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ABSTRACT: The mining industry plays a crucial role in the global economic development, highlighting the importance of a continuous 

evaluation in the physical stability of tailings deposits. All the analysis methods have limitations, and the geotechnical field monitoring 

is essential to understand the behavior of the geomaterials as the projects progress. There is a need to make use of the in-situ 

measurements, improving the numerical predictions associated with the physical stability of the deposits. In this context, the 

methodology proposed by Corral (2013) is presented as an effective solution for the soil parameter update. Using sensitivity analysis, 

the maximum likelihood approach, and the genetic algorithm as an optimization method to solve the inverse problem. This methodology 

is applied by integrating MATLAB and PLAXIS through Python. Its implementation allows reducing the uncertainty in the numerical 

model and obtaining more accurate predictions. Likewise, it is possible to predict with greater certainty and safety the future behavior 

of the following construction stages of the deposit, providing extremely valuable information for decision making in the projects. 
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1 INTRODUCTION 

The economic development of many countries is linked to the 
mining industry, generating a continuous increase in the 
production of tailings. This entails a significant increase of the 
potential risks in the tailings dam, due to the need to build larger 
deposits to accommodate the growing production of tailings 
(Morrison, 2022). 

In recent years, catastrophic collapse events have been 
recorded worldwide, highlighting the urgency of continuously 
evaluating the physical stability ensuring its long-term 
sustainability. In practice, the limit equilibrium analysis is 
routinely used, but unfortunately, this method cannot provide any 
information about the deformations. This great limitation is 
aggravated even more when the problem requires coupled analyses 
to properly diagnose the physical stability. The finite element and 
finite difference methods allow solving this great limitation; 
however, other limitations persist related to deterministic models, 
where there are generally discrepancies with the in-situ 
measurements. 

In recent years, parameter update methods have been 
developed in the field of geotechnics, using the inverse analysis at 
the element scale and instrumentation in geotechnical works. 

In the inverse analysis at the element scale, results of great 
interest have been obtained, since the parameters found through the 
genetic algorithm present favorable adjustments (Rokonuzzaman 
& Sakai, 2010; Samarajiva et al., 2005). Also, the calibration of 
parameters has been carried out using robust and interpolation-free 
technique (RIFT) through the particle swarm optimization method, 
obtaining excellent results (Lin et al., 2015). 

In the case of excavations, inverse analysis has also been 
carried out with various optimization techniques, such as Bayesian 
updating, particle swarm, error domain falsification approaches 
(EDMF), genetic algorithm, among others (Baroth & Malecot, 
2010; Levasseur et al., 2008; Lin et al., 2015; Rechea et al., 2008; 

Ze-Zhou et al., 2018). However, they have all shown a clear 
tendency towards the use of a single type of instrumentation to 
measure the deformations in retaining walls, and many times the 
measurements used for the parameter update are synthetically 
generated. In the case of embankments and tailings deposits, 
inverse analyses have also been shown with interesting results 
through Bayesian updating and genetic algorithm, using more than 
one instrument (Grosel, 2021; Zheng et al., 2018). 

This demonstrates that geotechnical field monitoring plays a 
significant role, as it allows understanding the real behavior of the 
geomaterials as the project progresses. Therefore, there is a need to 
make use of the in-situ measurements through inverse analyses, 
improving the numerical predictions associated with the physical 
stability of these deposits. The methodology for updating 
numerical predictions proposed by Corral (2013) has proven to be 
highly efficient in the parameter update in deep excavations of soft 
and highly anisotropic soils, with the Mohr-Coulomb constitutive 
model and compared with an advanced soil model, MIT-E3 
(Whittle & Kavvadas, 1994). This methodology overcomes the 
existing limitations by including sensitivity analysis to determine 
the parameters to be updated, combines different types of 
instruments in the inverse analysis (through the covariance matrix, 
including the coupling of the residuals) and uses evolutionary 
optimization methods (genetic algorithm). 

In the specific case of the tailings deposit under study, it is 
instrumented with piezometers and prisms. This allows updating 
the parameters using advanced constitutive models, which by 
combining both measurements and using the genetic algorithm as 
an optimization method, more accurate predictions are obtained 
about the behavior of the deposit. 
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2 UPDATING METHODOLOGY 

The parameter updating methodology consists of a series of 
iterative steps, whose flow diagram is shown in Figure 1. It starts 
with the site investigation, which collects all the information 
necessary to generate the numerical model, including aspects such 
as geometry, stratigraphy and data from in-situ and laboratory tests. 
With this information, the numerical model is developed together 
with the construction sequence, which allows obtaining initial 
predictions (𝑝). 

