
Rust Mastery Syllabus for Optimization, Heuristics, Simulation,
and ML

A 28-Week Mission Plan

August 16, 2025

How to Use This Syllabus

This roadmap is structured for a baseline of 6–8 hours/week (aggressive: 10–12 hours/week).
Each week includes concrete deliverables with □ checkboxes. A Gantt-style overview visually maps
the 28-week plan.

Primary Learning Objectives

• Become fluent in idiomatic Rust (ownership, borrowing, traits, lifetimes).
• Build numerical computing skills (linear algebra, statistics, numerical methods).
• Implement optimization heuristics and mathematical programming models.
• Create discrete-event and agent-based simulations with stochastic inputs.
• Integrate machine learning (classical and deep learning) into optimization/simulation pipelines.
• Scale with parallelism, async, and HPC techniques; profile and optimize.

Weekly Syllabus with Deliverables

Week Topics Activities Deliverables (check when complete)

1 Intro to Rust;
Ownership &
Borrowing

□ Read Chapters 1–4 of The Rust Programming
Language (The Book).

□ Install Rustup, Rust toolchain, and verify cargo.
□ Exercism: Hello World, Variables, Ownership (Rust
Track).
□ Mini: CLI echo tool with file input.

2 Structs, Enums,
Pattern Matching

□ Read Ch. 5–6 of The Book.

□ Build a Vector2D with AddMul ops and tests.
□ Rust By Example: Structs Enums (RBE).

1

https://doc.rust-lang.org/book/
https://exercism.org/tracks/rust
https://exercism.org/tracks/rust
https://doc.rust-lang.org/rust-by-example/


Week Topics Activities Deliverables (check when complete)

3 Traits, Generics,
Error Handling

□ Read Ch. 8–10 (collections, generics, traits).

□ Implement CLI calculator via traits; robust Result,
Option, and ?.
□ Add unit tests (cargo test).

4 Iterators, Modules,
Crates

□ Read Ch. 13–15.

□ CSV parser using csv crate; parse to records.
□ Add integration tests and benchmarking scaffold
(criterion).

5 ndarray Basics □ Read ndarray docs (arrays, slicing, broadcasting).
□ Implement dot product and matrix multiply; compare
naive vs. ndarray.
□ Export results to CSV.

6 nalgebra &
ndarray-linalg

□ Solve Ax = b by Gaussian elimination.

□ Compute eigenvalues & eigenvectors; validate on
symmetric matrix.
□ Compare ndarray vs. nalgebra ergonomics and speed.

7 Numerical Methods □ Newton–Raphson root finding with adaptive
tolerance.
□ Monte Carlo π with rand; CI on estimate.
□ Document numeric stability concerns.

8 Statistics □ Use statrs for Normal, Poisson, and sampling.
□ Bootstrap resampling for mean CI.
□ Produce summary plots (CSV + external plotting).

9 Simulated Annealing
& Hill Climbing

□ Implement SA & HC for multimodal functions.

□ Experiment with cooling schedules; log convergence.
□ Compare to baseline random search.

10 Genetic Algorithms
(TSP)

□ GA for TSP (10–20 nodes): selection, crossover,
mutation.
□ Parallelize fitness where possible.
□ Export tour length over generations.

11 LPMILP with
good_lp

□ Model a facility location or diet problem.

□ Evaluate solver backends & sensitivity analysis.

2



Week Topics Activities Deliverables (check when complete)

□ Validate with small integer instances.

12 argmin for
Continuous Opt.

□ Optimize Rosenbrock and Rastrigin.

□ Add simple bound constraints; stopping criteria.
□ Benchmark vs. your SA implementation.

13 RNG Deep Dive □ Custom seeded RNGs and distributions with rand.
□ Reproducibility harness for simulations.
□ Validate streams with simple tests.

14 Queueing (MM1) □ Discrete-event sim of MM1; collect wait times.
□ Compare empirical to theoretical L, W , Lq, Wq.
□ Sensitivity to arrivalservice rates.

15 Agent-Based
Epidemic

□ Agent model with SIR dynamics; stochastic
transitions.
□ Record time series; export CSV for plots.
□ Evaluate R0 scenarios.

16 Domain Simulation
(Maintenance)

□ Airline maintenance scheduling sim with stochastic
failures.
□ Resource constraints and downtime metrics.
□ Produce readiness KPIs.

17 ML with linfa □ K-means clustering; evaluate inertia & silhouette.
□ Logistic regression for classification.
□ Serialize models.

18 ML with smartcore □ Decision trees & random forests; cross-validation.
□ Feature importance; calibration.
□ Integrate predictions into a toy optimizer.

19 Deep Learning with
tch-rs

□ Load PyTorch model; run inference from Rust.

□ Measure latency & throughput.
□ Validate outputs against Python.

20 Pipeline Integration □ Demand forecasting → optimizationpolicy.

□ Closed-loop sim with ML-in-the-loop.
□ Document architecture.

21 Parallel Iterators
(rayon)

□ Parallelize GA population evaluation.

