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Abstract 

In this paper, we investigate the impact of certain integral operators on the geometric properties of univalent 

functions defined in the open unit disk. By applying these operators to standard subclasses of univalent 

functions, we examine the preservation and transformation of geometric characteristics such as starlikeness, 

convexity, and close-to-convexity. Sufficient conditions are established under which the integral operators 

map functions from one geometric class into another. Several inclusion relationships and sharp bounds are 

derived to illustrate the effectiveness of the operators. The results generalize and unify a number of earlier 

works in the theory of geometric function theory and provide new insights into the structural behavior of 

univalent functions under integral transformations. 

Keywords: Univalent functions; integral operators; starlike functions; convex functions; geometric function 

theory; analytic functions 

Introduction 

The theory of univalent functions occupies a central position in geometric function theory due to its deep 

connections with complex analysis, conformal mapping, and various applied fields such as fluid dynamics and 

engineering. A function is said to be univalent in a domain if it is analytic and injective there. The class of 

normalized univalent functions defined on the open unit disk has been extensively studied, revealing rich 

geometric structures and numerous subclasses characterized by properties such as starlikeness, convexity, and 

close-to-convexity. Understanding how these geometric properties are preserved or altered under various 

operators remains an important area of research. 

Integral operators play a significant role in the study of analytic and univalent functions. By transforming a 

given analytic function into another through integration, these operators provide a powerful tool for generating 

new function classes and investigating their geometric behavior. Classical integral operators, such as the 

Alexander operator and the Libera operator, have been shown to preserve or induce specific geometric 
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properties under suitable conditions. This has motivated the introduction of more generalized integral 

operators, often involving parameters, kernels, or combinations of analytic functions, to explore broader 

function families and deeper structural relationships. 

One of the fundamental problems in this area is to determine the conditions under which an integral operator 

maps a given subclass of univalent functions into another subclass with desirable geometric characteristics. 

For instance, researchers have examined whether an operator preserves univalence, starlikeness, or convexity, 

or whether it transforms functions into uniformly convex or spirallike functions. These investigations not only 

extend classical results but also unify various operators under a common framework, allowing for a systematic 

analysis of their effects. 

The study of integral operators is closely linked to differential subordinations and inequalities, which serve as 

essential tools in establishing inclusion relationships among function classes. By employing techniques such 

as the theory of subordination, coefficient estimates, and growth and distortion theorems, one can derive 

sufficient conditions for the preservation of geometric properties. These methods have proven effective in 

handling a wide variety of integral transforms and have led to numerous sharp results. 

Geometrical Properties 

Univalent functions, which are frequently alluded to as injective or balanced functions, are described by a 

bunch of noteworthy geometrical elements that make them huge in various numerical fields, eminently in the 

fields of perplexing examination and geometric function theory. Univalent functions are portrayed by the way 

that they map various focuses in the space to unmistakable places in the reach. This is one of the fundamental 

geometric elements of univalent functions. By guaranteeing that the function doesn't implode or cover many 

focuses into a solitary point, this component ensures that the balanced correspondence between things of the 

space and reach is kept up with. When seen according to a geometric viewpoint, this shows that the chart of a 

univalent function ca excludes any intersections or self-convergences in the perplexing plane, except for 

confined focuses on the diagram. 

▪ Starlikeness - By temperance of its geometric component, starlike functions are described by the way that 

the picture of any line portion that begins from the beginning is a starlike bend as for the beginning. Via 

clarification, these functions are liable for planning the unit circle onto a space in which each line fragment 

that starts from the beginning is planned onto a bend that doesn't cross itself. In various applications, for 

example, liquid mechanics and intensity conduction issues, where it is important to unequivocally recreate 

the way of behaving of functions under specific mappings, this quality is absolutely vital. A function f(z) 

is supposed to be starlike concerning the beginning on the off chance that the picture of each and every 
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line section from the beginning is a starlike bend regarding the beginning. This is the meaning of 

starlikeness. There are critical applications for starlike functions in the fields of liquid mechanics and 

intensity conduction troubles. 

