

FRAS

Face Recognition Attendance System

¹Kamal K. Mistry

¹Student

Department of Information Technology
S. D. S. M. College, Palghar, Maharashtra, India

Abstract: The Face Recognition Attendance System Web App was created to make the attendance management procedure more efficient. This system is effective in enrolling attendance since it can recognize faces immediately and automatically so no external assistance is needed. To utilize the online application, no technical knowledge is necessary, which enables self-registration and self-authentication. This feature enhances system functionality where facial recognition technologies, identify specific features of an individual's face and match it with saved data. The system also ensures efficient identification and accurate detection of attendance even in complex lighting or backgrounds. Security measures including encrypted transfer and storage of data are employed to safeguard the confidential data. This proposed technology addresses common issues such as time theft, human error, and time loss caused by legacy systems by digitizing the attendance process. Its advanced and web-oriented nature enables ease of installation and expansion to support institutions and corporations.

Keywords: Face Recognition, Attendance System, Machine Learning, Image Processing, Fast Api, Web Application, Real-time detection.

1. Introduction:

Modern societies, both institutions and organizations are striving towards achieving targets within the shortest time possible and efficiently utilizing resources. In traditional systems, especially with a manual method, the commonplace but sometimes important task of taking attendance can take a lot of resources in terms of period and human effort. Conventional methods such as punching an ID card and signing the book manually can be circumvented by using buddy punching where one person registers attendance for another. There is a tendency to look for more convenient solutions that will aid in reaching effectiveness, efficacy, and safety because of advancements in deep learning techniques like facial recognition. To this end, this document presents the improvement of a web app known as FRAS to help speed up and computerize the process of taking attendance. The purpose of this deployment is to eliminate the contact-based method of attendance marking from the system and incorporate the real-time FRAS enabling the face of the user to be the unique identifying factor of the user. This system integrates deep learning algorithms that enable the recognition and confirmation of faces from live videos and uploaded photos irrespective of ambient lighting, camera angles, movements, and facial covering. The application is based on the client-server model and thus has good dynamics and can be easily installed on different operating systems. The web interface is easy to

use and manages attendance records for administrators and attendance status for users. In addition, the safety of the user is also assured as their data is adequately protected and is not easily accessible through incorporation such as data encryption. The system has a lot of applications from learning institutions to offices and industries that require effective management of attendance in a hassle-free way. It saves time among the staff as some processes do not need to be completed manually therefore saving paper usage and more importantly stopping the ability to sign oneself in.

2. Literature Review:

[1] **“Deep Face Recognition”** by Parkhi, Vedaldi, and Zisserman, Department of Computer Engineering. British Machine Vision Conference. They presented a deep learning-based approach to Convolutional Neural Networks (CNNs) used for facial recognition. They introduce the VGGFace dataset, comprising millions of images of celebrities, to train their model. The CNN architecture automatically learns face characteristics from unprocessed picture data, significantly improving recognition accuracy over traditional methods. The model is trained using a softmax loss function and achieves high performance in both face verification (matching faces) and identification (recognizing individuals) tasks, setting a new standard for facial recognition systems with real-world applicability.

[2] **“Attendance System Using Face Recognition and Machine Learning”** by Kumar, Gupta, and Rathi. Use face recognition technologies to create an automatic attendance system. Convolutional Neural Networks (CNNs) are machine learning methods used by the system, to detect and recognize faces from live video streams or images. Built using OpenCV, the system automates the attendance process, reducing errors and eliminating proxy attendance. The authors highlight the system’s effectiveness in controlled environments but note challenges in real-world settings, such as varying lighting and occlusion. The study shows how facial recognition can be used practically for attendance in both professional and educational contexts.

[3] **“FaceNet”** Schroff, Kalenichenko, and Philbin introduce FaceNet which directly learns a mapping from face images to a compact Euclidean space. Instead of classifying faces, FaceNet uses a triplet loss function to learn facial features that minimize the distance between images of the same person and maximize the distance between different individuals. This approach enables both face recognition and clustering without requiring a predefined identity set. FaceNet achieved state-of-the-art performance in face verification, recognition, and clustering tasks, significantly advancing face recognition technology.

