
IronClad Kernel Guardian 
Comprehensive Operations Manual v2.0 
Document Classification: Technical / Operational 
Target Audience: System Administrators, Security Operations Centers (SOC), Kernel 
Engineers Date: November 2025 

Table of Contents 
1.​ Chapter 1: The IronClad Philosophy 

○​ 1.1 The Active Defense Paradigm 
○​ 1.2 Why eBPF? The Kernel Advantage 
○​ 1.3 The "Zero-Downtime" Imperative 

2.​ Chapter 2: System Architecture Deep Dive 
○​ 2.1 The Split-Brain Model 
○​ 2.2 User Space Controller (The "Brain") 
○​ 2.3 Kernel Space Enforcer (The "Sentry") 
○​ 2.4 The Communications Bus (eBPF Maps & Rings) 

3.​ Chapter 3: Installation & Deployment Strategy 
○​ 3.1 Kernel Prerequisites & BTF 
○​ 3.2 The Universal Installer 
○​ 3.3 Manual Compilation & Toolchains 
○​ 3.4 Systemd Persistence & Daemonization 

4.​ Chapter 4: The Interface (TUI) Reference 
○​ 4.1 The Heads-Up Display (HUD) 
○​ 4.2 Tab 1: Vulnerability Matrix 
○​ 4.3 Tab 2: Event Stream & Forensics 
○​ 4.4 Tab 3: Process Manager & Kill Switch 
○​ 4.5 Tab 4: Network Firewall 

5.​ Chapter 5: Operational Mechanics (Under the Hood) 
○​ 5.1 The Scan Cycle: correlation logic 
○​ 5.2 The Kill Chain: How IronClad Intercepts Execution 
○​ 5.3 The Ring Buffer: Nanosecond Telemetry 

6.​ Chapter 6: Operational Playbooks 
○​ 6.1 Scenario A: Active Exploitation Attempt 
○​ 6.2 Scenario B: Zero-Day Mitigation 
○​ 6.3 Scenario C: Handling False Positives 

7.​ Chapter 7: Troubleshooting & Diagnostics 
○​ 7.1 Kernel Headers & BTF Issues 
○​ 7.2 BPF Verifier Errors 
○​ 7.3 Performance Tuning 



Chapter 1: The IronClad Philosophy 
1.1 The Active Defense Paradigm 

Traditional security tools (Antivirus, EDR) operate on a "Detection" basis. They scan files on 
disk or monitor logs after an event has occurred. This introduces a latency gap—the time 
between an attacker executing a payload and the defender noticing it. 
IronClad operates on an Active Defense paradigm. It assumes that the perimeter has already 
been breached and focuses on denial of capability. Instead of asking "Is this file malicious?", 
IronClad asks "Is this process allowed to execute new code?" 
By sitting directly on the execution path in the kernel, IronClad transforms the OS from a 
passive victim into an active combatant. 
 

1.2 Why eBPF? The Kernel Advantage 

eBPF (Extended Berkeley Packet Filter) allows us to run sandboxed programs inside the Linux 
kernel without changing kernel source code or loading risky kernel modules. 

●​ Safety: The eBPF Verifier ensures our code cannot crash the kernel. 
●​ Visibility: We can see every system call, every network packet, and every process 

spawn. 
●​ Speed: eBPF programs are JIT-compiled into native machine code, running at CPU 

speed. 
 

1.3 The "Zero-Downtime" Imperative 

Patching a critical vulnerability (like Log4Shell or a glibc exploit) usually requires restarting 
services or rebooting servers. In high-availability environments, this downtime is costly. 
IronClad provides Virtual Patching. By blocking the specific exploit triggers or the vulnerable 
process's ability to fork/exec, you can secure the system immediately without restarting 
anything, buying time for a proper patch window. 

 

 

 
 



Chapter 2: System Architecture Deep Dive 
IronClad uses a "Split-Brain" architecture to balance flexibility (User Space) with raw power 
(Kernel Space). 
2.1 The Split-Brain Model 

The application consists of two distinct components that run asynchronously but share 
memory maps. 

