IronClad Vault (Enterprise Edition)
Technical Specification v4.4.3

Architecture: Local-First / Hybrid Client-Server

November 26, 2025

Abstract

Overview: IronClad Vault is a secure, high-performance file storage system designed for
environments requiring strict data sovereignty (e.g., legal, healthcare, defense). Operating
on a Zero-Trust, Local-First model, it eschews cloud dependencies in favor of a custom TCP
tunneling protocol, hierarchical Role-Based Access Control (RBAC), and a physical “Megakey”
recovery mechanism.

Contents

1 System Architecture
1.1 Operational Modes e e e e
1.2 Data Flow Architecture e

2 Cryptographic Standards
2.1 Key Wrapping Architecture e
2.2 Megakey Mechanism e e e

3 Networking & Tunneling Protocol
3.1 Connection Handshake
3.2 Binary Packet Structure e e e
3.3 Chunked Transferfor LargeFiles

4 Access Control & Security Model
4.1 Clearancelevels e
4.2 UserManagement e e e e e

5 Data Persistence & Hygiene
51 DatabaseSchema e
5.2 Security Measures e e e e

1 System Architecture

The system is built in Go (Golang) and operates in three distinct modes using a single binary
executable.

1.1 Operational Modes

+ Desktop Mode: A standalone GUI application using the Fyne toolkit for local file manage-
ment.

+ Sentinel Server (Headless): A GUI-wrapped daemon that unlocks the vault in memory
and listens for secure remote connections.

+ Remote Client: A lightweight GUI client that connects to the Sentinel via an encrypted
TCP tunnel.

1.2 Data Flow Architecture

The system follows two primary data paths depending on the user’s connection method:

Local Desktop Path

Drag & Drop Stream (64KB Chunks

User ————— GUI Client
cure Storage (Disk)

Encrypted Blob
_—

), AES-256-GCM Engine Se-

Remote Admin Path

TCP Tunnel Decrypt (RAM) Re-Encrypt (Session Key)

Remote User ———— Sentinel Server ——————— Memory Buffer
Encrypted Traffic
—_—

Tunnel Stream Remote User

2 Cryptographic Standards

IronClad adheres to modern cryptographic standards, prioritizing authenticated encryption and
memory hardness.

« Data Encryption: AES-256-GCM (Galois/Counter Mode). Provides both confidentiality and
integrity.

+ Key Derivation (Passwords): Argon2id (Time=2, Memory=64MB, Threads=4). Resists GPU/A-
SIC brute-force attacks.

+ Key Derivation (Megakey): SHA-256. The 1MB entropy file is hashed to produce a 32-byte
Key Encryption Key (KEK).

« Randomness: crypto/rand (OS-level CSPRNG) is used for all Nonce and Key generation.

2.1 Key Wrapping Architecture

The system utilizes a hierarchical key wrapping strategy:

1. Master Vault Key (MVK): A random 32-byte AES key generated at setup. This key encrypts
all files and metadata. It never touches the disk in plain text.

2. User KEK: Derived from the user’s password via Argon2id. Used to encrypt the MVK for
storage in the users table.

3. Megakey KEK: Derived from the 1TMB recovery file via SHA-256. Used to encrypt the MVK
for emergency recovery.

2.2 Megakey Mechanism

To prevent lockout without backdoors, a 1,048,576-byte (1MB) binary file is generated during
setup.

+ Storage: Saved only to the user’s external storage. Never stored inside the vault.

+ Unlock Process: The server reads the file, hashes it to 32 bytes, and attempts to decrypt
the wrapped Master Key stored in the configuration.

3 Networking & Tunneling Protocol

To bypass complexity and vulnerabilities associated with self-signed HTTPS certificates in local
intranets, IronClad implements a custom Secure TCP Tunnel on port 9000.

3.1 Connection Handshake
1. Sentinel Start: Server generates a random 32-byte Session Key (displayed in GUI log).
2. Connection: Client connects via raw TCP.

3. Authentication: The client must possess the Session Key (Pre-Shared Key model) to com-
municate.

3.2 Binary Packet Structure

Every transmission (Request or Response) follows this strict binary format:

Segment Size Description

Length 4 Bytes uint32 (Big Endian) length of the following
payload.

Nonce 12 Bytes Random AES-GCM Nonce (unique per
packet).

Ciphertext Variable AES-256-GCM encrypted payload (JSON).

Table 1: TCP Packet Format

3.3 Chunked Transfer for Large Files

To handle files larger than available RAM (e.g., 10GB video), the system uses a streaming ap-
proach:

1. Command: Client sends get_file or upload_file.
2. Metadata Exchange: Parties exchange JSON metadata (Filename, Size).

3. Stream Loop:

+ Sender reads 64KB from disk.

+ Decrypts file from storage (Master Key).

* Re-encrypts chunk for tunnel (Session Key).

+ Transmits JSON packet: {"chunk": "BASE64_STRING"}.

4. Termination: Sender transmits {"status": "eof"}.

4 Access Control & Security Model

4.1 Clearance Levels

Access control is enforced at the API/Tunnel level before any file operation is permitted.

Level Designation Description

1 Public General visibility.

5 Internal Standard operational data.
7 Secret Sensitive/restricted data.
10 Top Secret Executive/Admin only.

Table 2: Integer-based Clearance Levels

Logic: Read Access: if User.AccessLevel >= File.MinAccessLevel

4.2 User Management

Onlyuserswithrole="admin" caninvoke add_user, update_user, reset_password, Or delete_user.

5 Data Persistence & Hygiene

5.1 Database Schema

Operational data is stored in vault_metadata.db:

* users: Stores usernames, roles, access levels, and the unique wrapped Master Key for that
user.

+ files: Stores randomized stored_name (e.g., enc_183471.dat) and metadata.

* Privacy Upgrade: The original_name column is encrypted with the Master Key to prevent
metadata leakage if the DB file is stolen.

+ audit_log: Immutable log of actions (LOGIN, IMPORT, EXPORT, DELETE).

5.2 Security Measures

+ Storage Location: ./secure_storage/

+ Auto-Locking: After any write operation, the system calls os.Chmod (path, 0400) (Read-
Only) to prevent accidental deletion by the OS.

+ Secure Deletion: When deleting via the app:

1. chmod 0600 (Unlock).
2. Overwrite content with cryptographic noise (1 pass).
3. os.Remove (Unlink).

+ Memory Hygiene: The application explicitly zeroes out the Master Key (SecureZero) upon
logout or shutdown to minimize RAM footprint.

