IronClad Kernel Guardian

Technical White Paper v2.0

Date: November 2025
Author: IronClad Development Team
Architecture: eBPF / Golang / Linux Security Modules (LSM)

1. Executive Summary

In the modern threat landscape, the time gap between a vulnerability disclosure (CVE) and
the application of a patch is the "Danger Zone." Traditional Endpoint Detection and Response
(EDR) tools often rely on signature matching user-space behavior, which can be bypassed or
disabled by rootkits.

IronClad Kernel Guardian is a next-generation Active Defense System that operates
natively within the Linux kernel. By leveraging eBPF (Extended Berkeley Packet Filter) and
LSM (Linux Security Modules), IronClad provides a programmable, unbypassable security
layer that can quarantine vulnerable processes in real-time, effectively shielding unpatched
systems from exploitation until a proper fix is applied.

2. The Problem: The User-Space Gap

Traditional security tools face inherent limitations:
1. Performance Overhead: Constant context switching between kernel and user space to
analyze system calls degrades server performance.
2. Race Conditions: By the time a user-space agent detects a malicious execve() call, the
process may have already executed.
3. Tamper Susceptibility: Attackers with root privileges can often kill user-space security
agents (blindfolding the defender).
IronClad addresses these issues by moving the enforcement logic into the kernel itself.

3. Solution Architecture

IronClad employs a split-brain architecture designed for stability and speed.
3.1 The Enforcer (Kernel Space - eBPF)

The core of IronClad is a compiled C program (vuln_detector.bpf.c) loaded into the kernel.

e Technology: eBPF (safe, sandboxed virtual machine within the Linux kernel).

e Hook Point: Ism/bprm_check_security. This specific LSM hook triggers before a
process is allowed to execute a new binary.

e Mechanism: It checks a high-performance Hash Map (BPF_MAP_TYPE_HASH) to see if
the calling PID is marked as "Quarantined."

e Action: If a match is found, IronClad returns -EPERM, causing the kernel to deny
execution immediately. The malicious payload never runs.

3.2 The Intelligence Engine (User Space - Go)

The control plane is written in Go, providing logic, correlation, and user interaction.
e Scanner: Uses gopsutil and direct system calls to map running processes and installed
packages (dpkg/rpm) to known vulnerabilities.
e ExploitDB Integration: Parses the local exploitdb CSV database to correlate installed
software versions with known exploit IDs.
e Telemetry Aggregator: Reads from an eBPF Ring Buffer (BPF_MAP TYPE_RINGBUF) to
receive high-performance event streams from the kernel without polling.
3.3 The Dashboard (TUI)

A terminal-based Ul (using the Bubble Tea framework) provides real-time situational
awareness, allowing operators to visualize threats, system resources, and mitigation status
without leaving the terminal.

4. Key Capabilities

Feature Description Technical Implementation

Zero-Downtime Mitigation |Apply virtual patches to block |eBPF Map Updates (Atomic)
exploitation without restarting
services.

Process Quarantine Prevent specific PIDs from LSM Hook on execve
spawning shells (RCE
protection).

Real-Time Telemetry Nanosecond-precision logging BPF Ring Buffer
of blocked attempts.

Auto-Updating Logic Automatically pulls new Git Integration with ExploitDB
vulnerability signatures.

Low Overhead Minimal CPU impact (<1%). JIT-compiled BPF bytecode

5. Operational Workflow

1. Initialization: IronClad starts as a systemd daemon (ironclad.service). It compiles the
eBPF agent JIT (Just-In-Time) tailored to the specific kernel headers of the host
machine.

2. Scan Phase: The Go engine scans the process tree. It identifies, for example, vsftpd
2.3.4 running on PID 882.

3. Correlation: The engine queries the local ExploitDB. It finds a match: "vsftpd 2.3.4 -
Backdoor Command Execution".

4. Mitigation (The "Block"):

o The operator (or auto-policy) triggers mitigation.
o IronClad writes PID 882 into the kernel block_map.

5. Enforcement:

o An attacker sends the backdoor trigger to vsftpd.

o The vulnerable process attempts to spawn /bin/sh.

o The IronClad eBPF Probe intercepts the call inside the kernel.

o It sees PID 882 in the map.

o It denies the execution and submits an alert event to the Ring Buffer.
6. Alerting: The dashboard flashes a "QUARANTINED" alert log.

6. System Requirements

e OS: Linux (Ubuntu 20.04+, Debian 11+, Fedora 34+, Arch).
e Kernel: 5.7+ (Required for BPF LSM support).

e Privileges: Root (Required to load eBPF programs).

e Dependencies: clang, llvm, libbpf.
F

7. Future Roadmap

e Network Filtering: Integration with XDP (eXpress Data Path) to drop malicious packets
at the NIC level before they reach the OS stack.
e Container Awareness: Namespace filtering to protect specific Docker/Kubernetes
pods.
e Heuristic Analysis: eBPF-based anomaly detection for O-day threats based on syscall
patterns (e.g., "Why is the web server trying to read /etc/shadow?").
IronClad Kernel Guardian represents the shift from reactive security (cleaning up after a
hack) to proactive, kernel-enforced immunity. By controlling the kernel, you control the
battlefield.

	IronClad Kernel Guardian
	Technical White Paper v2.0
	1. Executive Summary
	2. The Problem: The User-Space Gap
	3. Solution Architecture
	3.1 The Enforcer (Kernel Space - eBPF)
	3.2 The Intelligence Engine (User Space - Go)
	3.3 The Dashboard (TUI)

	4. Key Capabilities
	5. Operational Workflow
	6. System Requirements
	7. Future Roadmap