1.​ ironclad (Go Binary): Runs in user space. Handles UI, parsing CSVs, resolving PIDs, and 
high-level logic. 

2.​ vuln_detector.o (eBPF Object): Runs in kernel space. Hooks system calls and enforces 
decisions made by the Go binary. 

2.2 User Space Controller (The "Brain") 

Located in main.go, scanner/, and ui/. 
●​ Scanner Engine: Queries dpkg (Debian/Ubuntu) or rpm (RHEL/CentOS) databases to 

build a software inventory. 
●​ Exploit Correlator: Compares the inventory against the local exploitdb CSV using fuzzy 

string matching (e.g., matching "OpenSSH 8.2p1" against "OpenSSH < 8.5"). 
●​ Map Manager: Writes to the block_map eBPF map to update the "Kill List." 

2.3 Kernel Space Enforcer (The "Sentry") 

Located in ebpf_src/vuln_detector.bpf.c. 
●​ LSM Hook: We attach to lsm/bprm_check_security. This Linux Security Module hook is 

triggered whenever a process calls execve() (tries to run a program). 
●​ Atomic Lookup: It performs a specific O(1) lookup: Does the current PID exist in the 

Block Map? 
●​ Decision: 

○​ Yes: Return -EPERM (Operation Not Permitted). The kernel kills the request 
immediately. 

○​ No: Return 0 (Allow). The process continues normally. 
2.4 The Communications Bus 

●​ block_map (BPF_MAP_TYPE_HASH): 
○​ Key: u32 (PID) 
○​ Value: u8 (Status Flag) 
○​ Flow: User Space writes -> Kernel Space reads. 

●​ events (BPF_MAP_TYPE_RINGBUF): 
○​ Data: struct event_t { pid, type, comm } 
○​ Flow: Kernel Space writes -> User Space reads. 
○​ Advantage: Ring Buffers are shared memory regions that allow the kernel to push 

data to user space without the overhead of system calls or polling. 



Chapter 3: Installation & Deployment Strategy 
3.1 Kernel Prerequisites & BTF 

IronClad requires BTF (BPF Type Format) information to be exposed by the kernel. This 
allows our C code to be "Portable" (CO-RE: Compile Once, Run Everywhere) by understanding 
the memory layout of kernel structures dynamically. 

●​ Check Support: Run ls /sys/kernel/btf/vmlinux. If this file exists, you are ready. 
●​ Missing BTF: On older kernels (pre-5.8) or stripped kernels, you may need to install 

linux-tools-generic and bpftool to generate a header file manually (handled by our 
installer). 

3.2 The Universal Installer 

The provided install.sh automates the dependency hell often associated with eBPF. 
1.​ Header Resolution: It effectively runs apt-get install linux-headers-$(uname -r). This is 

critical because eBPF needs the exact headers for your running kernel version. 
2.​ Toolchain: It installs clang (the compiler used for BPF) and llvm. 
3.​ Compilation: It compiles vuln_detector.bpf.c on the target machine. This ensures 

perfect compatibility with the host kernel. 
3.3 Systemd Persistence 

To function as a true guardian, IronClad installs a systemd unit at 
/etc/systemd/system/ironclad.service. 

●​ Restart Policy: Restart=always ensures that if the process crashes, it is immediately 
revived. 

●​ User: Runs as root (Required for BPF map access). 
●​ Logs: Output is redirected to journalctl. View with journalctl -u ironclad -f. 

 

 

Chapter 4: The Interface (TUI) Reference 
4.1 The Heads-Up Display (HUD) 

The top bar displays critical system health: 
●​ CPU Load: High load might indicate an active crypto-mining infection or scanning 

activity. 
●​ RAM Usage: High RAM usage might indicate a memory leak or buffer overflow attempt. 
●​ Root Status: A warning appears if the dashboard is merely "viewing" (non-root) and 

cannot "act" (mitigate). 



4.2 Tab 1: Vulns (Vulnerabilities) 

This is the strategic view. 
●​ Data Source: Cross-reference of scanner.ScanSystem() (installed pkgs) vs 

scanner.LoadExploits() (CSV). 
●​ Visuals: 

○​ Red: Critical exploits (Remote Code Execution, Root Privilege Escalation). 
○​ Yellow: Medium risk (DoS, Local Info Disclosure). 

