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Abstract 

This research paper explores recent advancements in numerical techniques for solving differential and integral 

equations. The paper provides an overview of the importance of these equations in various scientific and 

engineering disciplines and highlights the challenges associated with their analytical solutions. We delve into 

the evolution of numerical methods, discussing traditional approaches and their limitations. The main focus is 

on cutting-edge techniques that have emerged in recent years, showcasing their applicability, efficiency, and 

potential impact on solving complex problems. Through a comprehensive review of the literature, we present 

a comparative analysis of these numerical techniques, discussing their strengths and weaknesses. The paper 

concludes by outlining potential future directions and areas for further research in the field of numerical 

analysis. 
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INTRODUCTION  

Numerical techniques play a crucial role in solving a wide range of mathematical problems, particularly in the 

field of engineering, physics, economics, and various other scientific disciplines. Among these problems, the 

solution of differential and integral equations holds special significance, as these equations describe the 

behavior of dynamic systems and the accumulation of quantities over time or space. In recent years, there have 

been significant advancements in numerical techniques for solving these equations, driven by the increasing 

complexity of problems and the need for more accurate and efficient solutions. 

Differential equations govern the rates of change of variables and are fundamental in modeling real-world 

phenomena such as fluid flow, heat transfer, population dynamics, and electrical circuits. Integral equations, 

on the other hand, arise in problems involving quantities that accumulate over a given domain and are prevalent 

in fields like electromagnetic theory, fluid dynamics, and signal processing. 

Traditional analytical methods for solving these equations often face limitations when dealing with complex 

geometries, nonlinearity, or when closed-form solutions are difficult to obtain. Numerical techniques provide 

an alternative approach, allowing researchers and engineers to approximate solutions through discretization 
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and iterative methods. Over the years, the field has witnessed remarkable progress, driven by advancements in 

computational power, algorithm development, and interdisciplinary collaboration. 

Solving differential and integral equations 

The Ordinary differential equations, the partial differential equations, and the integral equations provide the 

foundation for the vast majority of mathematical models used in the natural sciences and in the engineering. 

There are essentially two categories of numerical approaches that arel used in these problems. The first kind 

replaces the unknown function in the equation with a simpler function, often a polynomial or piecewise 

polynomial function, and chooses it such that it could nearly fulfil the original equation. The finite element 

technique is one of the most well-known approaches to this kind of problem, and it is used to solve partial 

differential equations. In the second kind of numerical approach, an approximation is made of the integrals or 

derivatives in the equation of interest, and an approximation is also made of the solution function at a discrete 

collection of locations.  

An approach is used to solve the vast majority of initial value problems posed by the ordinary differential 

equations and the partial differential equations. The numerical operations involved are sometimes referred to 

as finite difference methods, mostly due the are historical considerations. The majority of numerical 

approaches for solving differential and integral equations include both approximation theory and the solution 

for the fairly large linear and nonlinear systems. These two aspects of the problem must be thought over 

simultaneously. 

DIFFERENTIAL EQUATION 

Whether or not differential equations have partial derivatives determines whether or not they are referred to be 

partial differential equations (abbreviated as PDE) or ordinary differential equations (abbreviated as ODE). 

The greatest order derivative that arises determines the order a differential equation is given. A solution (or 

particular solution) to a differential equation of order n has of a function that is defined and n times 

differentiable on a domain D. This function must also possess the property that the functional equation obtained 

by substituting the function and its n derivatives into the differential equation holds true for every point in the 

domain D. 

Example 1.1.The following is an illustration of a differential equation of orders 4, 2, and 1, respectively: 
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yy’ = 1. 

Example 1.2. The function y = sin(x) is a solution of 
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On domain R; the function z = ex cos(y) is a solution of 
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On domain R2; the function y = 2√ x is a solution of 

Yy’ = 2 

On domain (0, ∞). 

Although it is possible for a de to have a unique solution, e.g., y = 0 is the solution to (y’) 2 + y2 = 0, or no 

solution at all, e.g., (y’) 2 + y2 = −1 has no solution, must’s have infinitely many solutions. 