▪ Convexity - Raised functions are described by the peculiarity of planning a space into a curved set, which 

is a geometric quality. Assuming the line portion that associates any two focuses on the diagram of the 

function sits completely over the actual chart, then, at that point, the function is respected to be curved by 

this definition. The limit of curved functions to depict frameworks with optimality characteristics is one 

reason why they are utilized broadly in the fields of material science, designing, and enhancement issues. 

The geometric person of these articles makes it conceivable to grasp and involve them in different areas in 

a simple way. In the event that the picture of a function f(z) is a curved set, the function is supposed to be 

raised in the space in which it is characterized. Taking into account that raised functions frequently emulate 

actual frameworks with specific optimality characteristics, they have many applications in various areas, 

including designing, material science, and others. 

▪ Spiral-likeness - On account of spiral-like functions, the component that is shown is the planning of each 

and every spiral bend onto another spiral bend that has something very similar or bigger plentifulness. With 

regards to the investigation of thick liquid streams and intensity conduction issues, these functions are 

pivotal since they highlight convoluted geometric perspectives. To really reenact confounded actual 

occasions in which spiral-like examples grow suddenly, having a strong comprehension of spiral-like 

mappings is fundamental. At the point when a function f(z) maps each spiral bend onto one more spiral 

bend with something very similar or bigger plentifulness, we say that the function is spiral-like. Spiral-

likeness is a numerical idea. The investigation of thick liquid streams and intensity conduction troubles are 

two subjects that might profit from the utilization of spiral-like functions. 

▪ Close-to-convexity - Close-to-raised functions might be addressed as the consequence of convolving a 

curved function with a starlike function. These functions have a geometric trademark that falls among 

starlike and curved functions, empowering a more significant perception of extremal issues in complex 

examination. Close-to-arched functions are helpful tools in the examination of univalent functions, giving 

imperative data about their geometric attributes and scientific characteristics. It is guaranteed that a 

function f(z) is close-to-curved in the event that it very well may be addressed as the convolution of a 

raised function and a starlike function. This is the meaning of the expression "close-to-curved conduct." 

The connection that close-to-arched functions have with some extremal issues in complex examination is 

one reason why they are of likely significance. 
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Univalent Function 

Univalent functions are essential entities in the field of complex analysis. They are mathematical functions 

that are both single-valued and injective, meaning that each input value corresponds to a unique output value. 

These functions are defined on a particular region in the complex plane, usually the unit disk. The notion of 

univalent functions arises from the need to examine functions that are both basic and well-behaved, exhibiting 

a bijective relationship between their domain and range. Univalent functions essentially encapsulate the 

concept of functions that steer clear of having many values and branch points, making them very suitable for 

analysis and investigation.  

Univalent functions are characterized by their injectivity, meaning that each point in the domain is uniquely 

mapped to a point in the range. This characteristic differentiates univalent functions from multivalent 

functions, since multivalent functions may translate many points in the domain to a single point in the range. 

Univalent functions provide a high level of regularity and predictability, making them very helpful tools in 

several areas of mathematics and its practical applications.  

Univalent functions are not only injective, but they also often exhibit other favorable characteristics, such as 

analyticity. Analyticity guarantees that these functions are smooth and differentiable across their domain. Also, 

univalent functions frequently show particular geometric characteristics, like starlikeness, convexity, and near 

convexity, that further characterize their way of behaving and mappings. The geometric characteristics 

referenced are fundamental for figuring out the in general and explicit attributes of univalent functions, as well 

as their significance in issues connected with conformal planning, geometric function theory, and complex 

elements. 

Additionally, the assessment of univalent functions goes past their specific attributes to incorporate the 

examination of subclasses and more extensive ideas. Complex examination scientists investigate numerous 

subclasses of univalent functions, like Janowski raised and starlike functions, and inspect their geometric and 

logical attributes. Mathematicians gain significant cognizance of the nuances and intricacies of these 

subclasses, which permits them to acquire further experiences into the way of behaving of univalent functions 

and their applications in numerous spaces like physical science, designing, and numerical demonstrating. 