As the project progresses, new information is collected on the 
actual construction conditions, comparing them with the initial 
design conditions. This feedback is essential to reduce the 
uncertainty in the models and can be used continuously throughout 
the project. Once the in-situ instrumentation is available, the field 
monitoring process is initiated to obtain the measurements (𝑚) 
used in the parameter update methodology. 

With the initial predictions and the measurements, two key 
parameters proposed by Corral (2013) are calculated: the 
Structured Square Residual (SSR) and the Structured Global 
Variance (SGV), explained in section 2.2. Then the Sensitivity 
Analysis is performed to identify the parameters of the constitutive 
models and/or variables to be updated, followed by the Inverse 
Analysis to obtain the updated variables within the numerical 
models, thus allowing an accurate update of the model and a more 
accurate prediction. 

 

 
Figure 1. Simplified parameter updating procedure (after Corral 2013) 

In summary, this methodology integrates information from the 
site investigation, the numerical model and the geotechnical 
monitoring through the sensitivity and inverse analysis to improve 
the predictions in geotechnical engineering. 

2.1 Covariance Matrix and Error Structure 

To apply this methodology, it is necessary to estimate the 
covariance matrix and the error structure in each instrument used 
in the project. The covariance of the measurements is constant in 
each time interval, which allows applying the maximum likelihood 
approach to the minimization problem. Under the assumption of 
having 𝑡 independent instruments, the maximum likelihood can 
be expressed in terms of independent covariance matrices through 
the following equation (Ledesma et al., 1996; and later extended 
by Corral, 2013): 

𝐽 = ∑ [𝒓𝑗
𝑇 ⋅ (𝑪𝒎𝑗

)
−1

⋅ 𝒓𝑗]𝑡
𝑗  (1) 

 

Where 𝐽  represents the maximum likelihood, 𝑪𝒎𝑗
 is the 

covariance matrix of each instrument 𝒋 , and 𝒓𝑗  represents the 

residual vector of each instrument 𝒋, defined as 𝒓 = 𝒎 − 𝒑. 
The covariance matrix is estimated as: 
 

𝑪𝒎𝑗
= 𝝈𝑗

2 ⋅ 𝑬𝒎𝑗
 (2) 

 

Where 𝝈𝑗
2 is a scalar factor that represents the global variance 

of the instrument 𝑗 and 𝑬𝒎𝑗
 corresponds to the error structure of 

each instrument 𝑗, which depends on the device itself.  

The main drawback of using the expression of Equation 1 is 

that combining different instrumentation types with different units 

is not apparently possible. Therefore, Corral (2013) developed 

some key dimensionless expressions for the error structure 

matrices (e.g. inclinometers)  

This work focused on pointwise instrumentation. 

2.1.1 Pointwise Instruments 
 
The point instruments measure a physical parameter at a single 
independent point, where the errors associated with these 
measurements are attributed to random errors. In this context, the 
error structure 𝑬𝒎𝑗

 is defined by the identity matrix and the 
covariance matrix opts for its simplest form:  

 

𝐶𝑚𝑗
= 𝜎𝑗

2

𝜎𝑗
2 =

1

𝑁𝑗
⋅ ∑ (𝑥𝑖 − 𝑥̅)𝑗

2𝑡
𝑗

 (3) 

 

Where 𝜎𝑗
2  represents the population variance of the 

instrument 𝑗 in a specific construction stage, 𝑁𝑗 is the number of 

measurements of the instrument 𝑗, 𝑥𝑖  is each of the individual 

measurements, and 𝑥̅  is the arithmetic average of the 𝑁𝑗 

measures. 
Finally, the covariance matrix in the point instruments is 

represented as a diagonal matrix of the variances of each of the 
point instruments in a time interval or construction stage. The time 
interval or construction stage plays a key role in the calculation of 
the variance due to two reasons: (i) the numerical predictions imply 
a temporal discretization in a continuous process, so it is necessary 
to integrate a realistic time interval to accurately reflect the 
measurements, and (ii) the number of data measured in the time 
interval must be sufficient to obtain a valid estimate with realistic 
variances. Otherwise, the measurement should not be included 
during the update process. 

