod-
alities as an effective means to assess and diagnose AD. Analysis of the
classifier performance (Table 4) further supports that the hybrid model
was more robust than the EEG and fNIRS models in classifying the four
subject groups.

The high precision achieved by the hybrid model indicates that it
was more likely to make relevant predictions, while its sensitivity in-
dicates that it was more likely to correctly classify control subjects, MCI
subjects, and MSAD patients. To make better sense of the overall
meaning of these two metrics, we elected to compute the F-score in
order to make a more definitive statement about the performance of the
hybrid model. The F-scores of the hybrid model were consistently
higher than the EEG and fNIRS models, indicating that it was collec-
tively more precise and/or sensitive than its unimodal counterparts.

Fig. 3. The overall design of the study. The subject presented in the figure provided verbal and written informed consent for the publication of this figure.
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Importantly, the hybrid model had a higher specificity when classifying
mild AD patients, relative to the EEG and fNIRS models. High specificity
indicates that the likeliness of falsely identifying subjects as having mild
AD was relatively low, which suggests that the hybrid model was less
likely to misdiagnose each subject. However, the MCI and mild AD
groups revealed relatively low accuracies compared to other groups,
even though the hybrid EEG-fNIRS model yielded the optimal perfor-
mance over EEG and fNIRS unimodal approaches. The diagnosis of
patients at the early stage of AD may still stand as a primary challenge
even when new methods are developed. Despite this limitation, the
findings in the present study suggest that the proposed hybrid EEG-
fNIRS model holds great promise to provide physicians with a more
definitive and preemptive diagnosis of AD. We also believe that the
improved confidence in the diagnosis would thus permit physicians to
treat AD more effectively, therefore improving patient outcomes and
reducing the cost associated with AD management.

Apart from the evaluation of the performance of the hybrid EEG-
fNIRS model, we attempted to expand our investigation with physio-
logically meaningful information based on the top performing hybrid
features. Interestingly, several activated cortical regions, mainly in-
cluding the right prefrontal area and left parietal area, were identified
to be associated with AD-linked cognitive decline (Fig. 5) (Fernández
et al., 2006; Machulda et al., 2003; McNab and Klingberg, 2008; Salat
et al., 2001; Staff et al., 2010; Yap et al., 2017; Zanto et al., 2011).
Specifically, as evidenced in previous studies, it is well-accepted that
working memory task could induce active neuronal activity in several
cortical regions including the frontal, parietal, and temporal lobe (Palva
et al., 2010; Prabhakaran et al., 2000). Structural imaging technique
also showed that reduced grey matter in the left and right parietal re-
gions of the brain is associated with the progression of AD (Staff et al.,
2010). These existing evidences are in line with the cortical regions we
identified based on the optimal EEG features (Fig. 5). On the other
hand, it is important to note that oxygenation abnormalities in the
prefrontal cortex have been reported in MCI patients, while volumetric
changes in the prefrontal cortex are linked to the progression of AD
(Salat et al., 2001; Yap et al., 2017). In addition, the hyper-activation in
the frontal gyrus is found in patients with memory deficit during an
encoding-retrieval task (Heun et al., 2007), demonstrating the im-
portant role of prefrontal cortex in the cognitive processing. These
findings, again, are consistent with the identified right prefrontal region
that was primarily derived from the optimal fNIRS features in our study
(Fig. 5). These findings presented here, therefore, provide evidence that
the hybrid EEG-fNIRS model could serve as a potential tool to effec-
tively identify brain regions affected by AD-linked cognitive impair-
ment, advancing our understanding of AD progression and treatment.

Although this research has adequately evaluated the feasibility of
utilizing the hybrid EEG-fNIRS model to classify patients at various
stages of AD, several limitations should be acknowledged. The most
apparent limitation of this study lies in the relatively small sample size
that we used to evaluate the performance of hybrid feature set, which
can result in falsely elevated classifier performance and prevent us from
drawing a definitive conclusion with our current findings (Combrisson
and Jerbi, 2015). Future work on a larger cohort should be carried out
to validate and extend the present findings. Additionally, the fNIRS
setup for this study was not able to provide full coverage due to a

Fig. 4. Performance evaluation of EEG features (A), fNIRS features (B) and
hybrid features (C) using PCCFS. In each sub-figure, the black solid line denotes
average accuracy while shaded area denotes the standard error.

Table 2
the confusion matrix and classification performance obtained by the optimal eeg features.

True Class Predicted Class Model Performance

HC MCI MAD MSAD Precision Sensitivity Specificity F-Score Accuracy

HC 100 % 0 % 0 % 0 % 73 % 100 % 50 % 84 % 65.52 %
MCI 25 % 37.5 % 25 % 12.5 % 50 % 38 % 73 % 43 %
MAD 16.7 % 50 % 33.3 % 0 % 40 % 33 % 77 % 36 %
MSAD 0 % 0 % 14.3 % 85.7 % 86 % 86 % 65 % 86 %
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limited number of optodes, making it impossible to capture the he-
modynamic response signals from uncovered areas. It is therefore
suggested that future research utilize an improved setup with full
coverage when possible.

5. Conclusions

In this study, we presented a hybrid EEG-fNIRS model to effectively
classify four subjects’ groups including healthy controls and patients at
different stages of AD. We show that the memorization task ML model
could be used to inexpensively and rapidly supplement the diagnosis
(and assess the degree of) dementia in AD patients. To select the most
representative features in the challenging multi-class classification
problem, we evaluated and optimized the features derived from EEG
and fNIRS signals using a Pearson correlation coefficient-based feature
selection (PCCFS) strategy. The superior performance achieved by the
hybrid features suggests that hybrid EEG-fNIRS models such as the one
proposed in this study may be used in a clinical setting to accurately
diagnose and assess the severity of AD.
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