Univalent functions assume a pivotal part in the field of perplexing examination, filling in as fundamental parts 

that give numerous chances to study and revelation. Their simplicity, together with their intricate geometric 

and analytical features, renders them essential instruments for mathematicians and physicists endeavoring to 

comprehend the enigmas of the complex plane and its many practical uses.  
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A kind of analytical function that maps one area in the complex plane onto another region in exactly the same 

way as the original region. The investigation of a function that is univalent in an area that is simply linked may 

be distilled down to the investigation of two functions that are univalent inside the circle with ǀzǀ ≤ 1. If 𝑓(0)  =

 0 𝑎𝑛𝑑 𝑓’(0)  =  1, we say that a function is normalized, and this is true if the function is univalent in the circle 

ǀzǀ < 1. The family S of standardized functions that are univalent in the circle z 1 has been the subject of a lot 

of examination and examination. There are several parameters connected with univalent functions that allow 

for the generation of estimates that are applicable to any function of S. If the function f(z) of family S is 

extended into a Taylor series, then the following statement is true: 

𝑓(𝑧) = 𝑧 + 𝑎2𝑧2 + 𝑎3𝑧3 + ⋯                     

If this is the case, the inequalities an 𝐼𝑎2 ≤ 2 𝑎𝑛𝑑  𝐼𝑎3 ≤ 3   will both be fulfilled. In the theory of univalent 

functions, the well-known coefficient issue consists of determining the necessary and sufficient requirements 

that must be placed on the complex numbers 𝑎2, 𝑎3, 𝑎4 … in order for the series 𝑧 + 𝑎2𝑧2 + 𝑎3𝑧3 to be the 

Taylor series of any univalent function. These criteria must be met in order for the series to be the Taylor series. 

There is currently no answer to the issue with the coefficients. 

If an analytic function on an open set has a one-to-one mapping, then we refer to that function as univalent. 

Mappings of the unit disc to itself, such as 𝜙𝑎: 𝔻 → 𝔻, where 𝜙𝑎(𝑧) =
𝑧−𝑎

1−𝑎̅𝑧
 for any a∈𝔻, are examples of 

univalent mappings. The following is a brief summary of several fundamental univalent functions. 

Proposition 1: If 𝐺, 𝛺 ⊂ 𝐶 are regions and 𝑓: 𝐺 → 𝛺 is a univalent mapping with the property that 𝑓(𝐺) = 𝛺, 

then 

• 𝑓−1: Ω → G (where 𝑓−1(f(z)) = z)  is an analytical function that, together with (𝑓−1)′ (𝑓(𝑧)) =
1

𝑓′(𝑧)′
  

• 𝑓′(𝑧) ≠ 0𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝐺 

When studying univalent functions, one of the most basic questions that must be answered is whether or not 

there is a univalent mapping that can be performed from one domain B onto another domain 𝐵′. That both B 

and 𝐵′ have the same level of connection is a need for the existence of such a mapping. This is a required 

condition. This prerequisite is in like manner important (see Riemann hypothesis), and the undertaking 

rearranges to planning a given space onto a circle if B and B^' are just associated spaces with borders that 

incorporate more than one point each. In this unique circumstance, a remarkable part is played in the theory of 

univalent functions on essentially associated areas by the class S of functions f that are ordinary and univalent 

on the circle ∆= {z ∈C: |z|<1}, standardized by the prerequisites f (0) =0, f^' (0) =1, and having the extension. 
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All in all, this class of functions has a significant impact in the theory of univalent functions on essentially 

associated areas. 

𝑓(𝑧) = 𝑧 + 𝑐2𝑧2 + ⋯ + 𝑐𝑛𝑧𝑛 + ⋯ , 𝑧 ∈ ∆                   

Some Basic Subclasses of Univalent Functions 

This part will lay out a few major subclasses of these logical univalent functions in light of the geometric 

elements that are somewhat clear. Because of the way that they are firmly connected with functions of positive 

genuine part and with subjection, these classes can be totally characterized by basic disparity. 

A set D in the plane is supposed to be starlike concerning w0, an inside mark of D, if for each beam with 

starting point w0 meeting the inside of D in a set, the inside of D is either a line portion or a beam. We say that 

a function f is starlike concerning w0 in the event that it maps U onto a starlike space. 

