
IronClad Kernel Guardian 
Technical White Paper v2.0 
Date: November 2025 
Author: IronClad Development Team 
Architecture: eBPF / Golang / Linux Security Modules (LSM) 
1. Executive Summary 

In the modern threat landscape, the time gap between a vulnerability disclosure (CVE) and 
the application of a patch is the "Danger Zone." Traditional Endpoint Detection and Response 
(EDR) tools often rely on signature matching user-space behavior, which can be bypassed or 
disabled by rootkits. 
IronClad Kernel Guardian is a next-generation Active Defense System that operates 
natively within the Linux kernel. By leveraging eBPF (Extended Berkeley Packet Filter) and 
LSM (Linux Security Modules), IronClad provides a programmable, unbypassable security 
layer that can quarantine vulnerable processes in real-time, effectively shielding unpatched 
systems from exploitation until a proper fix is applied. 
2. The Problem: The User-Space Gap 

Traditional security tools face inherent limitations: 
1.​ Performance Overhead: Constant context switching between kernel and user space to 

analyze system calls degrades server performance. 
2.​ Race Conditions: By the time a user-space agent detects a malicious execve() call, the 

process may have already executed. 
3.​ Tamper Susceptibility: Attackers with root privileges can often kill user-space security 

agents (blindfolding the defender). 
IronClad addresses these issues by moving the enforcement logic into the kernel itself. 
3. Solution Architecture 

IronClad employs a split-brain architecture designed for stability and speed. 
3.1 The Enforcer (Kernel Space - eBPF) 

The core of IronClad is a compiled C program (vuln_detector.bpf.c) loaded into the kernel. 
●​ Technology: eBPF (safe, sandboxed virtual machine within the Linux kernel). 
●​ Hook Point: lsm/bprm_check_security. This specific LSM hook triggers before a 

process is allowed to execute a new binary. 
●​ Mechanism: It checks a high-performance Hash Map (BPF_MAP_TYPE_HASH) to see if 

the calling PID is marked as "Quarantined." 
●​ Action: If a match is found, IronClad returns -EPERM, causing the kernel to deny 

execution immediately. The malicious payload never runs. 



3.2 The Intelligence Engine (User Space - Go) 

The control plane is written in Go, providing logic, correlation, and user interaction. 
●​ Scanner: Uses gopsutil and direct system calls to map running processes and installed 

packages (dpkg/rpm) to known vulnerabilities. 
●​ ExploitDB Integration: Parses the local exploitdb CSV database to correlate installed 

software versions with known exploit IDs. 
●​ Telemetry Aggregator: Reads from an eBPF Ring Buffer (BPF_MAP_TYPE_RINGBUF) to 

receive high-performance event streams from the kernel without polling. 
3.3 The Dashboard (TUI) 

A terminal-based UI (using the Bubble Tea framework) provides real-time situational 
awareness, allowing operators to visualize threats, system resources, and mitigation status 
without leaving the terminal. 
4. Key Capabilities 

Feature Description Technical Implementation 
Zero-Downtime Mitigation Apply virtual patches to block 

exploitation without restarting 
services. 

eBPF Map Updates (Atomic) 

Process Quarantine Prevent specific PIDs from 
spawning shells (RCE 
protection). 

LSM Hook on execve 

Real-Time Telemetry Nanosecond-precision logging 
of blocked attempts. 

BPF Ring Buffer 

Auto-Updating Logic Automatically pulls new 
vulnerability signatures. 

Git Integration with ExploitDB 

Low Overhead Minimal CPU impact (<1%). JIT-compiled BPF bytecode 

5. Operational Workflow 

1.​ Initialization: IronClad starts as a systemd daemon (ironclad.service). It compiles the 
eBPF agent JIT (Just-In-Time) tailored to the specific kernel headers of the host 
machine. 

2.​ Scan Phase: The Go engine scans the process tree. It identifies, for example, vsftpd 
2.3.4 running on PID 882. 

3.​ Correlation: The engine queries the local ExploitDB. It finds a match: "vsftpd 2.3.4 - 
Backdoor Command Execution". 

4.​ Mitigation (The "Block"): 
○​ The operator (or auto-policy) triggers mitigation. 
○​ IronClad writes PID 882 into the kernel block_map. 

 



5.​ Enforcement: 
○​ An attacker sends the backdoor trigger to vsftpd. 
○​ The vulnerable process attempts to spawn /bin/sh. 
○​ The IronClad eBPF Probe intercepts the call inside the kernel. 
○​ It sees PID 882 in the map. 
○​ It denies the execution and submits an alert event to the Ring Buffer. 

6.​ Alerting: The dashboard flashes a "QUARANTINED" alert log. 
6. System Requirements 

●​ OS: Linux (Ubuntu 20.04+, Debian 11+, Fedora 34+, Arch). 
●​ Kernel: 5.7+ (Required for BPF LSM support). 
●​ Privileges: Root (Required to load eBPF programs). 
●​ Dependencies: clang, llvm, libbpf. 

7. Future Roadmap 

●​ Network Filtering: Integration with XDP (eXpress Data Path) to drop malicious packets 
at the NIC level before they reach the OS stack. 

●​ Container Awareness: Namespace filtering to protect specific Docker/Kubernetes 
pods. 

●​ Heuristic Analysis: eBPF-based anomaly detection for 0-day threats based on syscall 
patterns (e.g., "Why is the web server trying to read /etc/shadow?"). 

IronClad Kernel Guardian represents the shift from reactive security (cleaning up after a 
hack) to proactive, kernel-enforced immunity. By controlling the kernel, you control the 
battlefield. 


	IronClad Kernel Guardian 
	Technical White Paper v2.0 
	1. Executive Summary 
	2. The Problem: The User-Space Gap 
	3. Solution Architecture 
	3.1 The Enforcer (Kernel Space - eBPF) 
	3.2 The Intelligence Engine (User Space - Go) 
	3.3 The Dashboard (TUI) 

	4. Key Capabilities 
	5. Operational Workflow 
	6. System Requirements 
	7. Future Roadmap 