2.2 Structured Square Residual (SSR) and Structured Global 
Variance (SGV) 

This step is responsible for calculating the filters necessary to carry 
out the sensitivity analysis. These filters need to calculate the scalar 
values of SSR and SGV for each instrument type. Corral (2013) 
proposed to write these expressions as follows: 

 

𝑆𝑆𝑅𝑖 = 𝒓𝑖
𝑇 ⋅ 𝑬𝒎𝒊

−1 ⋅ 𝒓𝑖   (4) 

 

𝑆𝐺𝑉𝑖 = 𝝈𝑖
𝑇 ⋅ 𝑬𝒎𝒊

−1 ⋅ 𝝈𝑖   (5) 
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These values are calculated for each of the instruments 𝑖 and 
are used for the filters in the sensitivity analysis, in order to 
determine the parameters that require to be considered within the 
optimization (inverse analysis). 

2.3 Sensitivity Analysis (SA) 

This analysis has three main objectives: (i) to identify the most 
relevant parameters of the model, necessary in the optimization 
process; (ii) to identify the instruments or types of measurements 
that provide more information for the inverse problem; and (iii) to 
quantify how much the SSR can be reduced by varying a single 
parameter (Corral, 2013). 

The sensitivity analysis comprises two filters to determine 
whether a parameter needs to be optimized:  

The first filter help one to evaluate whether or not the SSR with 
the initial parameters of the model is greater than the SGV of the 
instrumentation, allowing to know if the parameter has a possible 
improvement within the inverse analysis. A residual is considered 
essential when the absolute value of the initial residual exceeds the 
standard deviation of the instrumentation (𝑆𝑆𝑅𝑖

𝑖𝑛𝑖𝑐𝑖𝑎𝑙 > 𝑆𝐺𝑉𝑖) , 
while a residual is considered as non-essential when it does not 
exceed that value. the second filter, the 𝛥𝑆𝑆𝑅𝑖 is required to be 
calculated which corresponds to the maximum reduction of the 
𝑆𝑆𝑅𝑖 in relation to the initial parameters of the model in each of 
the instruments 𝑖. 

 

𝛥𝑆𝑆𝑅𝑖 = 𝑆𝑆𝑅𝑖
𝑖𝑛𝑖𝑐𝑖𝑎𝑙 − 𝑆𝑆𝑅𝑖

𝑚𝑖𝑛   (6) 
 
Where 𝑆𝑆𝑅𝑖

𝑚𝑖𝑛 is the minimum value of the structured square 
residual obtained in each of the instruments 𝑖 when evaluating a 
range of parameters.  

The value of 𝛥𝑆𝑆𝑅𝑖 is evaluated for each of the parameters 
and, if Δ𝑆𝑆𝑅𝑖 > 𝑆𝐺𝑉𝑖  it is called “Essential Improvement 
Parameter” (EIP), which indicates that this parameter must be 
considered in the optimization process in the inverse analysis. 

2.4 Inverse Analysis (IA) 

The inverse analysis introduced by Corral (2013) uses the 
maximum likelihood approach as an identification criterion and 
uses the genetic algorithm as an optimization method. Once the 
covariance matrices have been defined in each of the instruments 
and the EIPs have been identified, the formulation of the maximum 
likelihood approach is presented as follows: 
 

𝑚𝑖𝑛{𝐽} = 𝑚𝑖𝑛{𝒓𝑇 ⋅ (𝑪𝒎)−1 ⋅ 𝒓}  (7) 
 

It is essential to highlight that the maximum likelihood analysis 
considers all the measurements, regardless of the results of the 
sensitivity analysis. This implies that, although the sensitivity 
analysis indicates the elements that require improvement, the 
minimization (optimization) problem considers all the instruments. 
The proper configuration of the genetic algorithm plays a crucial 
role in achieving a good approximation in obtaining the local 
minima. 

Subsequently, to quantify the improvement obtained after the 
inverse analysis, an incremental improvement ratio is used in 
relation to the initial value of 𝐽. 
 
 

3 CASE STUDY 

The study focuses on the analysis of a tailings dam located in South 
America, with a storage capacity that exceeds 400 billion tons of 
fine tailings. The dam was built using borrow material from 
quarries near the site. To ensure the stability and impermeability of 
the dam, a waterproof geosynthetic was installed on the upstream 
face. In addition, a drainage system was installed at the base to 
capture and channel possible seepage from water and precipitation. 