This is on the grounds that function f maps U onto a starlike space. For the excellent situation in which w0 

rises to nothing, we allude to f as a starlike function. Presently, we will give a scientific portrayal to functions 

of this sort. It is an option exclusively for a function f from class A to be starlike in U if and provided that to 

mean the arrangement of all functions that are starlike in U, we will utilize the image S. 

𝑅 (
𝑧𝑓1(𝑧)

𝑓(𝑧)
) > 0, 𝑧 ∈ 𝕌.                      

It was Alexander who at first led research on this class. In the plane, a set D is supposed to be curved if, for 

each set of focuses w1 and w2 that are situated inside the inside of D, the line fragment that interfaces w1 and 

w2 ought to similarly be held inside D. 

For a function f to be viewed as a curved function in U, deciphering the space U onto a raised domain should 

be capable.  

To put it another way, a convex domain is one that has a star-shaped shape with regard to each of its points. 

There is presented here the analytical characterization of the convex function. 

In this context, the class K represents all functions that are convex in the space U. As an illustration, they 

𝑧

1−𝑧
 𝑎𝑛𝑑 log [

1+𝑧

1−𝑧
] convex in the U space. From what has been said up until this point, it is clear that 

𝑘 ⊂ 𝑆∗ ⊂ 𝑆.                     

In any case, the Koebe function isn't raised nor is it starlike. Alexander is credited with finding the nearby 

logical connection that exists among raised and starlike functions. This affiliation is alluded to as Alexander's 

Hypothesis, and it was found by Alexander. To put this another way, assuming f is a logical function in U, and 

in the event that f (0) approaches zero and f 0 (0) rises to one,𝑓 ∈ 𝑘 ⟺ 𝑧𝑓1𝑆∗, 𝑧 ∈ 𝕌.                         
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Robertson, through the implementation of an order terminology, proposed the classes S ∗ (α) and K (α) of 

starlike and convex functions of order α, where 0 ≤ α < 1. These classes are described by the following 

equations: 

𝑆∗(𝛼) = {𝑓 ∈ 𝐴: 𝑅 (
𝑧𝑓1(𝑧)

𝑓(𝑧)
) > 𝛼, 𝑧 ∈ 𝑈},  

                      𝐾(𝑎){𝑓 ∈ 𝐴: 𝑧𝑓1  ∈ 𝑆∗(𝛼), 𝑧 ∈ 𝑈}                     

Acquiring the notable classes of starlike and curved univalent functions is conceivable when α is equivalent to 

nothing. 

Characterization Properties  

The first thing that we do in this section is locate the coefficient estimate of the functions that have the form, 

which are in the class system𝑊𝜇,𝛽
𝜂,𝑎

(𝐴, 𝐵, 𝑦, 𝜆) 

Theorem 1: Let us define the function f(z) using the equation. Then, the f ∈ 𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) solely in the 

event that 

∑ 𝑅𝑛𝑎𝑛 ≤

∞

𝑛=3

(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾     

Proof. As an alternative 

𝑎2 =
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
, 0 ≤ 𝑏 ≤ 1 

when is used, a straightforward calculation yields the desired outcome. 

Corollary 2: The function f(z) described by equation belongs to the specified class𝑊𝜇,𝛽
𝜂,𝑎

(𝐴, 𝐵, 𝑦, 𝜆)Then 

𝑎𝑛 ≤
(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅𝑛
, 𝑛 ≥ 3        

Theorem 3: The class 𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) the convex linear combination is closed under the condition. 

Proof. Let the function f(z) be defined by equation and g(z) be determined by another equation. 