Example 1.3. The function Cxy += 4 on domain (−C/4, ∞) is a solution of yy’ = 2 for any constant C. 

The different solutions can be no led to have different domains. The set of all solutions to a de is its general 

solution. 

SAMPLE APPLICATION OF DIFFERENTIAL EQUATIONS 

When one this to solve a dilemma, there are instances while one has to take an action that cannot be undone. 

This may result in the introduction of further solutions. If one is able to compile a short list that includes all 

potential solutions, one will be able to test each one and eliminate the options that do not work. The final test 

is to determine whether or not it solves the problem. The following is an example of the use of differential 

equations: 

Example 1.4. The Radium has a half-life of 1600 years, which means that it takes that long for any amount to 

degrade to half its original size. It will take until a sample originally comprised of 50 grammes falls below the 

threshold of 45 grammes 

Solution. It the quantity of radium that was presenting at time t it is denoted by the variable x (t) in years. The 

size of the sample at any given point in time has a direct bearing on the pace at which the sample would 

eventually disappear. As the result, one is aware of the expression dx/dt = kx. Our mathematical model is 

represented by this differential equation. One migh find, through the application of several strategies that one 

would learn in this class, that the equation itself provides a general solution to this problem x = Aekt, for some 

constant A. one has told that x = 50 when t = 0 and so substituting gives A = 50. Thus x = 50ekt. Solving for t 

gives t = ln(x/50) /k. With x(1600) = 25, one has 25 = 50e1600k . Therefore, 
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For, it will be roughly 243.2 years until the sample has 45 g of radium in it. 

 In Additional the criteria that must be satisfied by the solution are referred to as boundary conditions (x(0) = 

50 in the earlier example), and a differential equation that has both boundary conditions and boundary values 

is known as a boundary-value problem (BVP). There are many different kinds of boundary conditions. The 

expressions y(6) = y(22), y'(7) = 3y(0), and y(9) = 5 are all instances of boundary conditions. Other examples 

of boundary conditions include. The Issues with boundary values, like the one shown in the example, cam be 

referred to as initial-value problems since the boundary condition consists of stating the value of the answer is 

at some point in the equation (IVP). 

Example 1.5. An analogy from algebra is the equation 

2+= yy  

To solve for y, one proceeds as 
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Thus, the set y ∈ {1, 4} contains all the solutions one quickly sees that y = 4 satisfies Equation (1.1) because 
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While y = 1 does not because 
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So we accept y = 4 and reject y = 1. 

Applications of Laplace transform in Differential and Integral equations  

Iterative method is a mathematical method can solve any linear or non-linear ordinary differential equation 

of fractional order. It would also be used to solve equations of higher orders. In 2006, Gejji and Jafari presented 

their iterative approach to the scientific community. They by applied their strategy to the problem of solving 

non-linear functional equations. After that, Jafari and colleagues developed a new approach that they dubbed 

the iterative Laplace transform method (ILTM). This method is a hybrid form combine the iterative method 

with the Laplace transform. For the purpose of finding a numerical solution to a system of fractional partial 

differential equations, ILTM is used. In recent years, ILTM has also been used for the solution of equations 

involving the fractional telegraphs, the fractional heat, and the-like phenomena. 

One of the most well-known equations in the field of partial differential equation is known as the Fisher 

equation. The solution to Fisher's equation for the time fractional is as follows: 
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Assuming that u (x, 0) = f is the starting condition (x). Where u represents the population density and u (1-u) 

is used to signify the logistic form. If one set equal to 1, the equation would transform into a standard Fisher 

equation. This equation is useful in a wide variety of contexts, including the chemical kinematics and the 

population dynamics. There are further applications of Fisher equations in neurophysiology, flame 

propagation, the autocatalytic chemical processes, and in the logistic models for population development. 

Bairwa got the accurate solution to the time fractional Fisher equation by utilising the iterative Laplace 

transform approach. They discovered the precise answer in the form of a series by using the time fractional 

Fisher equation written in the form of the Caputo derivative sense. 