□ Verify determinism vs. speed tradeoffs.

3



Week Topics Activities Deliverables (check when complete)

□ Benchmark scaling.

22 Async (tokio) □ Async task runner for events; backpressure.
□ Logging and metrics.
□ Fault injection tests.

23 MPI (rsmpi) □ Distribute Monte Carlo across nodes.
□ Gatherreduce results.
□ Compare cluster vs. single-node.

24 Profiling &
Optimization

□ cargo-flamegraph hot paths.

□ Remove allocations in hot loops; [inline] when
helpful.
□ Record beforeafter benchmarks.

25 Capstone Planning □ Problem definition and KPIs.
□ Architecture diagram & tech stack.
□ Data model and validation plan.

26 Core Implementation □ Build optimization + simulation engine core.
□ Minimal CLI or API.
□ Unit and integration tests.

27 ML Integration □ Add prediction module; adaptive heuristics.
□ Scenario experiments and ablations.
□ Performance tuning.

28 Docs & Release □ Write README, user guide, examples.
□ Produce benchmark report.
□ Publish repo and release tag.

Crates and Tools (with Links)

• Rust Standard Docs: std
• The Book: doc.rust-lang.org/book
• Rust by Example: rust-by-example
• Exercism (Rust): exercism.org/tracks/rust
• ndarray: crates.io/crates/ndarray
• nalgebra: nalgebra.org
• ndarray-linalg: crates.io/crates/ndarray-

linalg
• statrs: docs.rs/statrs

• rand: crates.io/crates/rand
• good_lp: crates.io/crates/good_lp
• argmin: crates.io/crates/argmin
• linfa: github.com/rust-ml/linfa
• smartcore: crates.io/crates/smartcore
• tch-rs (PyTorch): github.com/LaurentMazare/tch-

rs
• burn (DL framework): github.com/burn-

rs/burn

4

https://doc.rust-lang.org/std/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/
https://exercism.org/tracks/rust
https://crates.io/crates/ndarray
https://nalgebra.org/
https://crates.io/crates/ndarray-linalg
https://crates.io/crates/ndarray-linalg
https://docs.rs/statrs/latest/statrs/
https://crates.io/crates/rand
https://crates.io/crates/good_lp
https://crates.io/crates/argmin
https://github.com/rust-ml/linfa
https://crates.io/crates/smartcore
https://github.com/LaurentMazare/tch-rs
https://github.com/LaurentMazare/tch-rs
https://github.com/burn-rs/burn
https://github.com/burn-rs/burn


• rayon: crates.io/crates/rayon
• tokio: tokio.rs
• rsmpi (MPI): crates.io/crates/rsmpi
• criterion (bench): crates.io/crates/criterion

• cargo-flamegraph: crates.io/crates/flamegraph
• This Week in Rust: this-week-in-rust.org
• Rust Users Forum: users.rust-lang.org

Recommended Books (Rust, OR, Heuristics, Simulation, ML)

Rust

• Programming Rust (2nd ed.), Jim Blandy, Jason Orendorff, and Leonora F. S. Tindall.
(O’Reilly)

• Rust for Rustaceans, Jon Gjengset. (No Starch Press)
• Rust Atomics and Locks, Mara Bos. (Manning) — for concurrency and performance.

Optimization and Heuristics

• Numerical Optimization, Jorge Nocedal and Stephen Wright. (Springer)
• Integer and Combinatorial Optimization, Nemhauser and Wolsey. (Wiley)
• Handbook of Metaheuristics, Gendreau and Potvin (eds.). (Springer)

Simulation

• Simulation Modeling and Analysis (5th ed.), Averill M. Law. (McGraw-Hill)
• Discrete-Event System Simulation, Banks, Carson, Nelson, Nicol. (Pearson)

Machine Learning

• Pattern Recognition and Machine Learning, Christopher M. Bishop. (Springer)
• The Elements of Statistical Learning, Hastie, Tibshirani, Friedman. (Springer)
• Deep Learning, Goodfellow, Bengio, Courville. (MIT Press)
• Reinforcement Learning: An Introduction (2nd ed.), Sutton and Barto. (MIT Press)

Weekly Time Guidance

• Baseline: 6–8 hrs/week (steady, retention-focused).
• Aggressive: 10–12 hrs/week (accelerated, add stretch tasks).
• Immersive: 15+ hrs/week (deep dive; add extra projects, open-source contributions).

Notes and Extensions

• Replace or augment any week with domain-specific tasks (e.g., Navy UnRep scheduling, airline
maintenance) without breaking the overall arc.

• Maintain a running CHANGELOG.md and BENCHMARKS.md in your repo for professional rigor.
• Consider adding CI (GitHub Actions) for cargo fmt, cargo clippy, cargo test gates by Week

6.

Fair winds and following seas. Now go make the borrow checker your wingman.

5

https://crates.io/crates/rayon
https://tokio.rs/
https://crates.io/crates/rsmpi
https://crates.io/crates/criterion
https://crates.io/crates/flamegraph
https://this-week-in-rust.org/
https://users.rust-lang.org/

