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Abstract 

Amputations and neurologic disorders considerably restrict individuals' interaction with the environment. As per 

the WHO (2021), more than 30 million individuals are living with limb loss, and arm amputations account for the 

most prevalent. Existing BCI humanoid arms are still mostly restricted to the lab; invasive BCIs need brain 

surgery, whereas non-invasive EEG methods typically require multiple electrodes because of signal attenuation. 

This work suggests an effective EEG-controlled humanoid arm system by employing six specific electrodes from 

a 32-channel data set (10–20 standard). It consists of three phases: signal preprocessing (band-pass filtering, CSP, 

and CWT), feature extraction by a pretrained VGG1c network, and classification to control the robotic arm. A 

LabVIEW GUI is used to control the arm's kinematics and dynamics. 

Experimental testing scored S0.2% accuracy in classification, allowing for consistent and naturalistic arm 

control. These outcomes demonstrate the promise of non-invasive BCIs to improve independence and quality 

of life in amputees 
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Introduction 

Brain–Computer Interface (BCI) technology was long thought to be purely speculative, but it has developed into a 

field of research and development with far- reaching applications in assistive technology. BCIs operate by taking 

neural signals from the human brain to perform beyond electronic devices, offering potential treatments for the 

physically disabled. The human brain has nearly 100 billion neurons and can be explained as an extremely advanced 

computational system. Of particular interest to BCI research is the cerebral cortex, which controls planning, 
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“Pattern recognition and control of movement in the human brain are primarily governed by its four lobes: frontal, 

parietal, temporal, and occipital [1]. Among the various Brain–Computer Interface (BCI) modalities, 

electroencephalography (EEG) is the most widely adopted due to its non-invasiveness, high temporal resolution, 

and ability to capture real-time neural activity (EEG) has been used most extensively since it is non- invasive, has 

good temporal resolution, is portable, and costs moderately. 

EEG-based BCIs categorize user intention from electrical brain activities and map them into control commands 

for other devices such as prosthetic limbs. However, EEG signals are highly non-stationary and prone to inter-

session variability, making accurate classification and control difficult. Also, EEG signals normally consist of 

artefacts caused by external (e.g., power line interference) and internal (e.g., blinks, heartbeat, and muscle activity) 

motivations, which also complicate signal analysis [2]. Preprocessing and feature extraction techniques such as 

band-pass filtering, Common Spatial Pattern (CSP), and wavelet transformations are used to overcome these 

issues. Noise-resistant feature extraction is achieved through frequency- domain analysis, particularly using the 

Continuous Waveton Transform (CWT), by transforming 1D EEG signals to a 2D frequency–time domain 

(scalograms). By emphasizing EEG activity from motor cortex electrodes (C3, Cz, C4) and parietal electrodes 

(P3, Pz, P4), these techniques enhance the accuracy of motor imagery signal classification. In recent years, 

feasibility has also been demonstrated in combining these feature extraction methods with deep learning models 

towards decoding of motor signals. This has enabled real-time control of prosthetic limbs and, in addition, proved 

the feasibility of BCI systems towards rehabilitation and assistive technology. 

Based on these developments, in this study, a new approach to EEG-based feature extraction and classification with 

a pretrained convolutional neural network (VGG16) is presented to operate a robotic prosthetic arm with greater 

precision and responsiveness. 

Literature Review 

A. Processing EEG Signals 

Grasp-and-Lift EEG Dataset was designed to research the interaction of human and brain-computer interface (BCI) 

devices for welfare, EEG signals and movement. The data was recorded with the AntiCap of patients with neurological 

disability with 32 electrodes arranged according to the 10–20 system, EEG recording system 12 healthy 

participants each performed multiple grasp-and .and sampled at 500 Hz, Contact forces. lift trials with hand and object 

motion monitored by 3D sensors raw,  to  improve accuracy and kinematics were used to get event labels, torques 

signals were filtered using Savitzky-Golay filtering. 

B. Channel Selection 

EEG signals corresponding to motor activity are primarily localized near the C3, C4, and Cz channels (motor 

cortex) and P3, P4, Pz channels (parietal lobe – thinking). 
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These six channels were chosen as they transmit maximum motor-think information for grasp-and-lift tasks. 

 

 
 

Figure 1: Chosen EEG electrodes (C3, C4, Cz, P3, P4, Pz) shown on the 10–20 map. 

C. Filtering and Normalization 

The EEG signals were band-passed between 7–30 Hz to demote μ and β rhythms, removing artefacts caused by 

heartbeat (<1.2 Hz), eye blink (<4 Hz), and muscle noise (>30 Hz). After filtering, Common Spatial Pattern (CSP) 

was used for improving class separability. As a final step, normalization of the data was performed by subtracting 

the mean and dividing by the standard deviation. 
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Figure 2: EEG preprocessing (Filtering → CSP → Normalization). 