A partial integral differential equation, often known as a PIDE, is an equation that incorporates both integrals 

and partial derivatives of the function. An example of a PIDE is provided below: 
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With initial condition u(x, 0) = 0, 𝑢𝑡 (𝑥, 0) = 𝑥 

and boundary condition u (1, t) = t 

The Equations using partial integrals and differentials are used in a variety of scientific and technical domains. 

PIDEs have a wide variety of applications, including those in the mathematical finance, in the chemical 

kinetics, in the aerospace systems, in the industrial mathematics, PIDEs would also be used to represent a 
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variety of physical phenomena, including the heat conduction, the viscoelastic mechanics, the fluid dynamics, 

the  thermoplastic contact, more. The precise solution to the Partial Integra Differential equations was achieved 

by Thrower et al. by the use of the Laplace transform. 

The Diffusion equation is a parabolic partial differential equation. It finds use in a wide variety of fields, 

including the mathematical physics, the medical research, the processes involving the heat conduction, the 

chemical diffusion, the biochemical dynamics,. The equation for time fractional diffusion is written as follows: 
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Where D is a positive constant, u (x, t) is the probability density function, and F(x) is the external force, Where 

D is a positive constant. 

 The Homotopy perturbation method (HPM): if is a kind of analytic procedure that is used in the process 

of solving the partial differential equations, both the linear and the non-linear. Ji-Huan, a Chinese 

mathematician first proposed the HPM. 

 The Homotopy perturbation transforms method (HPTM): if is a technique that takes elements from both 

the Laplace transform and the homotropy perturbation approach. Kumar et al. have found an analytical solution 

to the diffusion equations by using a technique known as the Homotopy Perturbation Transform Method 

(HPTM). After using HPTM, the authors derived the precise solution in the form of readily computable series 

by taking the diffusion equation and it’s interpreting in terms of the Caputo derivative. 

The solution to non-homogeneous partial differential equations with variable coefficients was obtained by 

Madani etc. al. through the use of the HPTM method. And then the compared this solution to the ones that 

HPM and ADM came up with, as well as the actual solution. They discovered that the HPTM is not only more 

effective but also agrees with the precise answers. 

The equations used to describe gas dynamics are derived from the fundamental physical principles, such as the 

rules of the conservation of momentum, the laws of conservation of mass, the laws of conservation of energy, 

and so on. The equation for the time fractional gas dynamic may be written as: 
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With initial condition (𝑥, 0) = 𝑒−x 

Kumar et al. succeeded in deriving an analytical solution to a fractional gas dynamics problem by making use 

of the Laplace transform. They started with the Gas dynamics problem expressed in the Caputo derivative 

sense, then uses HPTM, and finally achieve the precise solution expressed as an easily computable series. 
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The Padé approximation is a rational fraction approximation used to expand a function as a ratio of power 

series, and the numerator and denominator coefficients of series were calculated by using the Taylor series. 

This approximation was used to find the expansion of a function. In the vicinity of the year 1890, Henri Padé 

produced this estimate. It finds use in a variety of fields, including the engineering, the physical sciences, and 

the computer computations. 

The differential transformation technique, often known as the DTM, is a kind of transformed method that 

would be used to solve the linear as well as the nonlinear differential equations. The DTM can solve a wide 

variety of equations, including the fractional differential equations, the integral equations of Volterra, the 

fractional-order equations with the non-local boundary conditions, the Burgers equations, and the Schrodinger 

equations. 

The Padé-Laplace differential transform method, often known as the LPDTM, was a hybrid technique that 

combined the differential transform method, the Laplace transform, and the Padé approximation. Gupta et al. 

haves shown that employing LPDTM provided an accurate solution to the diffusion equation when it was 

coupled with boundary conditions. They also offered a comparison between the difference transform approach 

and the Padé-Laplace differential transform method, both of which were used to find an exact solution to the 

diffusion equation (DTM). They concluded that the answer provided by LPDTM was an accurate approach 

than by DTM. 