The dam was modeled in Plaxis 2D and consists of 4 stages. 
As the height of the dam increases, so does the height of the 
tailings, maintaining a setback of 5 m according to the project 
guidelines. The geometry of the dam is detailed in Table 1. 

 
Table 1. Geometry of the tailings dam 

Stages 

Slopes Crest 

width 

Average 

height Upstream Downstream 

[𝑯: 𝑽] [𝑯: 𝑽] [𝒎] [𝒎] 

Starting 

Wall 
1,8: 1 1,8: 1 53 139 

Stage 1 1,5: 1 1,8: 1 50 154 

Stage 2 1,5: 1 1,9: 1 50 170 

 
The model considers five types of soils: Rock, Alluvial, Drain, 

Wall, and Tailings. The maximum dimensions of the model are 
2.550𝑚  in the 𝑥 − axis and 436,9𝑚  in the 𝑦 − axis. Four 
points were in the model that represent the prisms (Pr) and 
piezometers (P-1, P-2, and P-3) located above the Drain material. 
All the details of the model are shown in Figure 2. 
 

 
Figure 2. Geometry and construction stages of the tailings dam 

3.1 Constitutive Models 

Soil/rock properties and parameters were estimated from field and 
laboratory tests to model the behavior of the five materials present 
in the model. The dam, alluvial and drain were modeled using the 
Hardening Soil small Strain (HS small) model, the tailings using 
the Hardening Soil (HS) model and the rock using the Linear 
Elastic (LE) model. 

Four alternative variables were defined within the models 

previously well-defined in (Bentley, 2021a). Within the HS small 

and HS constitutive models, the variables 𝛼 and 𝛽 are defined, 

where a correlation is established between the parameter 𝐸50
𝑟𝑒𝑓

 

and the parameters 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 and 𝐸𝑢𝑟
𝑟𝑒𝑓

: 

 

𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

= 𝛼 ⋅ 𝐸50
𝑟𝑒𝑓   (8) 

𝐸𝑢𝑟
𝑟𝑒𝑓

= 𝛽 ⋅ 𝐸50
𝑟𝑒𝑓   (9) 
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The variable Ω is an alternative measure that represents the 

minimum stiffness reduction in the HS small model. 
 

𝐺0
𝑟𝑒𝑓

= 𝐺 𝛺⁄   (10) 

 
Finally, 𝜅 establishes a correlation between the permeabilities 

in the 𝑥 and 𝑦 directions. 
 

𝜅 = 𝑘𝑥 𝑘𝑦⁄    (11) 

 
The initial values of the parameters in the constitutive models 

are shown in the Table 2, where the parameters considered with 
uncertainty, subject to sensitivity analysis, are highlighted. 

 
Table 2. Initial values of the parameters in the constitutive models 

Materials Wall Alluvial Drain Tailings Rock 

Constitutive 

Model 
HS small HS LE 

Drainage type Drained 

𝜸𝒅 [𝒌𝑵 𝒎𝟑⁄ ] 20 18,4 12,3 24,1 

𝜸𝒔𝒂𝒕 [𝒌𝑵 𝒎𝟑⁄ ] 22 19,6 18 24,1 

𝐄′ [𝑴𝑷𝒂] − − − − 
1,0
⋅ 104 

𝝂′ [−] − − − − 0,35 

𝑶𝑪𝑹 [−] 1 1 1 − 

𝑬𝟓𝟎
𝒓𝒆𝒇

 [𝑴𝑷𝒂] 40 40 4 − 

𝜶 [−] 1 1 1 − 

𝜷 [−] 3 3 3 − 

𝒎 [−] 0.5 0.5 0,5 − 

𝒄′ [𝒌𝑷𝒂] 5 5 0 − 

𝝋′ [°] 38 38 31 − 

𝝍 [°] 0 − 

𝝂𝒖𝒓
′  [−] 0,2 − 

𝑹𝒇 [−] 0,9 − 

𝒑𝒓𝒆𝒇 [𝒌𝑷𝒂] 100 − 

𝜸𝟎.𝟕 [−] 
3,0
⋅ 10−5 

3,0 ⋅ 10−5 − − 

𝛀 [%] 10 10 − − 

𝒌𝒙 [𝒎 𝒔⁄ ] 
4,0
⋅ 10−5 

1,0 ⋅ 10−5 
1,0
⋅ 10−4 

1,0
⋅ 10−7 

5,0
⋅ 10−7 

𝜿 [−] 1 1 1 1 1 

 
Although it is not included in the Table 2, the van Genuchten 

model is also used in the Wall, since this material presents 
saturated, partially saturated, and dry zones. The parameters 
established in the model correspond to a standard data set of a 
coarse material, as indicated in (Bentley, 2021b). 