●​ Workflow: Identify a threat here -> Press M to activate defenses. 
4.3 Tab 2: Logs & Forensics 

This is the tactical view. 
●​ Initialization Logs: Confirm that BPF maps are loaded and linked. 
●​ Mitigation Logs: "MATCH: Exploit X mapped to PID Y". This confirms the logic engine is 

working. 
●​ ALARM Logs: "⚠️ ALARM: Blocked execution attempt...". This is the most important 

line. It means an attack was stopped. It tells you who tried to execute (PID) and what 
they tried to run (Comm). 

4.4 Tab 3: Process Manager 

This is the operational view. 
●​ Real-time: Updates every second. 
●​ Controls: 

○​ K (Kill): Standard syscall.Kill(pid, syscall.SIGKILL). Use for non-critical processes 
behaving badly. 

○​ B (Block): The "IronClad Special". Adds the PID to the BPF map. Use this for 
critical services (like a web server) that you suspect are compromised but cannot 
shut down. It freezes their ability to spawn shells while keeping the main process 
alive to serve requests. 

4.5 Tab 4: Network Firewall 

This is the perimeter view. 
●​ Visibility: Shows all active sockets. 
●​ Correlation: If you see a connection to a suspicious foreign IP, you can immediately 

identify the PID owning it and hit B to block that PID from doing further harm. 

 

 

 



Chapter 5: Operational Mechanics (Under the Hood) 
5.1 The Scan Cycle 

1.​ Trigger: On startup and every 6 hours (or manual U press). 
2.​ Inventory: The Go binary executes dpkg-query -W. It parses the text output into struct 

Package { Name, Version }. 
3.​ Database: It reads /opt/exploitdb/files_exploits.csv. This file contains ~45,000 rows. 
4.​ Fuzzy Matcher: It iterates through the CSV. It checks if Exploit.Description contains 

Package.Name AND Package.Version. 
○​ Optimization: It skips exploits marked for "Windows", "MacOS", or "Hardware". 

5.2 The Kill Chain (LSM Hook) 

When you press M (Mitigate): 
1.​ Resolver: The Go app takes the list of vulnerable package names (e.g., "openssh"). 
2.​ PID Finder: It scans /proc to find PIDs whose comm (command name) matches the 

package (e.g., processes named "sshd"). 
3.​ Map Update: It performs a bpf_map_update_elem syscall. 

○​ Key: PID (1234) 
○​ Value: 1 

4.​ Kernel Check: 
○​ Process 1234 calls execve("/bin/bash", ...). 
○​ The CPU switches to Kernel Mode. 
○​ The lsm/bprm_check_security hook fires. 
○​ The BPF program hashes PID 1234 and looks it up in the map. 
○​ It finds 1. 
○​ It executes return -1. 
○​ The kernel sees the error and aborts the system call. 
○​ Process 1234 receives an "Operation not permitted" error. 

5.3 The Ring Buffer: Nanosecond Telemetry 

When the block happens: 
1.​ The BPF program reserves space in the events Ring Buffer. 
2.​ It writes the metadata (PID, Command Name, Timestamp). 
3.​ It submits the event. 
4.​ The Go app (running ebpf.StartEventLoop) wakes up instantly. 
5.​ It decodes the binary data into a Go struct. 
6.​ It prints the "ALARM" line to the UI. 
●​ Note: This happens in microseconds, far faster than reading log files. 

 



Chapter 6: Operational Playbooks 
6.1 Scenario A: Active Exploitation Attempt 

Situation: You see high CPU usage on your web server (nginx). You suspect a shell injection 
attack. 

1.​ Open IronClad: sudo ironclad. 
2.​ Check Tab 3 (Procs): Find the nginx worker process with high CPU. 
3.​ Action: Highlight the process and press B (Block). 
4.​ Monitor Tab 2 (Logs): Watch for "ALARM: Blocked execution attempt". 

