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Abstract 

We present FaceTrack, an efficient convolutional neural network (CNN) model developed for real-time detection of 

facial emotions, specifically geared toward monitoring stress in athletes during both training and rehabilitation 

phases. Trained on the FER‑2013 dataset, which includes 35,887 grayscale images of size 48×48 pixels representing 

seven emotional categories, the model attained an impressive test accuracy of 92.39%. It outperformed several 

existing approaches in terms of both accuracy and computational efficiency. The model demonstrated particularly 

high accuracy in recognizing "happy" and "neutral" emotions, while slightly lower results were noted for "fear" and 

"surprise." Thanks to its lightweight architecture, FaceTrack is well-suited for deployment on edge devices such as 

smartphones and wearables, offering a practical solution for use in fields like sports psychology and physiotherapy. 

The complete implementation is available for public access at: 

● GitHub: https://github.com/SaravagiDeepika/Stress-Recognition 

● Kaggle: https://www.kaggle.com/code/drdeepikasaravagi/stress-recognition 
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1. Introduction 

Facial expressions, particularly those linked to stress, often reflect an individual’s emotional state during physical 

exertion and recovery. Traditional evaluation methods—such as subjective athlete feedback or observational 

assessments—tend to lack consistency and are often delayed in response. In this context, we introduce FaceTrack, 

an intelligent facial emotion recognition tool designed to provide real-time, objective insights into stress levels 

through integration with mobile and wearable platforms. As affective computing continues to play an expanding role 

in health and performance analytics, FaceTrack emerges as a relevant and practical solution. 

Research Objectives: 

● To design a compact and efficient CNN architecture capable of detecting facial emotions in real time, 

optimized for use on mobile and edge devices. 

 

● To evaluate the model’s practical utility in tracking emotional stress during sports training and rehabilitation. 

 

● To examine and mitigate the effects of imbalanced emotion categories within the training data. 

 

● To compare the proposed system’s accuracy and performance with current facial emotion recognition 

techniques. 

 

https://github.com/SaravagiDeepika/Stress-Recognition
https://github.com/SaravagiDeepika/Stress-Recognition
https://www.kaggle.com/code/drdeepikasaravagi/stress-recognition
https://www.kaggle.com/code/drdeepikasaravagi/stress-recognition
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● To validate the model’s suitability for domain-specific applications through experimental testing and 

analysis. 

2. Literature Review: Facial Emotion Recognition 

Facial Emotion Recognition (FER) has undergone notable progress with the integration of deep learning technologies. 

Mollahosseini et al. (2017) leveraged deep convolutional neural networks (CNNs) with datasets such as FER-2013 

and AffectNet, achieving around 58% accuracy on FER-2013. While their approach benefited from diverse data and 

strong feature extraction, it demanded significant computational power and extensive labeled datasets. Conversely, 

Arriaga et al. (2017) introduced the Mini-Xception model—a lightweight architecture intended for real-time tasks. 

Though it achieved approximately 66% accuracy on FER-2013, its simplified design traded off robustness and 

performance in noisy or occluded conditions. 

To mitigate dataset imbalance, Zhang et al. (2018) applied GAN-based data augmentation to FER-2013, improving 

model generalization and achieving roughly 71% accuracy. However, GANs occasionally introduced artifacts and 

posed stability challenges during training. In a different line of research, Goodfellow et al. (2013) proposed Maxout 

networks, which enhanced feature learning and reached about 85% accuracy on the MultiPie dataset—though this 

method wasn't evaluated on FER-2013 and had a more complex training procedure. 

Temporal aspects of emotions were explored by Dey et al. (2021), who combined CNNs with LSTM units to capture 

time-varying facial expressions from video sequences. They attained around 73.5% accuracy on the AFEW dataset, 

but the approach proved too resource-intensive for real-time deployment. For more efficient deployment, Li et al. 

(2020) adopted MobileNetV2 on FER-2013, reporting a 67.8% accuracy. Their model was highly compatible with 

mobile and edge hardware, albeit at a slight cost to accuracy compared to deeper networks. 

Multimodal systems have also been investigated. Tzirakis et al. (2017) used a hybrid CNN-RNN model combining 

visual and auditory signals on the RECOLA dataset, achieving a correlation coefficient of ~0.75 for emotional 

dimensions. While this setup improved robustness, it required well-aligned multi-stream inputs, making it less ideal 

for real-time single-modality tasks. 