 

3.2 Finite Element Model (FEM) 

The model consists of five fundamental stages, which correspond 
to the construction stages of the tailings dam in the field. To 
adequately simulate the construction process, the model is divided 
into 69 phases, which are subdivisions of the construction stages 
of the deposit used in the numerical model to properly represent its 
behavior and are detailed in Gavidia (2023). 

Within the assumptions of the model, the following is 
considered: 
• A waterproof interface is established on the upstream slope to 

simulate the presence of the membrane installed in the tailings 
dam, to prevent seepage in the wall. 

• The fine tailings are deposited hydraulically, therefore, 
conservatively it is assumed that the tailings are always 
saturated. 

• At the end of the construction of the drain, there is a weir, 
where a constant water extraction flow of 0,02 𝑚3 𝑠 𝑚⁄⁄  is 
considered. 

3.3 Monitoring in tailings dam 

The studied tailings dam is equipped with prisms and piezometers 
(pointwise instruments), which enable the obtaining of information 
about the behavior of the materials as the construction progresses. 
This allows obtaining all the corresponding measures necessary for 
the calculation of the covariance matrix and the comparisons with 
the initial predictions using the parameters obtained from tests. 

3.3.1 Prims 
 

The recording of the prisms was carried out during the construction 
of Stage 2 of the wall, which lasted approximately 435 days. 
During this process, 9 prisms were installed on the crown of Stage 
1, which provided detailed information on the settlement and 
transverse deformation as the construction of the backfill of Stage 
2 progressed. Continuous monitoring was carried out over a period 
of 137 days, which coincided with the moment when the backfill 
of Stage 2 reached the same elevation as the crown of Stage 1. 

The data are broken down monthly to facilitate comparison 
with the numerical model and are divided into 5 months to 
represent the periods in which the monitoring information was 
collected, where month 5 is half a month and therefore small 
deformations can be observed in both directions, it is relevant to 
mention that at least one data per hour was recorded.  

Figure 3 presents the data averaged and broken down monthly 
to facilitate comparison with the numerical model, they are 
presented in more details by Gavidia (2023). In addition, the 
standard deviation is included as a measure of variability of these 
magnitudes, which allows the fluctuations in the deformation 
values to be visually appreciated. These results allow us to validate 
and adjust the finite element model used in the study. 
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Figure 3. Measurements and standard deviations of the prisms: (a) 
Transverse deformations and (b) Settlements 

3.3.2 Piezometers 
 

A set of five vibrating string piezometers located near the analyzed 
section of the wall was considered. These piezometers provided 
detailed information on the pore pressures from the construction of 
the crown and slimes of Stage 1 until the development of the 
construction of the backfill of Stage 2. Continuous monitoring of 
the piezometers in the tailings dam was carried out over a period 
of 501 days, coinciding in the moment when the backfill of Stage 
2 reached the same elevation as the crown of Stage 1. 

The average data are divided into two categories: the initial 
pore pressure and the growth of the pore pressure experienced by 
each piezometer after 501 days.  

Figure 4 illustrates the average measurements of both 
categories, as well as the standard deviation as a measure of 
variability of these magnitudes. The details of each of these data 
are presented by Gavidia (2023). It is important to mention that the 
pore pressures in the table change sign due to the sign convention 
used by the PLAXIS software. 

 

 
Figure 4. Measurements and standard deviations of the piezometers: (a) 
Initial pore pressure and (b) Growth of pore pressures in 501 days 

 

3.4 Sensitivity Analysis 

The two criteria or filters explained above were applied. In the first 
one, it was evaluated if 𝑆𝑆𝑅𝑖

𝑖𝑛𝑖𝑐𝑖𝑎𝑙 > 𝑆𝐺𝑉𝑖. It was observed that all 
the 𝑆𝑆𝑅𝑖

𝑖𝑛𝑖𝑐𝑖𝑎𝑙  are greater than the 𝑆𝐺𝑉𝑖 , which indicates that 
none of the predicted values are within the range of the standard 
deviation of the monitoring, as can be seen in Figure 5 and Figure 
6. 