[4] **“Secure Face Recognition-Based Attendance System Using Cryptography”** by Sharma, P., Singh, K. & Kaur J. With an emphasis on data security, they suggested an improved facial recognition attendance system. The system combines cryptographic methods with the technology of facial recognition to safeguard private biometric information while it is being sent and stored. Applying machine learning techniques to recognize and detect faces, the system ensures efficient attendance tracking while safeguarding user privacy. The authors address common security concerns in biometric systems, such as unauthorized access and data breaches, by applying encryption to the facial data, thus ensuring a secure and reliable solution for attendance management in institutions.

[5] “Challenges in Implementing Face Recognition Systems for Real-Time Attendance,” by Jain, A., Agarwal, P., & Mehta, R., focused on the difficulties of deploying face recognition technology in real-time attendance systems. They highlight key challenges such as varying lighting conditions, facial occlusions, dynamic backgrounds, and the need for fast processing in real-time environments. The paper also discusses accuracy issues related to diverse demographics, such as skin tones and facial features, which can affect recognition rates. To increase performance in real-world applications, the authors also examine scaling issues for large enterprises and suggest hardware and algorithm enhancements.

[6] “Web-based real-time attendance system using face recognition,” by Mohanty, S., Sharma, R., & Das, M. This technology helps with success in attendance tracking. The authors of the paper envision a web-based system in which servers utilize a cloud application that was mostly created in an API format using the Flask web framework and machine learning models for facial recognition and detection. Such imaging systems also allow the presence and identification of users to be carried out at simultaneously by the supply of the images. This system is constructed considering the high demands of both the scalability and the simplicity of use, appropriate to institutions or organizations. The paper also addresses issues like network latency and security with the proposed innovations in cloud computing security and data security.

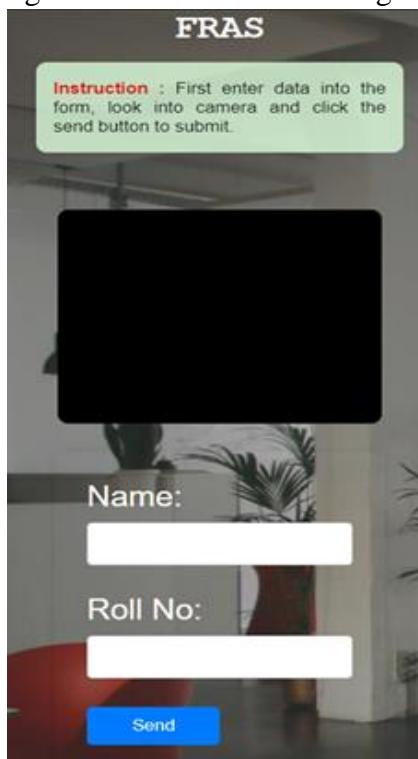
[7] “Real-Time Smart Attendance System Using Face Recognition Techniques” by Sawhney, Kacker, Jain, Singh, and Garg, Amity University Uttar Pradesh, Noida. The goal is to develop a real-time student attendance system that tracks attendance using facial recognition. By collecting live photos of the students and using face recognition technology to identify them, Amity University has created a method that aims to do away with the manual attendance procedure. To improve recognition performance, the authors highlight the use of artificial intelligence-based techniques, particularly deep learning techniques that employ CNNs among other tools. Some of these attendance systems are particularly appropriate for educational institutions because they provide a quick and contact-free method to manage attendance. It tackles problems like changes in light intensity and alterations in head orientation, thus providing an effective system that could substitute the traditional attendance systems.

3. Research Methodology:

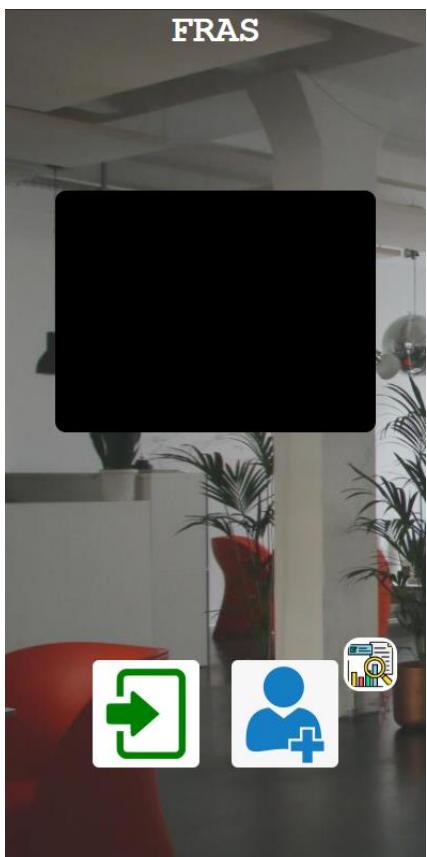
The research methodology for the FRAS project followed a structured approach, emphasizing a seamless blend of innovative technology and user-centred design to create an efficient attendance-tracking web application.

