
IronClad Vault (Enterprise Edition)
Technical Specification v4.4.3

Architecture: Local-First / Hybrid Client-Server

November 26, 2025

Abstract

Overview: IronClad Vault is a secure, high-performance file storage system designed for
environments requiring strict data sovereignty (e.g., legal, healthcare, defense). Operating
on a Zero-Trust, Local-First model, it eschews cloud dependencies in favor of a custom TCP
tunneling protocol, hierarchical Role-Based Access Control (RBAC), and a physical “Megakey”
recovery mechanism.

1

Contents

1 System Architecture 3
1.1 Operational Modes . 3
1.2 Data Flow Architecture . 3

2 Cryptographic Standards 3
2.1 Key Wrapping Architecture . 3
2.2 Megakey Mechanism . 4

3 Networking & Tunneling Protocol 4
3.1 Connection Handshake . 4
3.2 Binary Packet Structure . 4
3.3 Chunked Transfer for Large Files . 4

4 Access Control & Security Model 5
4.1 Clearance Levels . 5
4.2 User Management . 5

5 Data Persistence & Hygiene 5
5.1 Database Schema . 5
5.2 Security Measures . 5

2

1 System Architecture

The system is built in Go (Golang) and operates in three distinct modes using a single binary
executable.

1.1 Operational Modes

• Desktop Mode: A standalone GUI application using the Fyne toolkit for local file manage-
ment.

• Sentinel Server (Headless): A GUI-wrapped daemon that unlocks the vault in memory
and listens for secure remote connections.

• Remote Client: A lightweight GUI client that connects to the Sentinel via an encrypted
TCP tunnel.

1.2 Data Flow Architecture

The system follows two primary data paths depending on the user’s connection method:

Local Desktop Path

User
Drag & Drop−−−−−−−−→ GUI Client

Stream (64KB Chunks)−−−−−−−−−−−−−→ AES-256-GCM Engine
Encrypted Blob−−−−−−−−−→ Se-

cure Storage (Disk)

Remote Admin Path

RemoteUser
TCP Tunnel−−−−−−−→ Sentinel Server

Decrypt (RAM)−−−−−−−−−→MemoryBuffer
Re-Encrypt (Session Key)−−−−−−−−−−−−−−−→

Tunnel Stream
Encrypted Traffic−−−−−−−−−−→ Remote User

2 Cryptographic Standards

IronClad adheres tomodern cryptographic standards, prioritizing authenticated encryption and
memory hardness.

• Data Encryption: AES-256-GCM (Galois/Counter Mode). Provides both confidentiality and
integrity.

• KeyDerivation (Passwords): Argon2id (Time=2,Memory=64MB, Threads=4). ResistsGPU/A-
SIC brute-force attacks.

• KeyDerivation (Megakey): SHA-256. The 1MB entropy file is hashed to produce a 32-byte
Key Encryption Key (KEK).

• Randomness: crypto/rand (OS-level CSPRNG) is used for all Nonce and Key generation.

2.1 Key Wrapping Architecture

The system utilizes a hierarchical key wrapping strategy:

1. Master Vault Key (MVK): A random 32-byte AES key generated at setup. This key encrypts
all files and metadata. It never touches the disk in plain text.

3

2. User KEK: Derived from the user’s password via Argon2id. Used to encrypt the MVK for
storage in the users table.

3. Megakey KEK: Derived from the 1MB recovery file via SHA-256. Used to encrypt the MVK
for emergency recovery.

2.2 Megakey Mechanism

To prevent lockout without backdoors, a 1,048,576-byte (1MB) binary file is generated during
setup.

• Storage: Saved only to the user’s external storage. Never stored inside the vault.

• Unlock Process: The server reads the file, hashes it to 32 bytes, and attempts to decrypt
the wrapped Master Key stored in the configuration.

3 Networking & Tunneling Protocol

To bypass complexity and vulnerabilities associated with self-signed HTTPS certificates in local
intranets, IronClad implements a custom Secure TCP Tunnel on port 9000.

3.1 Connection Handshake

1. Sentinel Start: Server generates a random 32-byte Session Key (displayed in GUI log).

2. Connection: Client connects via raw TCP.

3. Authentication: The client must possess the Session Key (Pre-Shared Key model) to com-
municate.

3.2 Binary Packet Structure

Every transmission (Request or Response) follows this strict binary format:

Segment Size Description

Length 4 Bytes uint32 (Big Endian) length of the following
payload.

Nonce 12 Bytes Random AES-GCM Nonce (unique per
packet).

Ciphertext Variable AES-256-GCM encrypted payload (JSON).

Table 1: TCP Packet Format

3.3 Chunked Transfer for Large Files

To handle files larger than available RAM (e.g., 10GB video), the system uses a streaming ap-
proach:

1. Command: Client sends get_file or upload_file.

2. Metadata Exchange: Parties exchange JSON metadata (Filename, Size).

3. Stream Loop:

4

• Sender reads 64KB from disk.

• Decrypts file from storage (Master Key).

• Re-encrypts chunk for tunnel (Session Key).

• Transmits JSON packet: {"chunk": "BASE64_STRING"}.

4. Termination: Sender transmits {"status": "eof"}.

4 Access Control & Security Model

4.1 Clearance Levels

Access control is enforced at the API/Tunnel level before any file operation is permitted.

Level Designation Description

1 Public General visibility.
5 Internal Standard operational data.
7 Secret Sensitive/restricted data.
10 Top Secret Executive/Admin only.

Table 2: Integer-based Clearance Levels

Logic: Read Access: if User.AccessLevel >= File.MinAccessLevel

4.2 User Management

Only userswith role="admin" can invoke add_user, update_user, reset_password, or delete_user.

5 Data Persistence & Hygiene

5.1 Database Schema

Operational data is stored in vault_metadata.db:

• users: Stores usernames, roles, access levels, and the uniquewrappedMaster Key for that
user.

• files: Stores randomized stored_name (e.g., enc_183471.dat) and metadata.

• Privacy Upgrade: The original_name column is encrypted with the Master Key to prevent
metadata leakage if the DB file is stolen.

• audit_log: Immutable log of actions (LOGIN, IMPORT, EXPORT, DELETE).

5.2 Security Measures

• Storage Location: ./secure_storage/

• Auto-Locking: After any write operation, the system calls os.Chmod(path, 0400) (Read-
Only) to prevent accidental deletion by the OS.

• Secure Deletion: When deleting via the app:

5

1. chmod 0600 (Unlock).

2. Overwrite content with cryptographic noise (1 pass).

3. os.Remove (Unlink).

• Memory Hygiene: The application explicitly zeroes out the Master Key (SecureZero) upon
logout or shutdown to minimize RAM footprint.

6