 

 
Figure 5. Comparison in the prisms: (a) Transverse deformations and (b) 
Settlements, between measurements and initial predictions 

 
Figure 6. Comparison in the piezometers: (a) Initial pore pressure and (b) 
Growth of pore pressures in 501 days, between measurements and initial 
prediction 

This implies that all the instrumentation points considered 
must be evaluated in the second criterion of the sensitivity analysis, 
which evaluates Δ𝑆𝑆𝑅𝑖  since all the parameters are EIP. The 
search space established for each of the parameters is set 
considering the recommendations of Ameratunga et al. (2016) 
based on the coefficients of variation. 
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Table 3. Search space of the parameters 

Material 
Parameters 

[Unidad] 

Limit 

Lower Upper 

Wall 

𝛾𝑑 [𝑘𝑁 𝑚3⁄ ] 𝛾𝑑 − 2 𝛾𝑑 + 2 

𝛾𝑠𝑎𝑡  [𝑘𝑁 𝑚3⁄ ] 𝛾𝑠𝑎𝑡 − 2 𝛾𝑠𝑎𝑡 + 2 

𝑂𝐶𝑅 [−] 1 3 

𝐸50
𝑟𝑒𝑓

 [𝑀𝑃𝑎] 𝐸50
𝑟𝑒𝑓

4⁄  4 ⋅ 𝐸50
𝑟𝑒𝑓

 

𝜑′ [°] 𝜑′ − 6 𝜑′ + 8 

𝛾0.7 [−] 1 ⋅ 10−5 1 ⋅ 10−4 

Ω [%] Ω − 3 Ω + 3 

𝑘𝑥 [𝑚 𝑠⁄ ] 8 ⋅ 10−6 7,2 ⋅ 10−5 

𝜅 [−] 𝜅 4⁄  4 ⋅ 𝜅 

Alluvial 

𝐸50
𝑟𝑒𝑓

 [𝑀𝑃𝑎] 𝐸50
𝑟𝑒𝑓

4⁄  4 ⋅ 𝐸50
𝑟𝑒𝑓

 

𝜑′ [°] 𝜑′ − 6 𝜑′ + 8 

𝑘𝑥 [𝑚 𝑠⁄ ] 1 ⋅ 10−6 2 ⋅ 10−5 

𝜅 [−] 𝜅 4⁄  4 ⋅ 𝜅 

Rock 
𝑘𝑥 [𝑚 𝑠⁄ ] 5 ⋅ 10−8 1 ⋅ 10−6 

𝜅 [−] 𝜅 4⁄  4 ⋅ 𝜅 

Drain 
𝑘𝑥 [𝑚 𝑠⁄ ] 1 ⋅ 10−5 2 ⋅ 10−4 

𝜅 [−] 𝜅 4⁄  4 ⋅ 𝜅 

Tailings 

𝐸50
𝑟𝑒𝑓

 [𝑀𝑃𝑎] 𝐸50
𝑟𝑒𝑓

4⁄  4 ⋅ 𝐸50
𝑟𝑒𝑓

 

𝜑′ [°] 𝜑′ − 7 𝜑′ + 9 

𝑘𝑥 [𝑚 𝑠⁄ ] 1 ⋅ 10−8 2 ⋅ 10−7 

𝜅 [−] 𝜅 4⁄  4 ⋅ 𝜅 

 
All details of the current analyses are described by Gavidia 

(2023) and it was observed that in all cases the value of Δ𝑆𝑆𝑅𝑖 is 
greater than its 𝑆𝐺𝑉𝑖. However, due to the high computational cost 
associated to the inverse analysis of the 21 parameters, it is decided 
to reduce the number of parameters and assign them a 
categorization according to their importance in the overall 
improvement of the prediction. In this way, an average of the 
results obtained from the set of instruments evaluated, which 
include prisms and piezometers, is calculated. This average is 
represented as the Structured Mean Squared Residual 
Improvement (SMSRI). 

 

𝑆𝑀𝑆𝑅𝐼 =
∑

(𝑆𝑆𝑅𝑖−𝑆𝑆𝑅𝑖
𝑖𝑛𝑖𝑐𝑖𝑎𝑙)

𝑆𝐺𝑉𝑖

𝑛
   (12) 

 
Where 𝑛 is the total number of point instruments (𝑛 = 16). 