Key stages of development were grounded in agile principles, allowing iterative improvements based on ongoing testing and user feedback. The technical choices reflected a commitment to delivering a robust, scalable, and user-friendly web application. Below is a breakdown of the core technologies used in the project and their roles:

- **Angular (Front-End Development):** Built the front-end using Angular, providing a responsive and user-friendly interface that works seamlessly across devices with a single codebase.


- **Node.js & Express (Back-End Development):** Developed a robust backend using Node.js and Express, handling API requests, authentication, and communication between the frontend, database, and Python-based face recognition service.
- **Python (Face Recognition):** Integrated Python with OpenCV and the face_recognition library to capture and process images, detect faces, and match them against stored records for automated and accurate attendance tracking.
- **MySQL (Database Management):** Implemented MySQL to securely store user details and attendance records, ensuring efficient querying and management of data.
- **REST API Development:** Created RESTful APIs to connect the frontend with the backend services, enabling smooth data exchange and real-time attendance updates.

By leveraging these technologies, the FRAS app delivers a comprehensive solution for real-time attendance tracking, ensuring an engaging, efficient, and secure user experience.


4. **Results:**

The FRAS has successfully fulfilled its aim of completing a real-time Attendance tracking application. The app enables users to easily perform attendance marking and also add new users. Below are the main results accompanied by UI design screenshots.

[1] **User Registration Page:** The User Registration Page has a simple yet effective design where a user only has to fill in the name and roll number before taking their photograph for registration. After it has been submitted successfully, the system responds with the message 'Registered Successfully' and the registration detail of the user goes into the database.

[2] User Login Page: This is the page where the User logs in, the user's picture is taken, and it is compared with the picture of the user available in the database. If the picture of the user is found in the database, the system logs and displays the information about the user.

The results demonstrate the fact that the web app can offer a responsive and data-driven experience to the users. With the help of a simpler interface, people who take attendance using FRAS find it comfortable. The effective implementation of these features shows the extent to which the web application can be regarded not only as a part of an organization.

5. Conclusion:

We are delighted to announce to you that our web-based FRAS has been created and is in full use as per the proposition of the project. Our team diligently adhered to the project's specifications and executed the necessary tests to guarantee a stable and dependable solution for the education and corporate sectors. We believe that this application tool would represent a prolific stride in the improvement of automating the process of recording attendance through the face recognition method. Our system will contribute to the improvement of user experience and administration efficiency by making it possible to recognize a person and attend to them at the same time. In the future, we are deeply committed to further enhancing our system by incorporating additional features and functionalities to improve the convenience and efficacy of attendance systems. This spirit of perfection and desire to improve our solution is caused by the fact that many institutions and organizations are on the lookout for efficient attendance management systems.

6. Reference:

- [1] **Deep Face Recognition** Parkhi, O. M., Vedaldi, A., & Zisserman, A., British Machine Vision Conference.
- [2] **Attendance system using face recognition and machine learning** Kumar, S., Gupta, P., & Rathi, S., India.
- [3] **FaceNet** Schroff, F., Kalenichenko, D., & Philbin, J.
- [4] **Secure Face Recognition-Based Attendance System Using Cryptography** Sharma, P., Singh, K., & Kaur, J.
- [5] **Challenges in implementing face recognition systems for real-time attendance** Jain, A., Agarwal, P., & Mehta, R.
- [6] **Web-based real-time attendance monitoring system using face recognition** Mohanty, S., Sharma, R., & Das, M.
- [7] **Real-Time Smart Attendance System using Face Recognition Techniques** Shreyak Sawhney, Karan Kacker, Samyak Jain, Shailendra Narayan Singh, Rakesh Garg Amity University Uttar Pradesh, Noida.