Integral equations would be broken down into a few categories, one of which was the Volterra integral 

equations. Vito Volterr was credited with being the creator of the integral equations of Volterra. There werw 

two distinct varieties of integral equations based on the Volterra method. The first category of linear Volterra 

integral equations would be represented as follows: 

=
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Where u (t) represents an unknown function whose value must be found, k(x,t) represents the kernel of the 

first kind of Volterra integral equations, and f(x) represents the real-valued functions. 

The following is an example of a linear Volterra equation of the second type: 
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Where a non-zero parameter was denoted by, the kernel of the second type of Volterra integral equation was 

denoted by k(x t), and real-valued functions were denoted by f(x). This equation would be used to solve a 
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variety of problems in the fields of science and engineering, the including neutron diffusion problem, the heat 

transfer problem, the radiation transfer problem, the electric circuit problem etc. Aggarwal et al. have found a 

solution to the precise problem of solving the first kind of linear Volterra integral equation by making use of 

the Laplace transform. The exact solution to the second type of Linear Volterra Integral Equations was 

discovered by Chauhan and colleagues. 

The Abel Integral Equation is an example of an integral equation that must be solved by determining the 

integral of a function with along an unknown function. This equation is of the first sort of Volterra integral 

equation, which is the class that it belongs to. The Abel integral equation may be written down in its generic 

form as 
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Where ϕ(s) is the unknown function and (𝑥 − 𝑠)−𝛼is the fundamental concept behind Abel's integral equation. 

Through the use of the Laplace transform, Aggarwal et al. were able to get the precise solution to Abel's 

Integral Equation. 

The Malthusian law of population increase, which may be applied to the expansion of a species, a plant, a cell, 

or an organ. And the mathematical definition of it is as follows: 

KN
dt

dN
=  

With initial condition as (𝑡0) = 𝑁0 

Where K is a positive real integer, N is the number of people living at time t, and N0 is the number of people 

living at time t0 when the population was first counted. Another was is brought up by the same model was the 

well-known degradation problem of the material, which may be stated as follows: 

KN
dt

dN
−=  

With initial condition as (𝑡0) = 𝑁0 

Where N represents the quantity of the substance at time t and N0 represents the quantity of the substance 

when it first appeared at time t0. In the fields of chemistry, physics, biology, there are a lot of issues regarding 

population growth and decay problems of substances. The authors Aggarwal et al. demonstrated that the 

Laplace transform was an effective tool to address the issue of the population growth decline. 

The Adomian Decomposition Method (ADM): If is one of the most effective methods for locating the answer 

to ordinary differential equations. George Adomian, a mathematician from the United States, was credited with 
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inventing ADM. The answer to an ordinary differential equation is represented as a series by ADM after it has 

been decomposed. 

The Laplace Adomian Decomposition Method (LADM): If is a type of Laplace transforms and ADM 

described by Kiymaz as a numerical method. This numerical algorithm was used to solve nonlinear ordinary 

and partial differential equations. A. Khuri's initial attempt at solving differential equations was accomplished 

with the use of this strategy. By using the Laplace adomian decomposition approach, Chang et al. were able 

to derive an approximation of the solution to a system of non-linear fractional differential equations. When it 

obtained the numerical solutions of the linear and the nonlinear fractional differential equations, the LADM 

was a technique that was both highly powerful and very efficient. 

Conclusion 

The continuous evolution of numerical techniques for solving differential and integral equations has 

empowered scientists and engineers to tackle increasingly intricate problems. As computational capabilities 

grow and interdisciplinary collaborations flourish, the synergy between theoretical insights, algorithmic 

innovations, and computational power is driving the field forward. These advancements not only contribute to 

the theoretical understanding of dynamic systems but also have practical implications for the design and 

optimization of complex engineering systems across various domains. This article will delve deeper into 

specific numerical methods and their applications, providing a comprehensive overview of the state-of-the-art 

in solving differential and integral equations. 
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