Therefore, if 𝑆𝑀𝑆𝑅𝐼 < 0, it indicates an average improvement of 
the structured quadratic residual, which allows to categorize each 
of the parameters considered with uncertainty according to their 
relevance to improve the prediction. 

Table 4 shows the first 11 parameters from the 𝑆𝑀𝑆𝑅𝐼𝑚𝑖𝑛 . 
These will be considered for the inverse analysis, ensuring that 
more than half of the parameters initially considered as EIP are 
included, which guarantees a wide coverage of parameters in the 
inverse analysis. 

 
 

Table 4. Order of importance of the first 11 parameters according to the 
SMSRI in the model 

Order Parameters 𝑺𝑴𝑺𝑹𝑰𝒎𝒊𝒏 

1 𝑘𝑥 – Drain −2.790,4 

2 𝑘𝑥 – Alluvial −2.746,8 

3 𝑘𝑥 – Rock −2.708,8 

4 𝜅 – Tailings −2.611,7 

5 𝑘𝑥 – Tailings −1.935,9 

6 𝑘𝑥 – Wall −1.712,1 

7 𝜅 – Wall −289,9 

8 𝜅 – Rock −212,7 

9 𝐸50 – Wall −122,0 

10 𝛾0.7 – Wall −98,8 

11 𝐸50 – Tailings −95,4 

3.5 Inverse Analysis 

Within this methodology, the genetic algorithm is used as an 
optimization method through the MATLAB software. The 
interaction between MATLAB and PLAXIS 2D is done through 
Python, allowing the connection of two widely known commercial 
software using one of the most widely used programming 
languages worldwide. 

For the development of the methodology, certain control 
parameters of the genetic algorithm were established, which 
include the population size, parent selection, crossover, mutation 
and stop criterion. A population size of 8 individuals per each EIP 
is defined, which generates a population of 88  individuals. A 
migration of 20% of the population was carried out, where the 
parents represent 10% and an elitist selection criterion was used. 
A random crossover fraction of 80% was applied. In addition, a 
mutation function was implemented that introduces small random 
changes in the individuals of the population, which contributes 
genetic diversity and allows the genetic algorithm to explore a 
wider space of solutions. 

As a stop criterion of the genetic algorithm, it is established 
that Δ𝑆𝑇𝑂𝑃 must maintain a percentage difference lower than 3% 
for three consecutive generations. 

 

𝛥𝑆𝑇𝑂𝑃 =
𝐽𝑃𝑎𝑟𝑒𝑛𝑡𝑠

𝑎𝑣𝑒 −𝐽𝑇𝑜𝑡𝑎𝑙
𝑚𝑖𝑛

𝐽𝑃𝑎𝑟𝑒𝑛𝑡𝑠
𝑎𝑣𝑒 ⋅ 100[%]   (13) 

 

Δ𝑆𝑇𝑂𝑃  represents the percentage difference between the 

average of the parents of the total objective function (𝐽𝑃𝑎𝑟𝑒𝑛𝑡𝑠
𝑎𝑣𝑒 )and 

the minimum value of the total objective function (𝐽𝑇𝑜𝑡𝑎𝑙
𝑚𝑖𝑛 ). In this 

case study, the stop criterion is achieved in generation 12. 

The convergence of the total objective function is presented in 

Figure 7 for the combination of all the instruments. It is important 

to highlight that the blue line represents the value obtained with the 

initial parameters (𝐽𝑇𝑜𝑡𝑎𝑙
𝑖𝑛𝑖 = 3,329) , while the green line 

represents the value 𝐽𝑇𝑜𝑡𝑎𝑙
𝑚𝑖𝑛  in generation (𝐽𝑇𝑜𝑡𝑎𝑙−12

𝑚𝑖𝑛 = 195). The 

𝐽𝑇𝑜𝑡𝑎𝑙
𝑚𝑖𝑛  does not imply that it is the lowest value of J for each of the 

instruments, since, if an inverse analysis were performed with the 

instruments independently, a different parameter combination 

would be obtained for each instrument. However, as the 
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generations pass, the methodology tends to obtain the lowest 

values of 𝐽 in each one. 
Table 5 summarizes the search limits established for each of 

the parameters during the inverse analysis and the updated 
parameters at the end of generation 12. 