FER techniques have been tested in specialized fields such as physiotherapy and athletic monitoring. Kumar et al. 

(2022) utilized CNN-GRU architectures for emotion classification in therapeutic settings, achieving 85% accuracy on 

FER-2013 and slightly less on a private rehabilitation dataset. However, generalization was limited due to the use of 

domain-specific and non-standardized data. Zhang et al. (2021) applied FER to monitor stress in athletes using a 

hybrid CNN trained on datasets like CK+, FER+, and sports-specific images, achieving about 82% accuracy. Despite 

promising results, the system showed vulnerability to motion blur and inconsistent lighting. Similarly, Feng et al. 

(2017) used a combination of geometric features and CNNs in rehab scenarios, reporting ~78.5% accuracy. Their 

system supported real-time feedback but underperformed in ethnically diverse samples and poorly lit environments. 

These diverse studies underscore the balancing act between accuracy, computational demand, and real-time 

readiness. Deep and complex models often yield higher precision but lack feasibility for embedded applications, 

while compact architectures suit edge computing yet may compromise on accuracy. Notably, there remains limited 

exploration of FER in domains like sports and physiotherapy, where dynamic settings introduce challenges such as 

motion artifacts, varying illumination, and the necessity for contextual emotion understanding.
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Author & 

Year 

Dataset 

Used 

Method / 

Model 

Accuracy 

(%) 

Strengths Limitations 

Mollahosse

ini et al. 

(2017) 

AffectN

et, FER-

2013 

Deep CNN ~58.0 

(FER-

2013) 

High-capacity CNN; 

diverse training data 

High computational cost; needs 

large labeled datasets 

Arriaga et 

al. (2017) 

FER-

2013 

Mini-

Xception 

(light CNN) 

~66.0 Real-time capable; fewer 

parameters 

Lower accuracy; less robust to 

noise/occlusion 

Zhang et al. 

(2018) 

FER-

2013 

CNN + 

GAN 

augmentat

ion 

~71.0 Improves generalization; 

handles class imbalance 

GAN artifacts; training 

instability 

Goodfello

w et al. 

(2013) 

MultiPie Maxout 

Networks 

~85.0 

(MultiPie

) 

Better feature 

representation; robust 

activation 

Not trained on FER-2013; 

complex to train 

Dey et al. 

(2021) 

AFEW, 

CK+ 

CNN + 

LSTM 

~73.5 

(AFEW) 

Captures temporal 

dynamics in videos 

High memory and compute 

cost; latency 

Li et al. 

(2020) 

FER-

2013 

MobileNet

V2 

(lightweigh

t) 

~67.8 Edge-device compatible; 

fast inference 

Lower accuracy than large 

models 

Tzirakis et 

al. (2017) 

RECOLA CNN + 

RNN 

(multimod

al) 

~75 (corr. 

coeff.) 

Uses audio + video 

inputs; multimodal 

learning 

Needs synchronized data; 

limited deployment feasibility 
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Kumar et 

al. (2022) 

FER-

2013, 

custom 

physio 

CNN + 

GRU 

~85.0 

(FER-

2013) 

Applicable to therapy 

contexts 

Dataset not publicly available; 

domain-specific bias 

Zhang et al. 

(2021) 

CK+, 

FER+, 

custom 

sports 

Hybrid 

CNN 

~82.0 Sports performance 

monitoring 

Sensitive to motion blur; varied 

lighting in field scenarios 

Feng et al. 

(2017) 

CK+, 

rehab 

dataset 

Geometric 

features + 

CNN 

~78.5 Real-time rehab 

feedback 

Ethnic bias; poor lighting 

generalization 

3. Methodology 

3.1 Dataset and Preprocessing 

This study utilized the publicly available FER-2013 dataset, which consists of 35,887 grayscale facial images, each 

with a resolution of 48×48 pixels. These images are labeled across seven emotional categories: Angry, Disgust, Fear, 

Happy, Sad, Surprise, and Neutral. Each image is encoded as a string of space-separated pixel values. 

The preprocessing pipeline included the following steps: 

● Images were converted into Numpy arrays and reshaped to a format of 48×48×1 to match the input 

requirement of the CNN. 

 

● Pixel values were scaled to a [0, 1] range to enhance training speed and stability. 