𝑔(𝑧) = 𝑧 −
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
𝑧2 − ∑ 𝑑𝑛𝑧𝑛

∞

𝑛=3

 

where dn ≥ 0 and 0 ≤ b ≤ 1. Let's assume that f(z) and g(z) belong to the same class 𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆), To 

establish the sufficiency, it is necessary to demonstrate that the function H(z) as described by 

𝐻(𝑧)  =  𝛿𝑓(𝑧)  +  (1 −  𝛿)𝑔(𝑧), 0 ≤  𝛿 ≤  1 

is also in the class 𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) 
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Since 

𝐻(𝑧) = 𝑧 −
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
𝑧2 − ∑(𝛿𝑎𝑛 + (1 − 𝛿)𝑑𝑛) 𝑧𝑛

∞

𝑛=3

 

an ≥ 0, dn ≥ 0, 0 ≤ b ≤ 1. 

We have noticed that: 

∑ 𝑅𝑛(𝛿𝑎𝑛 + (1 − 𝛿)𝑑𝑛)  ≤ (1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

∞

𝑛=3

 

The fact that this is the case, according to Theorem, once again entails that 𝐻 ∈  𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) This 

concludes the conclusion of the proof of the theorem. 

Theorem 4: Allow the functions to take effect 

𝑓𝑗(𝑧) = 𝑧 −
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
𝑧2 − ∑ 𝑎𝑛, 𝑗𝑍𝑛

∞

𝑛=3

, 𝑎𝑛,𝑗 ≥ 0   

be in the class 𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) for every j (j=1, 2...m). Subsequently, the function F (z) specified by 

𝐹(𝑧) = ∑ 𝜇𝑗𝑓𝑗(𝑧)

𝑚

𝑗=1

            

is also in the class  𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆)  where 

∑ 𝜇𝑗 = 1      

𝑚

𝑗=1

 

Proof. By combining the definitions, and then adding, we arrive at the following: 

𝐹(𝑧) = 𝑧 −
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
𝑧2 − ∑ ∑ 𝜇𝑗𝑎𝑛,𝑗

𝑚

𝑗=1

  𝑧𝑛

∞

𝑛=3

  

Since 𝑓𝑖 ∈  𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) for every j (j=1,2,..m). Theorem yields 

∑ 𝑅𝑛𝑎𝑛,𝑗 ≤ (1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

∞

𝑛=3

   

for j = 1, 2,…, m. Thus, we get 

∑ 𝑅𝑛

∞

𝑛=3

∑ 𝜇𝑗𝑎𝑛,𝑗 = ∑ 𝜇𝑗

𝑚

𝑗=1

∑ 𝑅𝑛𝑎𝑛,𝑗 ≤ (1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

∞

𝑛=3

𝑚

𝑗=1

 

given the fact that Theorem, F ∈  𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) 
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Theorem 5: Let  

𝑓2(𝑧) = 𝑧 −
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
𝑧2            

And 

𝑓𝑛(𝑧) = 𝑧 −
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
𝑧2 −

(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅𝑛
𝑧2       

for n = 3, 4,…, Then the function f(z) belongs to the class 𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) under the condition that it is 

possible to represent it in the manner 

𝑓(𝑧) = ∑ 𝜆𝑛𝑓𝑛(𝑧)

∞

𝑛=2

           

Where 𝜆𝑛 ≥ 0 𝑎𝑛𝑑 ∑ 𝜆𝑛 = 1∞
𝑛=2  

 Proof. In this case, we are assuming that f(z) may be stated from. And then there is 

𝑓(𝑧) = 𝑧 −
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
𝑧2 − ∑ 𝜆𝑛

(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅𝑛

∞

𝑛=3

𝑧𝑛 

= 𝑧 − ∑ 𝐴𝑛𝑍𝑛

∞

𝑛=2

 

Where 

𝐴2 =
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
,   

And 

𝐴𝑛 ≤
𝜆𝑛(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅𝑛
, 𝑛 = 3,4, . ., 

Therefore 

∑ 𝑅𝑛𝐴𝑛 = 𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

∞

𝑛=2

+ ∑ 𝜆𝑛(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

∞

𝑛=3

 

= (1 − 𝑎)[𝑏 + (1 − 𝜆2)(1 − 𝑏)](𝐵 − 𝐴)𝛽𝛾 

≤ (1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾 

It may be shown from Theorem and Theorem that the function f(z) belongs to the class If, on the other hand, 

we assume that the function f(z) described by, belongs to the class  𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) Then, by substituting, 

we get 
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𝑎𝑛 ≤
(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅𝑛
, 𝑛 ≥ 3 

Setting 

𝜆𝑛 =
𝑅𝑛

(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾
𝑎𝑛, 𝑛 ≥ 3 

And 

𝜆2 = 1 − ∑ 𝜆𝑛

∞

𝑛=3

 

The value that we have is Therefore, the proof of Theorem now finished and completely established. 