○​ Result: If the attacker tries to spawn a reverse shell or a crypto-miner, IronClad 
blocks it. The web server continues serving legitimate HTTP requests (which don't 
require execve), but the RCE is neutralized. 

6.2 Scenario B: Zero-Day Mitigation 

Situation: A new vulnerability is announced for sudo (like PwnKit), but no patch is available 
yet. 

1.​ Open IronClad. 
2.​ Tab 3 (Procs): Locate any running suspicious shells or services. 
3.​ Pre-emptive Block: You can proactively block non-essential services that might be 

vectors. 
4.​ Update: Press U to pull the latest ExploitDB. If the exploit has been added to the DB, 

IronClad will now flag your sudo version in Tab 1. 
5.​ Mitigate: Press M. IronClad will automatically lock down the vulnerable processes. 

6.3 Scenario C: Handling False Positives 

Situation: You blocked a process, but now it can't do its legitimate job (e.g., a build server 
that needs to compile code). 

1.​ Identify: The logs show "ALARM: Blocked..." for a legitimate action. 
2.​ Resolve: Currently, IronClad v2.0 requires a restart to clear the BPF maps (systemctl 

restart ironclad). 
○​ Future v2.1 Feature: An "Unblock" key (U in Tab 3) is planned to remove PIDs from 

the map dynamically. 

 

 

 



Chapter 7: Troubleshooting & Diagnostics 
7.1 Kernel Headers & BTF Issues 

Symptom: fatal error: 'vmlinux.h' file not found. 
Cause: The compiler cannot find the type definitions for your running kernel. 
Fix: 

1.​ Install bpftool and linux-headers-$(uname -r). 
2.​ Re-run the installer. It will attempt to dump the BTF data again. 
3.​ If all else fails, the installer generates a "Stub" header that works for 90% of cases but 

may lack deep inspection features. 
7.2 BPF Verifier Errors 

Symptom: program check_exec: load program: permission denied or invalid access to map. 
Cause: The Linux Kernel BPF Verifier rejected the code because it deemed it "unsafe" (e.g., 
potential infinite loop or invalid memory access). 
Fix: This usually indicates a bug in the C code or an incompatibility with a very old kernel (< 
5.7). Upgrade your kernel. 
7.3 Performance Tuning 

IronClad is designed to be lightweight. However, the Ring Buffer size (256 * 1024 bytes) is 
fixed. 


	IronClad Kernel Guardian 
	Comprehensive Operations Manual v2.0 
	Table of Contents 
	Chapter 1: The IronClad Philosophy 
	1.1 The Active Defense Paradigm 
	 
	1.2 Why eBPF? The Kernel Advantage 
	 
	1.3 The "Zero-Downtime" Imperative 

	 
	 
	 
	Chapter 2: System Architecture Deep Dive 
	2.1 The Split-Brain Model 
	2.2 User Space Controller (The "Brain") 
	2.3 Kernel Space Enforcer (The "Sentry") 
	2.4 The Communications Bus 

	Chapter 3: Installation & Deployment Strategy 
	3.1 Kernel Prerequisites & BTF 
	3.2 The Universal Installer 
	3.3 Systemd Persistence 

	 
	 
	Chapter 4: The Interface (TUI) Reference 
	4.1 The Heads-Up Display (HUD) 
	4.2 Tab 1: Vulns (Vulnerabilities) 
	4.3 Tab 2: Logs & Forensics 
	4.4 Tab 3: Process Manager 
	4.5 Tab 4: Network Firewall 

	 
	 
	 
	Chapter 5: Operational Mechanics (Under the Hood) 
	5.1 The Scan Cycle 
	5.2 The Kill Chain (LSM Hook) 
	5.3 The Ring Buffer: Nanosecond Telemetry 

	 
	Chapter 6: Operational Playbooks 
	6.1 Scenario A: Active Exploitation Attempt 
	6.2 Scenario B: Zero-Day Mitigation 
	6.3 Scenario C: Handling False Positives 

	 
	 
	 
	Chapter 7: Troubleshooting & Diagnostics 
	7.1 Kernel Headers & BTF Issues 
	7.2 BPF Verifier Errors 
	7.3 Performance Tuning 