 

D. Continuous Wavelet Transformation (CWT) 

The filtered EEG signals were converted to scalograms using Continuous Wavelet Transform (CWT). In contrast to 

Fourier transforms, wavelet transforms offer improved time-frequency resolution. The scalograms (69×400) were 

resized to 224×224 pixels using bicubic interpolation to match the VGG16 CNN model. 

E. Pre-Trained Network (VGG16) 

The VGG16 convolutional neural network was utilized as it has strong feature extraction power. Initially trained on 

ImageNet (14 million images, 1000 classes), it exhibits high accuracy and can transfer learned features (edges, 

patterns, textures) well into EEG-based image inputs. Input scalograms were applied into VGG16 for motor 

intention classification. 

F. Mechatronic System 

The mechatronic implementation combines the neural output with actuation. The prosthetic arm is a 2 DOF planar 

robot arm, constructed with PLA material via 3D printing, of weight 2.25 kg and length of ~80 cm. It has hand, 

forearm, biceps, and shoulder modules, providing natural functions such as reaching, grasping, and handshakes. 
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Figure 3: 3D-printed humanoid arm structure (mechanical components). 

 

 

 

G. Kinematics and Dynamics 

Forward kinematics calculates the orientation and position of the prosthetic arm, while dynamics calculate forces 

and accelerations during motion. Transformation matrices involved the Denavit-Hartenberg (D-H) convention, and 

motion equations used Lagrangian dynamics. 
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Figure 4: Force/dynamic analysis diagram of humanoid arm 

 

 

 

System Design and Methodology 

Hardware Components 

• Neuro-Signal Acquisition: EMG sensors (MyoWare/ADS1299), optional EEG headset (OpenBCI, 

Muse). 

• Control Unit: ESP32 microcontroller for signal processing and Wi-Fi connectivity and eye-

tracking and blink detection. 

• Robotic Arm: 3D-printed humanoid arm with slime servo motors (SG90, MG996R, ES3301) for 

fingers and larger joints. 

• Eye-Tracking Module: IR-based camera with OpenCV for gaze tracking. 

• Power System: 12V LiPo battery and regulated DC supply. 

• IoT Integration: Cloud-based dashboard using Firebase/AWS IoT for remote monitoring. 

Software Components 

• Signal Processing: EMG signals filtered and classified to map muscle activity to arm 

movements. 

• Motor Control: PWM-based control algorithms for servo and stepper motors. 

• Eye Tracking: OpenCV algorithms for gaze estimation and object targeting. 

• Morse Code Translator: Blink detection with timing thresholds mapped to dot/dash patterns and 

converted to text. 

• IoT Dashboard: Real-time monitoring of signals, arm status, and communication outputs. 
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Results and Analysis (Planned) 

The system will be tested in the following areas: 

 

• Accuracy of EMG signal classification: Predicted >85% using training sets. 

• Latency in robotic arm response: Goal <150 ms for real-time. 

• Eye-tracking accuracy: ±1–2° error in estimating gaze. 

• Morse code detection rate: >90% for trained individuals. 

• IoT dashboard performance: Real-time visualization of data with <300 ms delay. 

These performance metrics are based on benchmarks from similar systems and will be validated through 

prototype testing. 

Applications 

• Assistive Technology: Prosthetic control and communication for disabled individuals, especially 

patients with severe neuromuscular impairments 

• Medical Rehabilitation: Neurofeedback and motor rehabilitation for stroke or injury patients 

• Military Defense: Remote-controlled robotic arms for hazardous environments, bomb 

disposal, and surveillance. 

• Industrial Automation: Precision handling of delicate or hazardous materials. 

• Research: Human–machine interaction studies and experimental neuroprosthetic systems. 

 

Conclusion and Future Scope 

This research presents a novel integration of neuro-control, eye-tracking, and Morse code Communication into a 

humanoid robotic arm, making it an advanced assistance and automation system. The proposed design addresses 

the limitations of existing prosthetics by introducing IoT-enabled control, multi-modal interaction, and 

affordable implementation. 

Future work will focus on: 

• Full EEG-based brain–computer interface integration for thought-controlled movements. 

• Haptic feedback systems enable tactile sensing. 

• Advanced AI-driven adaptive grip mechanisms. 

• Cloud-based teleoperation and data-driven learning for medical and industrial applications. 

This research contributes to the growing body of work in neuro-controlled robotics and has significant potential for 

commercialization in healthcare, defense, and industrial automation. 
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