 

● Class labels were transformed using label encoding followed by one-hot encoding to support multi-class 

classification. 

 

● The dataset was split into 80% training and 20% testing, with stratified sampling to maintain class balance. 

Additionally, 10% of the training set was reserved for validation purposes. 

3.2 Model Architecture 

The designed CNN model is tailored to process 48×48 grayscale images and is composed of the following layers: 
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● First Convolutional Block: 32 filters with a 3×3 kernel, followed by 2×2 max pooling and 25% dropout for 

regularization. 

 

● Second Convolutional Block: 64 filters of size 3×3, again followed by max pooling and dropout. 

 

● The output from the convolutional blocks is flattened and passed into a dense (fully connected) layer with 

128 ReLU units and a 50% dropout rate. 

 

● A softmax layer is used for final classification across the seven emotion categories. 

The model was compiled using the Adam optimizer with categorical cross-entropy as the loss function and was 

trained over 500 epochs with a batch size of 64. 

The architecture (in fig. 1) is deliberately lightweight and generalizable, making it appropriate for real-time 

deployment on mobile and embedded systems. 

 

Figure 1: Model Architecture 

This architecture prioritizes computational efficiency and generalization, making it deployable on mobile and edge 

devices. 

3.3 Training Protocol 
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Training was conducted using the Adam optimizer in conjunction with categorical cross-entropy loss. The training 

process spanned 1,120 epochs, using a batch size of 64. To avoid overfitting, early stopping and model checkpoints 

were employed. Model accuracy was monitored as the primary metric to evaluate learning progression. 

4.1 Performance Metrics 

The trained model reached a test accuracy of 92.39% (fig. 2), outperforming several well-established models trained 

on the same dataset. 

Notable observations include: 

● High recognition rates were observed for visually distinct emotions like Happy, Angry, and Neutral. 

● Emotions such as Fear and Surprise were more challenging to differentiate, likely due to overlapping facial 

features in grayscale images. 

 

Figure 2: Classification Report 

4.2 Confusion Matrix Analysis 

The confusion matrix (in fig. 3) analysis highlighted the following: 
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Figure 3: Confusion Matrix 

● Happy and Neutral emotions were recognized with high precision, reflecting strong classification ability for 

these categories. 

● There was some degree of misclassification between Fear and Surprise, which is consistent with 

observations in related studies, likely due to their overlapping facial features in grayscale imagery. 

● The model maintained low false positive rates across most emotion classes, indicating a high level of 

discrimination and overall reliability. 

5. Discussion 

A comparative evaluation between FaceTrack and prominent models from previous literature underscores its 

effectiveness: 

Author Dataset Model Accuracy (%) Remarks 

Mollahosseini et al. FER-2013 Deep CNN ~58.0 High accuracy potential but 

resource-heavy 
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Arriaga et al. FER-2013 Mini-Xception ~66.0 Efficient, though less accurate 

Zhang et al. FER-2013 CNN + GAN 

Augmentation 

~71.0 Better generalization, but adds 

complexity 

Li et al. FER-2013 MobileNetV2 ~67.8 Suitable for edge devices, moderate 

result 

Proposed 

(FaceTrack) 

FER-2013 Lightweight CNN 92.39 High accuracy, low complexity 

FaceTrack stands out by offering a high-accuracy solution while avoiding the complexity of hybrid, GAN-augmented, 

or multimodal architectures. Its balance of performance and simplicity makes it highly viable for deployment on 

portable devices in real-world scenarios. 

6. Conclusion 

This research presents FaceTrack, a convolutional neural network designed specifically for recognizing facial 

emotions related to stress in athletic and therapeutic contexts. Achieving 92.39% test accuracy on the FER-2013 

dataset, the model performs competitively with significantly reduced computational overhead—making it practical 

for real-time use on mobile and edge devices. 

The utility of FaceTrack spans a wide range of domains including sports training, psychological stress assessment, 

and physiotherapy. By offering fast, objective feedback, it paves the way for emotionally responsive health and 

performance monitoring systems. 

Looking forward, enhancements will aim to: 

● Improve resilience against occlusions and lighting inconsistencies 

● Enhance the detection of subtle or compound emotions 

● Extend the model to temporal sequences, enabling video-based analysis of emotional dynamics 

By making the source code and model freely available on GitHub and Kaggle, this work also encourages collaboration 

and further innovation in the field of emotion-aware computing. 
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