
Ironclad Kernel
The Next-Generation eBPF Security Platform

Technical Whitepaper & Architecture Guide

Architecture: Split-Plane (eBPF Data Plane + Go Control Plane)

November 26, 2025

Abstract

Executive Summary: Ironclad Kernel addresses the limitations of traditional perimeter fire-
walls by moving security enforcement directly into the Linux Kernel using eBPF (Extended
Berkeley Packet Filter). This approach enables identity-awaremicro-segmentation, zero-trust
enforcement, anddeepobservability of encrypted traffic (TLS)without theperformancepenal-
ties of userspace proxies.

1

Contents

1 Introduction 3

2 Core Architecture 3
2.1 The Data Plane (Kernel Space) . 3

2.1.1 Key Kernel Hooks . 3
2.2 The Control Plane (User Space) . 3

3 Threat Mitigation Capabilities 3
3.1 Identity-Based Zero Trust . 3
3.2 Geo-Fencing with LPM Tries . 4
3.3 TLS Inspection (“God Mode”) . 4
3.4 Volumetric DDoS Protection . 4

4 Performance & Specifications 4
4.1 Benchmarks (Estimated) . 4
4.2 Operational Excellence . 4

2

1 Introduction

In the modern threat landscape, adversaries bypass Layer 3/4 controls using legitimate ports
(80/443). Once inside, they utilize standard binaries for lateral movement and C2 channels.
Ironclad Kernel mitigates this by enforcing security policies based on Process Identity (comm,
PID) rather than just IP addresses.

2 Core Architecture

Ironclad operates on a high-performance Split-Plane Architecture.

2.1 The Data Plane (Kernel Space)

The enforcement engine runs entirely within the Linux Kernel as JIT-compiled eBPF bytecode.
This ensures tamper resistance and minimal latency.

2.1.1 Key Kernel Hooks

Hook Point Functionality

cgroup/connect4 Primary Enforcement. Triggers on every TCP/UDP con-
nection attempt (connect() syscall). Blocks malicious
traffic before a SYN packet is generated.

uprobe/SSL_write TLS Visibility. Hooks into OpenSSL libraries to capture
plaintext data before encryption, enabling inspection
without MitM certificates.

kprobe/tcp_sendmsg Telemetry. Captures traffic volume for bandwidth ac-
counting and DNS query inspection at the socket layer.

Table 1: eBPF Instrumentation Points

2.2 The Control Plane (User Space)

A high-concurrency Go daemonmanages the lifecycle of eBPF programs.

• Map Management: Dynamically updates Kernel Maps (Hash Maps, LPM Tries) with rules
and threat feeds.

• Event Stream: Consumes theRingBuffer sharedmemory structure for high-performance
logging without perf_event overhead.

• Threat Intelligence: Asynchronously fetches feeds (e.g., Abuse.ch) and pushes compiled
binary keys to the kernel.

3 Threat Mitigation Capabilities

3.1 Identity-Based Zero Trust

Unlike traditional firewalls that see packets, Ironclad sees processes.

• Context: ”Process /usr/bin/curl (PID 1234) attempting to reach 8.8.8.8”.

3

• Policy: Allows apt-get to update while blocking malicious scripts attempting the same
connection.

3.2 Geo-Fencing with LPM Tries

Blocking entire countries requires checking IPs against thousands of CIDR ranges.

• Challenge: Linear scanning is O(N) and too slow for the kernel.

• Solution: Ironclad uses Longest Prefix Match (LPM) Triemaps.

• Performance: Lookup complexity isO(1) relative to rule count (boundby 32-bit key length),
enabling 50,000+ subnet blocks with nanosecond latency.

3.3 TLS Inspection (“God Mode”)

Ironclad solves the ”Dark Data” problem of encrypted C2 channels.

• Technique: User Probes (uprobes) attached to SSL_write in libssl.so.

• Result: Captures full HTTP requests (Headers, URL, Body) in plaintext.

• Privacy: Data is streamed only to the local Ring Buffer for analysis; it is never stored ex-
ternally.

3.4 Volumetric DDoS Protection

• Mechanism: Token Bucket rate limiter in eBPF maps.

• Enforcement: Drops connect() syscalls immediately if the rate exceeds thresholds (e.g.,
100 conn/s), preventing local resource exhaustion.

4 Performance & Specifications

Designed for high-density Kubernetes nodes and Edge devices.

4.1 Benchmarks (Estimated)

• CPU Overhead: < 1% increase at 10Gbps throughput.

• Latency: < 500 nanoseconds added per connection attempt.

• Memory Footprint: ∼20MB (Daemon) + ∼50MB (Kernel Maps).

4.2 Operational Excellence

• Boot Race Protection: Uses After-network-online.target to prevent startup failures be-
fore threat feeds download.

• Fail-Safe Mode: If the Userspace Daemon crashes, eBPF programs remain active in the
kernel, persisting protection.

• Single Binary: Statically linked (Daemon + CLI + Web UI + Bytecode). No external depen-
dencies like Python or Libpcap.

• Unified Config: Managed via a single YAML file: /etc/go-ebpf-firewall/rules.yaml.

4