Corollary 6: Particularly severe aspects of the class 𝑊𝜇,𝛽
𝜂,𝑎

(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) The functions fn(z), where n is greater 

than or equal to 2,  

Obtaining distortion boundaries for function is necessary in order to  𝑓 ∈ 𝑊𝜇,𝛽
𝜂,𝑎(𝑏, 𝐴, 𝐵, 𝑦, 𝜆) We begin by 

demonstrating the following lemmas. 

Lemma 7: First, let us define the function f3(z) as follows: 

𝑓3(𝑧) = 𝑧 −
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
𝑧2 −

(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅3
𝑧3      

Then, for 0 ≤ r < 1 and 0 ≤ b ≤ 1, 

/𝑓3(𝑟𝑒𝑖𝜃)/≥ 𝑟 −
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
𝑟2 −

(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅3
𝑟3 

with equality for θ = 0. For either 0 ≤ b < b0 and 0 ≤ r ≤ r0 or b0 ≤ b ≤ 1, 

/𝑓3(𝑟𝑒𝑖𝜃)/≤ 𝑟 +
𝑏(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2
𝑟2 −

(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅3
𝑟3 

given the condition that θ equals π, where 

𝑏0 =
1

2(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾
× 

{(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾 − 4𝑅2 − 𝑅3 + [((1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾 − 4𝑅2 − 𝑅3)2 + 16𝑅2(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾]1/2} 

And 

𝑟0 =
−4(1 − 𝑏)𝑅2 + [16(1 − 𝑏)2𝑅2

2 + 4𝑏2(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾𝑅3]1/2

2𝑏(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾
 

Proof. The method that Silverman and Silvia have been using is the one that we utilize. Given that 
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𝜕/𝑓3(𝑟𝑒𝑖𝜃)/2

𝜕𝜃
= 2(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾𝑟3 sin 𝜃 

𝑏

𝑅2
+

4(1 − 𝑏) cos 𝜃

𝑅3
𝑟 −

𝑏(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾

𝑅2𝑅3
𝑟2 

It is evident that 

𝜕/𝑓3(𝑟𝑒𝑖𝜃)/2

𝜕𝜃
= 0 

for θ1 = 0, θ2 = π and 

𝜃3 = 𝑐𝑜𝑠−1  
𝑏[(1 − 𝑏)(1 − 𝑎)(𝐵 − 𝐴)𝛽𝛾𝑟2 − 𝑅3]

4𝑟(1 − 𝑏)𝑅2
 

θ3 is a valid root only when the −1 ≤ cos θ3 ≤ 1, inclusively. Therefore, a third root exists only when the values 

of r fall within the range of r0 ≤ r < 1 and the values of b fall within the range of 0 ≤ b ≤ b0. Hence, the outcomes 

of the theory may be deduced by contrasting the extreme values. /𝑓3(𝑟𝑒𝑖𝜃)/, 𝑘 = 1,2,3 at the specified 

intervals. 

Conclusion 

In this work, we have examined the role of integral operators in shaping the geometric behavior of univalent 

functions defined on the unit disk. By analyzing how these operators act on standard subclasses of univalent 

functions, we have shown that important geometric properties—such as univalence, starlikeness, convexity, 

and close-to-convexity—can be preserved or enhanced under suitable conditions. The results highlight that 

carefully chosen integral transforms serve not only as tools for generating new families of univalent functions 

but also as effective mechanisms for controlling their geometric characteristics. Consequently, integral 

operators provide a unifying framework for extending classical results in geometric function theory and for 

establishing inclusion relationships among various subclasses. These findings reinforce the significance of 

integral operators in both theoretical investigations and potential applications within complex analysis, and 

they open avenues for further research on more general operators and domains. 
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