 

 
Figure 7. Convergence of the objective function for all the measures 

 
Table 5. Search limits and updated parameters obtained from the IA 

Parameters Lower limit Upper limit 
Updated 

parameter 

𝒌𝒙 𝐃𝐫𝐚𝐢𝐧 [𝒎 𝒔⁄ ] 1 ⋅ 10−5 2 ⋅ 10−4 4,7 ⋅ 10−5 

𝒌𝒙 𝐀𝐥𝐥𝐮𝐯𝐢𝐚𝐥 [𝒎 𝒔⁄ ] 1 ⋅ 10−6 2 ⋅ 10−5 8,4 ⋅ 10−6 

𝒌𝒙 𝐑𝐨𝐜𝐤 [𝒎 𝒔⁄ ] 5 ⋅ 10−8 1 ⋅ 10−6 5,1 ⋅ 10−7 

𝜿 Tailings [−] 0,25 4,00 1,87 

𝒌𝒙 𝐓𝐚𝐢𝐥𝐢𝐧𝐠𝐬 [𝒎 𝒔⁄ ] 1 ⋅ 10−8 2 ⋅ 10−7 1,1 ⋅ 10−7 

𝒌𝒙 𝐖𝐚𝐥𝐥 [𝒎 𝒔⁄ ] 8 ⋅ 10−6 7,2 ⋅ 10−5 2,5 ⋅ 10−5 

𝜿 Wall [−] 0,25 4,00 3,06 

𝜿 Rock [−] 0,25 4,00 0,56 

𝑬𝟓𝟎 𝐖𝐚𝐥𝐥 [𝑴𝑷𝒂] 1 160 60,3 

𝜸𝟎.𝟕 Wall [−] 1 ⋅ 10−5 1 ⋅ 10−4 5,4 ⋅ 10−5 

𝑬𝟓𝟎 𝐓𝐚𝐢𝐥𝐢𝐧𝐠𝐬 [𝑴𝑷𝒂] 1 16 1,2 

 
Figure 8 and Figure 9 show the results of the predictions 

obtained with the updated parameters, demonstrating that this 
methodology presents a general improvement of the predictions 
compared to those obtained with the initial parameters. In general, 
an improvement is observed in thirteen of the sixteen points 
evaluated, which demonstrates that by reducing the uncertainty in 
the model including the information from the monitoring of the 
works, more accurate predictions of a numerical model are 
obtained. 

 

 
Figure 8. Comparison in the prisms: (a) Transverse deformations and (b) 
Settlements, between measurements and initial predictions 

 
Figure 9. Comparison in the piezometers: (a) Initial pore pressure and (b) 
Growth of pore pressures in 501 days, between measurements and initial 
predictions 

 
4 CONCLUSIONS 

This paper has demonstrated the effectiveness of the applied 
methodology to implement the observational method proposed by 
Peck (1969), which provides the ability to adjust the design and 
improve the predictions more reliably, reducing the uncertainty 
and increasing the safety of geotechnical works. This approach has 
the potential to decrease future costs related to repairs and 
maintenance, by providing a more accurate assessment of the site 
conditions. 

A significant improvement in the predictions of deformations 
and pore pressures was observed in 4 points of the tailings dam, 
reaching an improvement ratio of 94% compared to the initial 
predictions. These results give the designers more confidence to 
evaluate the next construction stage and adjust in the design as 
needed. 

The use of genetic algorithms was highlighted as a highly 
effective optimization method, as it allows the independent 
evolution of the parameters and an exhaustive search in the 
solution space. Its ability to introduce random changes and explore 
a wider range without relying solely on engineering experience 
adds diversity to the optimization process. 

It is important to highlight that that parameter updating should 
occur collectively rather than individually. This is because the 



Proceedings of the 17th Pan-American Conference on Soil Mechanics and Geotechnical 

Engineering (XVII PCSMGE), and 2nd Latin-American Regional Conference of the International 

Association for Engineering Geology and the Environment (IAEG), La Serena Chile, 2024. 

8 

 

updated parameters do not always directly correlate with the 
minimum value attained in the Average Structured Square 
Residual Improvement. Therefore, it is essential to recognize the 
interaction and interdependence among parameters to achieve 
more accurate and reliable results in geotechnical analyses. 

To sum up, the proposed methodology brings about: (1) 
improved safety measures leading to safer predictions; (2) 
flexibility to employ the observational method, enabling adaptable 
designs; (3) effective management of construction schedules to 
avoid delays; and (4) decreased construction expenses by 
potentially switching to less expensive options when the original 
design permits modification. 
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